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Abstract. We study generic and conformally flat hypersurfaces in the Euclidean
4-space. The conformal flatness condition of the Riemannian metric is given by several
differential equations of order three. In this paper, we first define aclass of metrics of
the Riemannian 3-manifolds, which includes, as alarge set, all metrics of generic and
conformally flat hypersurfaces in the Euclidean 4-space. We obtain adifferential equation
of order three such that the equation characterizes metrics of the class. It is equal to the
simplest equation in ones of conformal flatness condition. In particular, when we restrict
the equation to metrics of conformally flat hypersurfaces, the equation is invariant by the
action of conformal transformations. Next, we study the correspondence between hyper-
surfaces(or metrics) and some particular solutions of the equation. We will determine all
generic and conformally flat hyersurfaces (or metrics) corresponding to these particular
solutions. Then, the result includes all known examples of generic and conformally flat
hypersurfaces in the Euclidean 4-space. All known examples are the following: The hy-
persurfaces made from constant curvature surfaces in the three dimentional space forms,
the hypersurfaces given by Suyama[4], and aflat metric obtained by Hertrich-Jeromin[2],
which is conformal to ametric of some conformally flat hypersurface. (However, it is
not yet known any representation as the conformally flat hypersurface in the Euclidean
4-space.)

1. Introduction.
In this paper, we study generic and conformally flat hypersurfaces in the Euclidean 4-

space $\mathrm{R}^{4}$ . Ahypersurface is said to be generic if all principal curvatures are distinct (from
each other) everywhere on the hypersurface. According to Cartan’s theorem on generic
and conformally flat hypersurfaces in $\mathrm{R}^{4}$ (cf. \S 2), there exists an orthogonal curvature-line
coordinate system at each point of the hypersurface. We call it an admissible coordinate
system as in the paper[4]. Then, we can generally represent the first fundamental form $g$

and the second fundamental form $s$ by using an admissible coordinate system $(x^{1}, x^{2}, x^{3})$

as follows:

(1. 1) g $=e^{2P(x)}\{e^{2f(x)}(dx^{1})^{2}+e^{2h(x)}(dx^{2})^{2}+(dx^{3})^{2}\}$,
$\mathrm{t}$ 1991 Mathematics Subject Classification. Primary $53\mathrm{A}30$ ;Secondary $53\mathrm{B}25,53\mathrm{C}40,53\mathrm{C}42$
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where $P(x)=P(x^{1}, x^{2}, x^{3})$ , $f(x)=f(x^{1},x^{2},x^{3})$ and $h(x)=h(x^{1},x^{2},x^{3})$ ,

(1.2) $s=e^{2P(x)}\{e^{2f(x)}\lambda(x)(dx^{1})^{2}+e^{2h(x)}\mu(x)(dx^{2})^{2}+\nu(x)(dx^{3})^{2}\}$ ,

where $\lambda(x)$ , $\mu(x)$ and $\nu(x)$ axe principal curvatures corresponding to $x^{1}$-curve, $x^{2}$-curve
and $x^{3}$-curve, respectively. Therefore, the Riemannian curvature of $g$ is diagonalized by
the coordinate system.

We define aclass — of metrics on 3-manifolds(or open sets of the Euclidean 3-space
$\mathrm{R}^{3})$ : We say that ametric $g$ belongs to the class — if there exists acoordinate system
of the manifold such that, for the coodinate system $(x^{1}, x^{2}, x^{3})$ , the metric $g$ has the
follwing properties (1) and (2):

(1) The metric $g$ is given by (1.1), that is, $(x^{1}, x^{2}, x^{3})$ is an orthogonal coordinate
system.

(2) The Riemannian curvature of $g$ is diagonalizable.

Then, the following integrability condition holds for any metric $g$ of the class —.
We denote by $f_{i}$ the partial derivative of function $f$ with respect to $x^{i}$ , and by $f_{ij}$

the second derivative $\partial^{2}f/\partial x^{i}\partial x^{j}$ .

Proposition A. There exists a function L $=L(x^{1}, x^{2}, x^{3})$ satisfying the
follow ing conditions for a metric g of the $class$ —. :

(1) $L_{12}=(P+f)_{2}(P+h)_{1}$ (2) $L_{13}=(P+f){}_{3}P_{1}$ (3) $L_{23}=(P+h){}_{3}P_{2}$

(4) The function $L$ satisfying equations (1), (2) and (3) is uniquely determined in the
following sense: When other function $\overline{L}$ satisfies (1), (2) and (3), $\overline{L}$ is represented as

$\overline{L}(x^{1}, x^{2}, x^{3})=L(x^{1},x^{2},x^{3})+A(x^{1})+B(x^{2})+C(x^{3})$.

By Proposition Aand curvature condition (2), we have the following Proposition B.

Proposition B. Suppose that a metric $g$ belongs to the $class—$ . We define $a$

function $\psi$ by $\psi(x^{1},x^{2}, x^{3})=L(x^{1}, x^{2},x^{3})-P(x^{1}, x^{2},x^{3})$ . Then we have the following
equations:

(1) $\psi_{12}=f_{2}h_{1}$ (2) $\psi_{13}=h_{13}-h_{1}(f-h)_{3}$ (3) $\psi_{23}=f_{23}+f_{2}(f-h)_{3}$ .
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We restrict the statement of Proposition $\mathrm{B}$ to metrics of conformally flat hypersurfaces.
Under the action of conformal transformations to ahypersurface, the function $P(x)$ in
the metric of (1.1) changes into another function $\overline{P}$ . However, since the functions $f$

and $h$ does not change, we can consider that the function $\psi$ is aconformal invariant for
conformally flat hypersurfaces in this sense. Furthermore, the invariant $\psi$ for hypersurfaces
(or metrics) is extended to an invariant for flat metrics conformally equivalent to the
metrics of conformally flat hypersurfaces.

We have the following theorem by the integrability condition of Q.

Theorem A. Let $g$ be a metric of —. Then the following equations hold:

(1.3) $(f-h)_{123}+[(f-h)_{3}f_{2}]_{1}+[(f-h)_{3}h_{1}]_{2}=0$ ,

(1.4) $h_{123}-[f_{2}h_{1}]_{3}-[(f-h)_{3}h_{1}]_{2}=0$ ,

(1.5) $f_{123}-[f_{2}h_{1}]_{3}+[(f-h)_{3}f_{2}]_{1}=0$ .

The equations (1.3),(1.4) and (1.5) are equal to the equations (2.8), (2.9) and (2.10)
in the conformal flatness condition of the metric (1.1) in \S 2. The functions satisfying
each equation $f_{3}=h_{3}$ , $h_{1}=0$ or $f_{2}=0$ are particular solutions of (1.3), (1.4) or (1.5),
respectively. (We represent the equations (1.3), (1.4) and (1.5) by only one equation (1.8)
below. Then, another particular solution is also given there.) We study the following
problems in \S 4, \S 5 and \S 6:

(1) Does there exist ageneric and conformally flat hypersurface corresponding to each
of these particular solutions ?
(2) If there exists, can we determine all hypersurfaces satisfying each of such equations ?
(3) Can we characterize such hypersurfaces geometrically ?

We study another particular solution in \S 7.
We briefly outline the contents of each section of the paper.

\S 2 Equations for conformally flat hypersurfaces in Euclidean 4-space.
In this section we state Cartan’s Theorem for generic and conformally flat hypersurfaces

and the conformal flatness condition of the metric g of (1.1). Furthermore, we state a
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geometrical property for the metric with one of the equations $f_{3}=h_{3}$ , $f_{2}=0$ and $h_{1}=0$ .

Proposition C. For a 3-manifold with the metric of (1.1), the following two
conditions (1) and (2) are equivalent:
(1) One of the equations $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ holds.
(2) Any level surface determined by $x^{i}=constant$ for some coodinate $x^{i}$ is umbilic.

\S 3 Integrability condition for metrics of the class —.
In this section, we prove Proposition Aand B above.

\S 4 Examples of conformally flat hypersurfaces in Euclidean 4-space and in
Standard 4-sphere.

It is well-known that examples of generic and conformally flat hypersurfaces are made
from constant curvature surfaces in the 3-dimentional space forms. In this section we
consider these hypersurfaces in $\mathrm{R}^{4}$ as ones in the standard 4-sphere $S^{4}$ . Then we will
find asimple structure on $S^{4}$ for such ahypersurface. This result is used in the following
section.

\S 5 Conformally flat hypersurfaces with metric condition $f_{3}=h_{3}$ .
In the paper[4], we determined all generic and conformally flat hypersurfaces with

metrics belonging to one of the following two types (T. I) and (T.2):

(T. I) $g=e^{2P(x)}\{(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}\}$ .

(T.2) $g=e^{2f(x)}(dx^{1})^{2}+e^{2h(x)}(dx^{2})^{2}+(dx^{3})^{2}$ .

Here, we define that ageneric and conformally flat hypersurface (or ametric) belongs
essentially to (T.3) if its first fundamental form has exactly the representation (1.1) at
each point of $M$ not reducing to (T.I) or (T.2).

In this section, we prove that, if ageneric and conformally flat hypersurface belongs
essentially to (T.3) and further its metric satisfies the condition $f_{3}=h_{3}$ , then the hyper-
surface is one of the hypersufaces stated in section 4.

\S 6 Reconsideration of results in paper[4]: Hypersurfaces of (T.I) and (T.2).
In this section, we reconsider the results of the paper[4]. In the paper[4], we gave

an explicit representation of conformally flat hypersurfaces in $\mathrm{R}^{4}$ belonging to (T.1) and
(T.2). We note that all generic and conformally flat hypersurfaces obtained there satisfy
one of the conditions $f_{3}=h_{3}$ , $f_{2}=0$ and $h_{1}=0$ . Then, we verify that all hypersurfaces
given there belong to the examples in \S 4. In particular, when we regard hypersurfaces in
$\mathrm{R}^{4}$ as ones in $S^{4}$ , we will recognize that all hypersurfaces in Theorem 1are made from
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the Clifford tori in $S^{3}$ . The hypersurfaces in Theorem 2-(3b) were made by revolutions
of plane curves to two orthogonal directions in $\mathrm{R}^{4}$ . We verify that the surfaces i$\mathrm{n}$

$\mathrm{R}^{3}$

made by each revolution of the plane curves are constant curvarure surfaces when we see
them through the Poicare metric on half-space $H^{3}$ .

From the results in \S 4, \S 5, \S 6 and the paper[4] we have the following theorem.

Theorem B. Let $M$ be a generic and conformally flat hypersurface in the
Euclidean 4-space with the first fundamental $fom$ $g$ of (1.1). Then the following statements
(1) and (2) are equivalent:

(1) The metric satisfies one of the equations $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ .
(2) $M$ is one of the hypersurfaces given in the section 4.

\S 7 Flat metric due to Hertrich-Jeromin[2]: Another particular solution.
Hertrich-Jeromin[2] showed that, in local region, the existence problem of generic and

conformally flat hypersurfaces is equivalent to the existence problem of conformally flat
metrics of some type. More exactly, for ageneric and conformally flat hypersurface, there
exists aspecial curvature-line coodinate system such that the metric $g$ is represented as

(1.6) g $=e^{2P(x)}\{(\cos\varphi(x))^{2}(dx^{1})^{2}+(\sin\varphi(x))^{2}(dx^{1})^{2}+(dx^{3})^{2}\}$

by the coodinate system, where $P(x)=P(x^{1}, x^{2}, x^{3})$ and $\varphi(x)=\varphi(x^{1}, x^{2},x^{3})$ . Conversely,
for aflat metric $\overline{g}$

(1.7) $\overline{g}=e^{2\overline{P}(x)}\{(\cos\varphi(x))^{2}(dx^{1})^{2}+(\sin\varphi(x))^{2}(dx^{1})^{2}+(dx^{3})^{2}\}$ ,

there exists ageneric and conformally flat hypersurface such that the metric is conformal
to $\overline{g}$ and the each coordinate $x$:-line is acuvature line. Therefore, by Proposition $\mathrm{B}$ we can
consider the pair $\{\psi, \varphi\}$ of functions as acoformal invariant for conformally flat hypersur-
faces (or metrics). He called above coordinate system $\{x^{1},x^{2},x^{3}\}$ by the Guichard’s net.
Furthermore, he gave an example of the Guichard’s net on $\mathrm{R}^{3}$ such that the canonical flat
metric is represented as (1.6) by the net. The Guichard’s net of the example is different
from ones of hypersurfaces in \S 4. His Guichurd’s net was made by the parallel surfaces of
Dini’s helix (with constant negative curvature).

Now, by the representation (1.6), we rewrite the equations in Proposition $\mathrm{B}$ and in
Theorem $\mathrm{A}$ : (1) $\psi_{12}=-\varphi_{1}\varphi_{2}$ (2) $\psi_{13}=\varphi_{13}\cot\varphi$ (3) $\psi_{23}=-\varphi_{23}\tan\varphi$ .

(1.8) $\varphi_{123}=-\varphi_{1}\varphi_{23}\tan\varphi+\varphi_{2}\varphi_{13}\cot\varphi$ .
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(Compare the equation (1 with other conformal flatness conditions (7.6), (7.7) and
(7.8) in \S 7.) Then, we have aparticular solution $\varphi_{13}=\varphi_{23}=0$ of (1.8). In this case, the
particular solutions $h_{1}=0$ , $f_{2}=0$ and $f_{3}=h_{3}$ before corresponds to $\varphi_{1}=0$, $\varphi_{2}=0$

and $\varphi_{3}=0$ , respectively.
We determine all Guichard’s nets (or metrics) of $\mathrm{R}^{3}$ under the assumption $\varphi 13=\varphi 23=$

$0$ , which include the example by Hertrich-Jeromin.
The assumption $\varphi 13=\varphi_{23}=0$ , $\varphi_{1}\neq 0$ , $\varphi_{2}\neq 0$ and $\varphi_{3}\neq 0$ is equivalent that the

function $\varphi$ is represented as

$\varphi(x^{1},x^{2},x^{3})=A(x^{1}, x^{2})+B(x^{3})$ ,

where $A_{1}\neq 0$ , $A_{2}\neq 0$ and $B_{3}\neq 0$ .

Theorem C. Let $\{x^{1}, x^{2}, x^{3}\}$ be a Guichard’s net of $R^{3}$ (or of an open set in
$R^{3})$ and the canonical flat metric $g$ of $R^{3}$ $be$ represented as (1.6) by the net. We assume
that the function $\varphi$ is represented as

(1.9) $\varphi(x^{1},x^{2}, x^{3})=A(x^{1}, x^{2})+B(x^{3})$ ,

where $A_{1}\neq 0$ , $A_{2}\neq 0$ and $B_{3}\neq 0$ . Then, we have the following facts (1), (2), (3) and
(4):
(1) Each $x^{3}$ -curve $in$ $R^{3}$ $is$ a circle (or a part of circle).

(2) The function $A(x^{1}, x^{2})$ satisfies the Sine-Gordon equation:

$A_{11}-A_{22}=\overline{C}\cos 2A-\overline{D}\sin 2A$ ,

where $\overline{C}$ and $\overline{D}$ are constant.
(3) The fuction $B(x^{3})$ is given by the following equation:

$B_{3}(x^{3})=\sqrt{G^{2}-E^{2}(\sin(B(x^{3})+F))^{2}}$ ,

where $E$, $F$ and $G$ are constant. That is, $B(x^{3})$ is an amplitude function.
(4) In particular, we assume $G^{2}=E^{2}$ in the above (3). Then, the Guichard’s net is
made from either the parallel surfaces of a constant negative curvature surface $in$ $R^{3}$ or $a$

conformal transformation of the parallel surfaces.

2. Equations for conformally flat hypersurfaces in Euclidean 4-space.
Let $M$ be ageneric and conformally flat hypersurface in $\mathrm{R}^{4}$ with the first and the

second fundamental forms given by (1.1) and (1.2) respectively. We summarize in this
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section fundamental equations on the first and the second fundamental forms for our use.
Further, we prove Proposition $\mathrm{C}$ mentioned in Introduction.

First, we recall the local theory due to Cartan for generic and conformally flat hyper-
surfaces (cf. $[1],[3]$ ). Let us rewrite the first fundamental form $g$ of (1.1) and the second
fundamental form $s$ of (1.2) in the following forms:

(2.1) $g=\alpha^{2}+\beta^{2}+\gamma^{2}$ , $s=\lambda\alpha^{2}+\mu\beta^{2}+\nu\gamma^{2}$ .

In the present case, one-forms $\alpha$ , $\beta$ and 7are $\alpha=e^{(P+f)}dx^{1}$ , $\beta=e^{(P+h)}dx^{2}$ and
$7=e^{P}dx^{3}$ , respectively. Then, by the Gauss equation we obtain the Riemannian curva-
ture $R$ of $g$ :

(2.2) $R=\lambda\mu\alpha\wedge\beta\otimes\alpha\wedge\beta+\mu\nu\beta\wedge\gamma$ $C\ j\mathit{3}\wedge\gamma+\nu\lambda\alpha\wedge\gamma\otimes\alpha\wedge\gamma$.

We denote by $X_{\alpha}$ , $X\beta$ and $X_{\gamma}$ the vector fields associated with $\alpha$ , $\beta$ and $\gamma$ ,
respectively. We simply denote $f_{\alpha}=X_{\alpha}f$, $f\beta=X\beta f$ and $f_{\gamma}=X_{\gamma}f$ for asmooth
function $f$ .

Cartan’s Theorem (cf. $[1],[3]$ ). A generic hypersurface M $\subset R^{4}$ is confor mally

flat if and only if the following conditions (1) and (2) hold:

(1) $da\wedge\alpha=d\beta\wedge\beta=d\gamma\wedge\gamma=$ 0.

(2) $\{$

$(\mu-\nu)\lambda_{\alpha}+(\lambda-\nu)\mu_{\alpha}+(\mu-\lambda)\nu_{\alpha}=0$ ,

$(\nu-\lambda)\mu_{\beta}+(\mu-\lambda)\nu_{\beta}+(\nu-\mu)\lambda\rho=0$,

(A $-\mu$) $\nu_{\gamma}+(\nu-\mu)\lambda_{\gamma}+(\lambda-\nu)\mu_{\gamma}=0$ .

The condition (1) of Cartan’s theorem implies the existence of an admissible coordi-
nate system at each point of $M$ mentioned in the introduction. Let $\nabla$ be the Levi-Civita
connection of $g$ . The Schouten tensor $S$ on $M$ is defined by $S=Ric-(r/4)g$ , where
$r$ is the scalar curvature. In general, ahypersurface $M$ is conformally flat if and only if
the foUowing three conditions (a), (b) and (c) on $g$ and $s$ hold: (a) the Gauss equation.

(b) the Codazzi equation. (c) $(\nabla_{X}S)(\mathrm{Y}, Z)=(\nabla_{\mathrm{Y}}S)(X, Z)$ for any vector fields
$X$, $\mathrm{Y}$ and $Z$ . Cartan’s theorem implies that the conditions (1) and (2) are equivalent to
these conditions (a), (b) and (c) under the assumption for $M$ to be generic.

In the process of the proof of Cartan’s theorem, we obtain the conditions of covariant
derivatives in terms of principal curvatures (cf. [3]). Let $\nabla’$ be the standard connection
of $\mathrm{R}^{4}$ , and $N$ unit vector field normal to $M$ . Then we get the following
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(2.3)

$|$ $\nabla_{X_{\gamma}}’X_{\gamma}\nabla_{X_{\beta}}’X_{\beta}\nabla_{X_{\alpha}}’X_{\alpha}===$

$\frac,X_{\alpha}\frac{\mu_{\alpha}}{\mu-\lambda,\nu-\lambda\nu_{\alpha}}X_{\alpha}+$

$\frac{\nu_{\beta}}{\nu-\mu}X_{\beta}\frac{\lambda_{\beta}}{\lambda-\mu}X_{\beta}$

$++ \frac{\frac{\lambda_{\gamma}}{\lambda-\nu\mu_{\gamma}}}{\mu-\nu}X_{\gamma}X_{\gamma}$

$+++\mu N\nu N\lambda N,’$,

$|$
$\nabla_{X_{\gamma}}’X_{\alpha}\nabla_{X_{\beta}}’X_{\alpha}\nabla_{X_{\alpha}}’X_{\beta}===$

$- \frac{\mu-\lambda\nu_{\alpha}}{\nu-\lambda’},X_{\gamma}-\frac X_{\beta}-\frac{\lambda_{\beta}}{\lambda-\mu,\mu_{\alpha}}X_{\alpha},$

”
$\nabla_{X_{\gamma}}’X_{\beta}\nabla_{X_{\alpha}}’X_{\gamma}\nabla_{X_{\beta}}’X_{\gamma}===$

$- \frac,X_{\gamma}-\frac{\frac{\lambda_{\gamma}}{\lambda-\nu\mu_{\gamma}}}{\mu-\nu,\nu-\mu\nu_{\beta}}X_{\beta}-X_{\alpha}.$

”

Note that the covariant derivatives with respect to $\nabla$ are also determined by (2.3).
Second, by comparing the Christoffel’s symbols of the metric $g$ with equations (2.3),

we have

(2.4) $\{$

$\frac{\lambda_{\beta}}{\lambda-\mu}=$ $-e^{-P-h}(P+f)_{2}$ , $\frac{\lambda_{\gamma}}{\lambda-\nu}=$ $-e^{-P}(P+f)_{3}$ ,

$\frac{\mu_{\alpha}}{\frac{\mu-\lambda\nu_{\alpha}}{\nu-\lambda}},$ $==$ $-e^{-P-f}P_{1}-e^{-P-f}(P,+h)_{1}$

, $\frac{\mu_{\gamma}}{\mu-\nu}=$ $-e^{-P}(P+h)_{3}$ ,

$\frac{\nu_{\beta}}{\nu-\mu}=$ $-e^{-P-h}P_{2}$ .

Here, we denote by $f_{i}$ the partial derivative of $f$ with respect to $x^{i}$ .
Now, we prove Proposition C.

Proposition 2.1. For a 3-manifold with the metric of (1.1), the following tuyo

conditions are equivalent:

(1) One of the equations $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ holds.
(2) Any level surface determined by $x^{i}=constant$ for some coodinate $x^{i}$ is umbilic.

Proof. If $f_{2}=0$ , then we have $<\nabla_{X_{\alpha}}X_{\beta}$ , $X_{\alpha}>=<\nabla_{X_{\gamma}}X_{\beta}$ , $X_{\gamma}>$ by (2.3)
and (2.4) (in this case we have no meaning for principal curvatures, and so we only
look at the Christoffel’s symbols) . Since $X\beta$ is aunit vector field normal to asurface
$\{(x^{1}, x^{3}) : x^{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\}$ , each surface $\{(x^{1}, x^{3}) : x^{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\}$ is umbilic at each
point. Conversely, if each surface $\{(x^{1}, x^{3}) : x^{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\}$ is umbilic at each point,
then we have $f_{2}=0$ . We can prove other cases in the same way. q.e.d.

We denote by $f_{ij}$ the second derivative $\partial^{2}f/\partial x^{i}\partial x^{j}$ . Since the components #1323,

67



$R_{1232}$ and $R_{2131}$ of the curvature R identically vanish by the equation (2.2), we have

(2.5) $(P+f)_{2}(P+h)_{1}-P_{12}=f_{2}h_{1}$ ,

(2.6) $P_{2}(P+h)_{3}-P_{23}=f_{23}+f_{2}(f-h)_{3}$,

(2.7) $P_{1}(P+f)_{3}-P_{13}=h_{13}-h_{1}(f-h)_{3}$ .

Next, the metric $\tilde{g}=e^{2f}(dx^{1})^{2}+e^{2h}(dx^{2})^{2}+(dx^{3})^{2}$ is conformally flat. Therefore,

when we denote by $\tilde{R}ic$ and $\tilde{r}$ the Ricci tensor and the scalar curvature, respectively,
of metric $\tilde{g}$ , we have

$\dot{\sigma}_{kl}=\tilde{R}ic_{k,l}^{\dot{*}}-\tilde{R}ic_{l,k}^{\dot{*}}-\frac{1}{4}(\delta_{k}^{\dot{l}}\tilde{r}_{l},-\delta_{l}^{i}\tilde{r}_{k},)=0$ :

(2.8) $C_{23}^{1}=0\Leftrightarrow$

$\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}_{2}=\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}f_{2}+\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}h_{1}$ .

(2.9) $C_{31}^{2}=0\Leftrightarrow$

$\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}_{1}=\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}f_{2}+\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}h_{1}$.

(2. 10) $C_{12}^{3}=0\Leftrightarrow\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}_{1}=\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}_{2}$.
(2.11) $C_{23}^{3}=0\Leftrightarrow$

$\{e^{-2h}(f_{22}+(f_{2})^{2}-f_{2}h_{2})\}_{2}+\{e^{-2f}(h_{11}+(h_{1})^{2}-f_{1}h_{1})\}_{2}$

$-\{f_{33}+(f_{3})^{2}+h_{33}+(h_{3})^{2}-f_{3}h_{3}\}_{2}$

$=-2\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}_{3}-2\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}h_{3}$.

(2.12) $C_{31}^{3}=0\Leftrightarrow$

$\{e^{-2h}(f_{22}+(f_{2})^{2}-f_{2}h_{2})\}_{1}+\{e^{-2f}(h_{11}+(h_{1})^{2}-f_{1}h_{1})\}_{1}$

$-\{f_{33}+(f_{3})^{2}+h_{33}+(h_{3})^{2}-f_{3}h_{3}\}_{1}$

$=-2\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}_{3}-2\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}f_{3}$ .
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(2.13) $C_{23}^{2}=0\Leftrightarrow$

$e^{-2h}\{f_{22}+(f_{2})^{2}-f_{2}h_{2}\}_{3}+\{e^{-2f}(h_{11}+(h_{1})^{2}-f1h_{1})\}_{3}$

$+\{f_{3}h_{3}+h_{33}+(h_{3})^{2}-f_{33}-(f_{3})^{2}\}_{3}$

$=2e^{-2h}\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}_{2}-2e^{-2h}\{f_{23}+f_{2}f_{3}-f_{2}h_{3}\}h_{2}$

$+2e^{-2[}\{h_{13}+h_{1}h_{3}-f_{3}h_{1}\}h_{1}-2e^{-2f}\{h_{11}+(h_{1})^{2}-f1h_{1}\}h_{3}$

$+2\{f_{33}+(f_{3})^{2}-f_{3}h_{3}\}h_{3}$ .

3. Integrability condition for metrics of class —.
In this section, we prove Proposition Aand Proposition $\mathrm{B}$ mentioned in Introduction.
We define that ametric $g$ of a3-manifold(or of an open set in $\mathrm{R}^{3}$ ) belongs to aclass

— if there exists acoodinate system $\{x^{1}, x^{2}, x^{3}\}$ such that, for the coodinate system, the
metric $g$ has the following properties (1) and (2):

(1) The metric $g$ is represented as the form (1.1).
(2) The curvature tensor is diagonalizable.

The condition (2) becomes the equations (2.5), (2.6) and (2.7) in \S 2.
Let ametric $g$ of (1.1) belong to the class —. Proposition Ais induced from the

curvature diagonalizable conditions (2.5), (2.6) and (2.7). In particular, all metrics of
conformally flat hypersurfaces satisfy these conditions, since such hypersurfaces have an
admissible coordinate system.

Proposition 3.1. Let a metric $g$ of (1.1) belong to the class —. There exists
a function $L=L(x^{1}, x^{2}, x^{3})$ satisfying the following conditions:

(1) $L_{12}=(P+f)_{2}(P+h)_{1}$ . (2) $L_{13}=(P+f){}_{3}P_{1}$ . (3) $L_{23}=(P+h)_{3}P_{2}$ .
(4) The function $L$ satisfying equations (1), (2) and (3) is uniquely determined in the

following sense: When another function $\overline{L}$ satisfies (1), (2) and (3), $\overline{L}$ is represented as

$\overline{L}(x^{1}, x^{2},x^{3})=L(x^{1}, x^{2}, x^{3})+A(x^{1})+B(x^{2})+C(x^{3})$ .

Proof. First, we have the equation

(3.1) $\{(P+f)_{3}P_{1}\}_{2}=\{(P+h){}_{3}P_{2}\}_{1}$ .
Indeed, we have

$\{(P+\mathrm{f})3\mathrm{P}\mathrm{i}\}2-\{(P+h){}_{3}P_{2}\}_{1}=(P+h)_{13}P_{2}-(P+f)_{23}P_{1}-(f-h){}_{3}P_{12}$ .
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Then, we have $\{(P+f)_{3}P_{\mathrm{i}}\}_{2}-\{(P+h)_{3}7^{\ovalbox{\tt\small REJECT}}\mathrm{z}\}\mathrm{t}\ovalbox{\tt\small REJECT}$ Q by (2.5), (2.6) and (2.7). In the similar
way to the above, we have the equations

(3.2) $\{P_{2}(P+h)_{3}\}_{1}=\{(P+f)_{2}(P+h)_{1}\}_{3}$ ,

(3.3) $\{(P+h)_{1}(P+f)_{2}\}_{3}=\{P_{1}(P+f)_{3}\}_{2}$ .

by (2.5), (2.6) and (2.7).
Second, by (3.1), (3.2) and (3.3) there exist functions $K=K(x^{1}, x^{2}, x^{3})$ , $\overline{K}=$

$\overline{K}(x^{1}, x^{2}, x^{3})$ and $\hat{K}=\hat{K}(x^{1}, x^{2}, x^{3})$ such that

$K_{1}=(P+f)_{3}P_{1}$ , $K_{2}=(P+h){}_{3}P_{2}$ , $\overline{K}_{1}=(P+f)_{2}(P+h)_{1}$ ,

$\overline{K}_{3}=P_{2}(P+h)_{3}$ , $\hat{K}_{3}=P_{1}(P+f)_{3}$ , $\hat{K}_{2}=(P+h)_{1}(P+f)_{2}$ .
Furthermore, ffom $K_{1}=\hat{K}_{3}$ , $K_{2}=\overline{K}_{3},\overline{K}_{1}=\hat{K}_{2}$ there exist functions $L=L(x^{1}, x^{2}, x^{3})$ ,
$\overline{L}=\overline{L}(x^{1},x^{2}, x^{3})$ and $\hat{L}=\hat{L}(x^{1}, x^{2},x^{3})$ such that

$L_{1}=\hat{K}$ , $L_{3}=K$ , $\overline{L}_{2}=\overline{K},\overline{L}_{3}=K$ , $\hat{L}_{1}=\hat{K}$ , $\hat{L}_{2}=\overline{K}$ .

Therefore, we have $L_{1}=\hat{L}_{1}=\hat{K}$, $L_{3}=\overline{L}_{3}=K$ and $\overline{L}_{2}=\hat{L}_{2}=\overline{K}$.
Finally, since $L-\hat{L}=U(x^{2},x^{3})$ , $L-\overline{L}=V(x^{1}, x^{2})$ and $\overline{L}-\hat{L}=W(x^{1}, x^{3})$ , we have

(3.4) $W(x^{1},x^{3})=\overline{L}-\hat{L}=(L-\hat{L})-(L-\overline{L})=U(x^{2}, x^{3})-V(x^{1}, x^{2})$ .

From (3.4), each parameters of functions $U$ , $V$ and $W$ have to separate to each other:
$U(x^{2},x^{3})=X(x^{2})+\mathrm{Y}(x^{3})$, $V(x^{1},x^{2})=Z(x^{1})+X(x^{2})$ , $W(x^{1}, x^{3})=\mathrm{Y}(x^{3})-Z(x^{1})$ .

This completes the proof of Proposition. $\mathrm{q}.\mathrm{e}.\mathrm{d}$ .

Proposition 3.2. Suppose that a metric $g$ belongs to the class —. We define
a function $\psi$ by $\psi(x^{1},x^{2},x^{3})=L(x^{1}, x^{2}, x^{3})-P(x^{1}, x^{2}, x^{3})$ . Then we have the following
equations:

(1) $\psi_{12}=f_{2}h_{1}$ (2) $\psi_{13}=h_{13}-h_{1}(f-h)\mathrm{a}$ (3) $\psi_{23}=f_{23}+f_{2}(f-h)_{3}$ .

Proof. The proposition follows from the definition of $\psi$ and curvature condition (2.5),
(2.6) and (2.7). q.e.d.

We restrict the statement of Proposition 3.2 to the metrics of conformally flat hy-
persurfaces. The obtained metric under the action of conformal transformations to a
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hypersurface also belongs to —. Then the function $P(x)$ in the metric of (1.1) changes
into another function $\overline{P}$ , but the functions $f$ and $h$ does not change. Therefore, by PropO-
sition 3.2 we can consider that the function $\psi$ is aconformal invariant for conformally
flat hypersurfaces (or metrics) in this sense. Furthermore, this invariant $\psi$ for metrics
is extended to flat metrics conformally equivalent to the metrics of the conformally flat
hypersurfaces, because flat metric is trivially diagonalizable.

Theorem 3.1. Let $g$ of (Ll) be a metric of the class —. Then the following
equations holds:

(3.5) $(f-h)_{123}+[(f-h)_{3}f_{2}]_{1}+[(f-h)_{3}h_{1}]_{2}=0$ ,

(3.6) $h_{123}-[f_{2}h_{1}]_{3}-[(f-h)_{3}h_{1}]_{2}=0$ ,

(3.7) $f_{123}-[f_{2}h_{1}]_{3}+[(f-h)_{3}f_{2}]_{1}=0$ .

Proof. This theorem follows from the integrability conditions of $\psi$ : $(\psi_{12})_{3}=(\psi_{13})_{2}=$

$(\psi_{23})_{1}$ . $\mathrm{q}.\mathrm{e}.\mathrm{d}$ .

The functions satifying each equation $f_{3}=h_{3}$ , $h_{1}=0$ or $f_{2}=0$ are particular solutions
of (3.5), (3.6) or (3.7), respectively. The geometrical meaning of these equations is given
by Proposition 2.1 in 52. The class — includes all metrics of generic and conformally flat
hypersurfaces. Therefore, we study, in the following \S 4,\S 5 and \S 6, generic and conformally
flat hypersurfaces with metrics satisfying one of the equations $f_{3}=h_{3}$ , $f_{2}=0$ and $h_{1}=0$ .

4. Examples of conformally flat hypersurfaces in Euclidean 4-space and in
4-sphere.

In this section, we give three kind of examples of generic and conformally flat hyper-
surfaces i$\mathrm{n}$

$\mathrm{R}^{4}$ . These examples are well-known. However, we regard these hypersurfaces
$.\mathrm{n}\mathrm{R}^{4}$ as ones in the standard 4-sphere $S^{4}$ , we will find asimple structure on $S^{4}$ fo$\mathrm{r}$

each hypersurface. Prom this fact, we can classify, in the following \S 5 and \S 6, generic and
conformally flat hypersurfaces with metrics satifying one of the equations $f_{2}=0$ , $h_{1}=0$

and $f_{3}=h_{3}$ .
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(E-1) Direct product type Let S be aconstant Gaussian curvature surface in Euclidean
3-space $\mathrm{R}^{3}$ . Then, the direct product SxR ( $\mathrm{R}^{3}$ xR $\ovalbox{\tt\small REJECT}$

$\mathrm{R}^{4}$ is conformally flat. When3

the direct product SxR is generic, it belongs to $(\mathrm{T}.2)$-type (cf. Theorem 2-(2) of [4]).

(E-2) Cone type Let $S$ be aconstant Gaussian curvature surface in the standard 3-
sphere $S^{3}$ with center at the origin of $\mathrm{R}^{4}$ . Then, the cone $M=\{tp:0<t<\infty, p\in S\}$

i$\mathrm{n}$

$\mathrm{R}^{4}$ is aconformally flat hypersurface. When the cone is generic, it belongs to $(\mathrm{T}.2)-$

type (cf. Theorem 2-(2) of [4]).

(E-3) Revolution type Let $(H^{3},g_{H})$ be ahyperbolic 3-space given by

$H^{3}=\{(y^{1}, y^{2}, y^{3}) : y^{3}>0\}$ , $g_{H}=(y^{3})^{-2}\{(dy^{1})^{2}+(dy^{2})^{2}+(dy^{3})^{2}\}$ .

We put the set $H^{3}$ into $\mathrm{R}^{4}$ in the following way:

$H^{3}=\{(y^{1}, y^{2}, y^{3},0) : y^{3}>0\}\subset \mathrm{R}^{4}=\{(y^{1}, y^{2}, y^{3},y^{4}) : y^{:}\in \mathrm{R}\}$ .

Let us take rotations of $y^{3}$-axis of $H^{3}$ to the direction of $y^{4}$-axis, i.e., $(y^{1}, y^{2},y^{3},0)arrow$

$(y^{1}, y^{2}, y^{3}\cos t, y^{3}\sin t)$ for $t\in[0,2\pi)$ . Let $S$ be aconstant Gaussian curvature surface
in $(H^{3},g_{H})$ , and $M$ ahypersurface in $\mathrm{R}^{4}$ obtained from above rotations of $S$ . Then,
$M$ is aconformally flat hypersurface in $\mathrm{R}^{4}$ (cf. [2]). When $M$ is generic, it belongs
essentially to $(\mathrm{T}.3)$ -type (cf. Theorem 5.1 of \S 5).

Let us consider that the above conformally flat hypersurfaces are immersed in $S^{4}$

through the stereographic projection $\mathrm{R}^{4}arrow S^{4}$ from apoint p of $S^{4}$ .

(S-1) Parabolic class Let $M$ be aconformally flat hypersurface in $S^{4}$ of the direct
product type. For aconformal transformation $\phi$ of $S^{4}$ , the hypersurface $\phi(M)$ is also
conformally flat. Furthermore, if $M$ is generic, so is $\phi(M)$ .

We denote $\phi(M)$ by $N$ for the simplicity. For the direct product $M=S\cross \mathrm{R}$ , the
linear space $\mathrm{R}^{3}$ including $S$ corresponds to a3-sphere through the point $p$ in $S^{4}$ ,
and $\mathrm{R}$ corresponds to the parameter of rotation at $p$ of the 3-sphere to the orthogonal
direction. Therefore, for $N$ there is a1-parameter family of 3-spheres $\{S_{t}^{3}\}$ in $S^{4}$

satisfying the following conditions (1),(2) ,(3) and (4):
(1) The union of 3-spheres $\{S_{t}^{3}\}$ is whole $S^{4}$ , and $S_{t}^{3}\cap S_{t}^{3},$ $=$ {one point} for distinct

$t$ and $t$ .
(2) There exists avector field $X$ on $S^{4}$ such that $X$ is perpendicular to each $S_{t}^{3}$
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and each integral curve of $X$ is acircle.
(3) Let $\psi_{t}$ be the 1-parameter family of transformations generated by $X$ . We may

assume $S_{t}^{3}=\psi_{t}(S_{0}^{3})$ . Let us denote $N_{t}=N\cap S_{t}^{3}$ . Then, we have $N_{t}=\psi_{t}(N_{0})$ .
(4) Let $g$ of (1.1) be the first fundamental form of $N$ . When we define parameter $x^{3}$

by $t$ , $N_{t}$ is asurface with parameters $x^{1}$ and $x^{2}$ . Then, the metric $e^{2f}(dx^{1})^{2}+e^{2h}(dx^{2})^{2}$

of $N_{t}$ has aconstant Gaussian curvature for each $t$ .

(S-2) Hyperbolic class Let $M$ be aconformally flat hypersurface in $S^{4}$ of the
cone type. For aconformal transformation $\phi$ of $S^{4}$ , the hypersurface $\phi(M)$ is also
conformally flat.

We denote $\phi(M)$ by $N$ . The hypersurface $M$ of the cone type collapses at two
points in $S^{4}$ , one of which is apoint corresponding to the origine of $\mathrm{R}^{4}$ and the other
is apoint corresponding to the infinity. Therefore, for $N$ there is a1-parameter family
of 3-spheres $\{S_{t}^{3}\}$ satisfying the following condition (1) and same conditions (2), (3) and
(4) as the case of the parabolic class:

(1) The union of 3-spheres $\{S_{t}^{3}\}$ is $S^{4}\backslash$ {two points}, and $S_{t}^{3}\cap S_{t}^{3},$ $=\emptyset$ for distinct
$t$ and $t’$ .

(S-3) Elliptic class Let $M$ be aconformally flat hypersurface in $S^{4}$ of the revolution
type. For aconformal transformation $\phi$ of $S^{4}$ , the hypersurface $\phi(M)$ is also conformally
flat.

We denote $\phi(M)$ by $N$ . Since the hyperbolic space $H^{3}$ (in $S^{4}$ ) is included in
a3-sphere $S^{3}$ through the point $p$ , there is a1-parameter family of 3-spheres $\{S_{t}^{3}\}$

determined by $N$ satisfying the following condition (1) and same conditions (2), (3) and
(4) as the case of the parabolic class:

(1) The 1-parameter family of 3-spheres $\{S_{t}^{3}\}$ covers $S^{4}$ , i.e., $\bigcup_{t}S_{t}^{3}=S^{4}$ . There
exists a2-sphere $S^{2}$ such that $S_{t}^{3}\cap S_{t}^{3},$ $=S^{2}$ for distinct $t$ and $t’$ .

We note that above each class is invariant by the action of conformal transformations of
$S^{4}$ . By arotation parameter, we mean the parameter of integral curves of $X$ determined
by hypersurface of each class. We can again recognize $N$ in $S^{4}$ of above classes as a
hypersurface in $\mathrm{R}^{4}$ by astereographic projection. Each $k$-sphere i$\mathrm{n}$

$S^{4}$ corresponds to
either a $k$-sphere or alinear $k$ space i$\mathrm{n}$

$\mathrm{R}^{4}$ by the stereographic projection for $k=1,2$ or
3. Thus, we call it a $k$-sphere i$\mathrm{n}$

$\mathrm{R}^{4}$ even the case of linear $k$-space. Then, the l-parameter
family of 3-spheres i$\mathrm{n}$

$S^{4}$ determined by $N$ corresponds to a1-parameter family of 3-
spheres satisfying same conditions (1),(2),(3) and (4) in $\mathrm{R}^{4}$ fo$\mathrm{r}$ each class. We also say
that ahypersurface i$\mathrm{n}$

$\mathrm{R}^{4}$ belongs to the parabolic class (resp. the hyperbolic class, the
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elliptic class), if it corresponds to ahypersurface of the class i$\mathrm{n}$

$S^{4}$ . Furthemore, for a
hypersurface i$\mathrm{n}$

$\mathrm{R}^{4}$ of each class, we shall call by anormal form i$\mathrm{n}$

$\mathrm{R}^{4}$ ahypersurface of
the direct product tyPe, the cone tyPe or the revolution tyPe corresponding respectively
to it.

Finally we remark that, for all above hypersurfaces in $S^{4}$ , each level surface determined
by $t=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ is umbilic in the hypersurface.

5. Conformally flat hypersurfaces with metric condition $f_{3}=h_{3}$ .
The purpose of this and the following sections is to prove that, if the metric (1.1)

satisfies the one of the conditions $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ for an admissible coordinate
system at each point, the generic and conformally flat hypersurface belongs to one of the
classes of parabolic, elliptic and hyperbolic.

We classify all generic and conformally flat hypersurfaces by the metric types into three
classes (T. $\mathrm{I}$ ), (T.2) and (T.3). We define that ageneric and conformally flat hypersurface
(or ametric) belongs to (T.I) or (T.2) if the metric has arepresentation as

(T. I) g $=e^{2P(x)}\{(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}\}$

or

(T.2) g $=e^{2f(x)}(dx^{1})^{2}+e^{2h(x)}(dx^{2})^{2}+(dx^{3})^{2}$

respectively, for an admissible coordinate system. Furthermore, we define that ageneric
and conformally flat hypersurface (or ametric) belongs essentially to (T.3) if its first fun-
damental form has exactly the representation (1.1) at each point of $M$ not reducing to
(T.1) or (T.2).

We determined all generic and conformally flat hypersurfaces belonging to (T.I) and
(T.2) in the paper[4]. Therefore, in this section we study the case that hypersurfaces
belong essentially to (T.3) and the metrics satisfy one of the conditions $f_{2}=0$ , $h_{1}=0$

and $f_{3}=h_{3}$ for an admissible coordinate system at each point.
First, we study the case that hypersurface is covered with only one admissible coor-

dinate system and the metric satisfies the condition $f_{3}=h_{3}$ . We note that the other
condition $f_{2}=0$ (resp. $h_{1}=0$) is reduced to the case $f_{3}=h_{3}$ by replacing the parameters
$x^{1}$ , $x^{2}|$ and $x^{3}$ . Further, the condition $f_{3}=h_{3}$ is equivalent to the condition that each
surface $\{(x^{1},x^{2}) : x^{3}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\}$ is umbilic at each point.

Proposition 5.1. Let $M$ be a generic and conformally flat hypersurface $in$ $R^{4}$

belonging essentially to (T.3). For functions $P$, $f$ and $h$ in the first fundamental form
$g$ of (Ll), assume that equations $(P+f)_{3}=(P+h)_{3}=0$ hold on M. Then, we can
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replace functions P, f and h so that equations $P_{3}\ovalbox{\tt\small REJECT}$ $f_{3}\ovalbox{\tt\small REJECT}$ $h_{3}\ovalbox{\tt\small REJECT}$ 0 hold on M by
changing parameter $x^{3}$ .

Proof. We have $\lambda_{\gamma}=\mu_{\gamma}=0$ by (2.4), and then $\nu_{\gamma}=0$ by (2) of Cartan’s
Theorem. Since

$-P_{13}= \frac{\partial}{\partial x^{3}}(\frac{\nu_{1}}{\nu-\lambda})=0$, $-P_{23}= \frac{\partial}{\partial x^{3}}(\frac{\nu_{2}}{\nu-\mu})=0$

by (2.4) and $\lambda_{3}=\mu_{3}=\nu_{3}=0$ , the parameter $x^{3}$ of function $P$ separates from $x^{1}$

and $x^{2}$ , that is, $P$ can be represented as $P(x^{1}, x^{2}, x^{3})=\overline{P}(x^{1}, x^{2})+\hat{P}(x^{3})$ . When we
take new parameter $\overline{x}^{3}$ so that $d\overline{x}^{3}=e^{\hat{P}(x^{3})}dx^{3}$ , new function $P$ equals $\overline{P}(x^{1}, x^{2})$

which does not depend on $\overline{x}^{3}$ . Then, new functions $f$ and $h$ also do not depend on $\overline{x}^{3}$

by the assumption. q.e.d.

Theorem 5.1. Let $M$ be a generic and conformally flat hypersurface in $R^{4}$

belonging essentially to (T.3). For the first fundamental form $g$ of (1.1), assume that
there exists an admissible coordinate system $(x^{1}, x^{2}, x^{3})$ of $M$ so that all functions $P$ ,
$f$ and $h$ in $g$ do not depend $\mathit{0}n$

$x^{3}$ . Then $M$ belongs to the revolution type with
revolution parameter $x^{3}$ .

Proof. We denote by $M^{a}$ asurface in $M$ with parameters $x^{1}$ and $x^{2}$ for fixed
$x^{3}=a$ . The proof is divided into several steps.

(1) The metric $\overline{g}=e^{2f}(dx^{1})^{2}+e^{2h}(dx^{2})^{2}$ of each $M^{x^{3}}$ has constant Gaussian curvature.
Furthermore, its constant does not depend on $x^{3}$ .

Indeed, the Gaussian curvature $K$ of metric $\overline{g}$ is given by

$K=e^{-2h}(f_{22}+(f_{2})^{2}-f_{2}h_{2})+e^{-2f}(h_{11}+(h_{1})^{2}-f1h_{1})$.

Then, we have $K_{1}=K_{2}=0$ by (2.11), (2.12) and $f_{3}=h_{3}--0$ .

(2) The vector field $X_{\gamma}$ depends only on parameter $x^{3}$ , and each surface $M^{a}$ is included
in alinear 3-space in $\mathrm{R}^{4}$ . Moreover, this linear 3-space is perpendicular to $X_{\gamma}(a)$ .

Indeed, we have $\nabla_{X_{\alpha}}’X_{\gamma}=\nabla_{X_{\beta}}’X_{\gamma}=0$ by (2.3), (2.4) and $P_{3}=f_{3}=h_{3}=0$ .
Therefore, for apoint $p(a^{1},a^{2}, a)$ of $M$ with coordinate $(a^{1}, a^{2},a)$ , we put

$(X_{\gamma}(a))^{[perp]}=\{v+p(a^{1}, a^{2}, a) :v[perp] X_{\gamma}(a)\}$.

Then, we have $M^{a}\subset(X_{\gamma}(a))^{[perp]}$ .
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(3) Each $\mathrm{r}^{3}$-curve in M is apart of circle or line in $\mathrm{R}^{4}$ .
Indeed, since A, $\ovalbox{\tt\small REJECT}$ 7r, $\ovalbox{\tt\small REJECT}$ 0 by (2.4) and $P_{3}\ovalbox{\tt\small REJECT}$ fs $\ovalbox{\tt\small REJECT}$ $h_{3}\ovalbox{\tt\small REJECT}$ O\rangle we have $v_{y}\ovalbox{\tt\small REJECT}$

Q by (2)
of Cartan’s theorem. Furthermore, since

$\frac{\partial}{\partial x^{3}}[\frac{\nu_{\alpha}}{\nu-\lambda}]=-e^{-(P+f)}\{P_{13}-P_{1}(P+f)_{3}\}=0$,

$\frac{\partial}{\partial x^{3}}[\frac{\nu_{\beta}}{\nu-\mu}]=-e^{-(P+h)}\{P_{23}-P_{2}(P+h)_{3}\}=0$

by (2.4) and $P_{3}=f_{3}=h_{3}=0$ , we have

(5.1) $( \nabla_{X_{\gamma}}’)^{2}X_{\gamma}=-[(\frac{\nu_{\alpha}}{\nu-\lambda})^{2}+(\frac{\nu\beta}{\nu-\mu})^{2}+\nu^{2}]X_{\gamma}$

by (2.3). The coefficient of $X_{\gamma}$ on the right hand side of (5.1) is constant along $x^{3}$-curve.
This shows that each $x^{3}$-curve is apart of circle or line.

We put

$\kappa$
$=[( \frac{\nu_{\alpha}}{\nu-\lambda})^{2}+(\frac{\nu\beta}{\nu-\mu})^{2}+\nu^{2}]^{1/2}$

(4) We denote by $M_{\kappa\neq 0}$ the set of points $p$ in $M$ such that $\kappa(p)\neq 0$ . Then, $M_{\kappa\neq 0}$

is ahypersurface of the revolution type with revolution parameter $x^{3}$ .
Indeed, aU principal curvatures $\lambda$ , $\mu$ and $\nu$ do not depend on $x^{3}$ a we see in above

(3). Therefore, distinct two surfaces $M_{\kappa\neq 0}^{a}$ and $M_{\kappa\neq 0}^{b}$ of $\mathrm{R}^{3}$ are congruent to each
other by an isometry of $\mathrm{R}^{3}$ ffom equations for $\nabla_{X_{\alpha}}’X_{\alpha}$ , $\nabla_{X_{\beta}}’X\beta$ , $\nabla_{X_{a}}’X_{\beta}$ and $\nabla_{X_{\beta}}’X_{\alpha}$

in (2.3). We take an $x^{3}$-curve, which is acircle by $\kappa\neq 0$ . Since each $(X_{\gamma}(x^{3}))^{[perp]}$ is
perpendicular to this circle, $(X_{\gamma}(x^{3}))^{[perp]}$ is obtained from the rotation of some $(X_{\gamma}(a))^{[perp]}$

determined by this circle. Furthermore, from the equation for $\nabla_{X_{\gamma}}’X_{\alpha}$ (resp. $\nabla_{X_{\gamma}}’X_{\beta}$ )
in (2.3) and the proof of (3), it follows that $X_{\alpha}$ (resp. Xp) along the circle is avector
field determined ffom $X_{\alpha}(a)$ (resp. $X\beta(a)$ ) by the same rotation. We rewrite the metric
as

$g=e^{2P}[ \frac{e^{2(P+[)}(dx^{1})^{2}+e^{2(P+h)}(dx^{2})^{2}}{e^{2P}}+(dx^{3})^{2}]$ .

Then, the coefficient of $(dx^{3})^{2}$ in $g$ implies that $e^{P}$ is the height function of each point
in $M_{\kappa\neq 0}^{a}$ ffom the axis of the rotation in $(X_{\gamma}(a))^{[perp]}$ .

(5) If $\kappa\equiv 0$, then $\nu\equiv 0$ and $P_{1}=P_{2}=0$ by (2.4). Therefore, we can take P $\equiv 0$ ,
and this metric belongs to (T.2). In particular, we have M $=M^{a}\cross \mathrm{R}$ for some $x^{3}=a$
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in this case.

(6) By above (4), (5) and the connectedness of $M$ , we only have either (a) $\kappa$ $\neq 0$

everywhere in $M$ , or (b) $\kappa\equiv 0$ on $M$ .
Thus, we complete the proof of Theorem. q.e.d.

Theorem 5.2. Let $M$ be a generic and conformally flat hypersurface in $R^{4}$

belonging essentially to (T.3). For the first fundamental form $g$ of (1.1), assume that
there exists an admissible coordinate system $(x^{1}, x^{2}, x^{3})$ so that functions $P$, $f$ and $h$

in $g$ satisfy the equation $f_{3}=h_{3}$ and $(P+f)_{3}\neq 0$ on M. Then, we have the following
(1) and (2):

(1) We can replace $f$ and $h$ so that $f_{3}=h_{3}=0$ hold on $M$ , by changing parameter
$x^{3}$ .

(2) $M$ belongs to one of the parabolic class, the elliptic class and hyperbolic class,
and its revolution parameter is $x^{3}$ .

We prepare several lemmas for the sake of the proof of Theorem 5.2. We assume the
condition of Theorem 5.2 for the lemmas following after.

Lemma 5.1. The metric $\overline{g}=e^{2f}(dx^{1})^{2}+e^{2h}(dx^{2})^{2}$ of each $M^{x^{3}}$ has constant
Gaussian curvature $K(x^{3})$ .

Proof. We have

$\{e^{-2h}(f_{22}+(f_{2})^{2}-f_{2}h_{2})+e^{-2f}(h_{11}+(h_{1})^{2}-f_{1}h_{1})\}_{i}=0$ for $i=1,2$

by (2.11), (2.12) and $f_{3}=h_{3}$ . This shows that the curvature of metric $\overline{g}$ is constant
$\mathrm{q}.\mathrm{e}.\mathrm{d}$ .

Lemma 5.2. We have $\nu_{\gamma}=0$ , $i.e.$ , $\nu=\nu(x^{1}, x^{2})$ .

Proof. We have

$\lambda_{\gamma}/(\lambda-\nu)=\mu_{\gamma}/(\mu-\nu)$

by (2.4) and $f_{3}=h_{3}$ . Therefore, we have $\nu_{\gamma}=0$ by (2) of Cartan’s Theorem. q.e.d.

77



Lemma 5.3. (1) There exists a function C $=C(x^{3})(\neq 0)$ such that

$\nabla_{X_{\alpha}}’X_{\gamma}=CX_{\alpha}$ , $\nabla_{X_{\beta}}’X_{\gamma}=CX\beta$

(2) Each surface $M^{x^{3}}$ is contained in a 3-sphere $S^{3}$ of $R^{4}$ , which we denote by $S_{x^{3}}^{3}$ .

Furtheremore, the vector field $X_{\gamma}$ on $M^{x^{3}}$ is the restriction of a unit normal vector

field on $S_{x^{3}}^{3}$ to $M^{x^{3}}$

Proof. Since we have

$\{e^{-P}(P+f)_{3}\}_{i}=e^{-P}\{(P+f)_{i3}-P_{i}(P+f)_{3}\}=0$ for $i=1,2$

by (2.6), (2.7) and $f_{3}=h_{3}$ , the function $\lambda_{\gamma}/(\lambda-\nu)=\mu_{\gamma}/(\mu-\nu)$ is independent of
variables $x^{1}$ and $x^{2}$ by (2.4). Thus, we have the statement (1) by (2.3) and $(P+f)_{3}\neq 0$ .
Let $\mathrm{p}$ : $Marrow \mathrm{R}^{4}$ be the immersion. Then, we have XQp $=X_{\alpha}$ and $X\beta \mathrm{P}=X_{\beta}$ .
Therefore, the statement (1) implies that each $M^{x^{3}}$ is contained in a2-sphere or a3-
sphere. However, since each surface $M^{x^{3}}$ is not (an open set of) 2-sphere $S^{2}$ by the
assumption for $M$ to be generic, $M^{x^{3}}$ is contained in a3-sphere. Furtheremore, the
statement (1) also shows that the vector field $X_{\gamma}$ is the restriction of aunit normal vector
field o$\mathrm{n}$ $S_{x^{3}}^{3}$ to $M^{x^{3}}$ q.e.d.

Next, we shall show, in Lemma 5.5 below, that we can replace functions $f$ and $h$ so
that $f_{3}=h_{3}=0$ by changing parameter $x^{3}$ . To do this, we need more preparation. We
take 3-spheres $S^{3}(r)$ of radius $r>0$ and with center $\mathrm{a}(r)$ . Let $\mathrm{y}(r)$ be apoint of
$S^{3}(r)$ , and the derivative $\mathrm{y}’(r)$ avector normal to $S^{3}(r)$ . Then, since

$< \frac{\mathrm{y}(r)-\mathrm{a}(r)}{r}$ , $\frac{\mathrm{y}(r)-\mathrm{a}(r)}{r}>=1$ , $< \frac{d}{dr}(\frac{\mathrm{y}(r)-\mathrm{a}(r)}{r})$ , $\frac{\mathrm{y}(r)-\mathrm{a}(r)}{r}>=0$ ,

$\mathrm{y}’(r)=u(\mathrm{y}(r), r)(\mathrm{y}(r)-\mathrm{a}(r))/r$ ,

we have

$\frac{d}{dr}(\frac{\mathrm{y}(r)-\mathrm{a}(r)}{r})=\frac{-1}{r}\{\mathrm{a}’(r)-<\mathrm{a}’(r), \frac{\mathrm{y}(r)-\mathrm{a}(r)}{r}>\frac{\mathrm{y}(r)-\mathrm{a}(r)}{r}\}$.

This means that $\{(\mathrm{y}(r)-\mathrm{a}(r))/r\}’$ is an infinitesimal conformal transformation of the
standard sphere $S^{3}$ . We apply this fact to our case. Then, the radius $r$ depends only
on variable $x^{3}$ , $S^{3}(r)=S_{x^{3}}^{3}$ and $\mathrm{y}’(r)=\partial/\partial x^{3}$ .

Let us fix avalue $x^{3}=a$ . There exists aconformal transformation $\varphi[x^{3}]$ : $S_{x^{3}}^{3}arrow S_{a}^{3}$

for each $x^{3}$ so that $\varphi[x^{3}]$ maps apoint $(x^{1}, x^{2},x^{3})\in M^{x^{3}}$ to $(x^{1}, x^{2}, a)\in M^{a}$ . We
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can extend each $\varphi[x^{3}]$ to aconformal transformation of $\mathrm{R}^{4}$ so that the interior of $S_{x^{3}}^{3}$

corresponds to the interior of $S_{a}^{3}$ .
Let $\varphi[x^{3}](M)=\hat{M}_{x^{3}}$ . Note that $\varphi[x^{3}]$ maps each 3-sphere to a3-sphere. We can take

an admissible coordinate system of $\hat{M}_{x^{3}}$ by $\varphi[x^{3}](x^{1}, x^{2}, x^{3}+t)=(x^{1}, x^{2}, a+t)$ . We denote
the principal curvatures of $\hat{M}_{x^{3}}$ by $\lambda(x^{1},x^{2}, a+t;x^{3})$ , $\mu(x^{1}, x^{2}, a+t;x^{3})$ and $\nu(x^{1}, x^{2};x^{3})$ .
Indeed, $\nu(;x^{3})$ does not depend on variable $t$ by the same reason as the case $\nu$ . Since
$M^{a}=(\hat{M}_{x^{3}})^{a}$ , we have A $(x^{1}, x^{2}, a)=\lambda(x^{1}, x^{2}, a;x^{3})$ and $\mu(x^{1},x^{2}, a)=\mu(x^{\mathrm{i}}, x^{2}, a;x^{3})$

for each $x^{3}$ .

Lemma 5.4. We have $\nu(x^{1}, x^{2})=\nu(x^{1}, x^{2};x^{3})$ for each $x^{3}$ .

Proof. In this proof, we consider all equations only on $M^{a}=(\hat{M}_{x^{3}})^{a}$ . Since

$(\mu-\nu)\lambda_{\alpha}+(\lambda-\nu)\mu_{\alpha}+(\mu-\lambda)\nu_{\alpha}=0$

and
$(\mu-\nu(;x^{3}))\lambda_{\alpha}+(\lambda-\nu(;x^{3}))\mu_{\alpha}+(\mu-\lambda)\nu_{\alpha}(;x^{3})=0$

by (2) of Cartan’s Theorem, we have

(5.2) $\frac{\lambda_{1}+\mu_{1}}{\mu-\lambda}=.\cdot\frac{\nu_{1}(,x^{3})-\nu_{1}}{\nu(,x^{3})-\nu}$ .

Similarly, we have

(5.3) $- \frac{\lambda_{2}+\mu_{2}}{\mu-\lambda}=.\cdot\frac{\nu_{2}(,x^{3})-\nu_{2}}{\nu(,x^{3})-\nu}$ .

The right hand side of equations (5.2) and (5.3) do not depend o$\mathrm{n}$

$x^{3}$ , because the left
hand side do not depend. Since $\{\log(\nu(;x^{3})-\nu)\}_{i3}=0$ for $i=1,2$ , there exists a
function $\overline{C}(x^{3},\overline{x}^{3})$ such that

$\log(\nu(;x^{3})-\nu)-\log(\nu(;\overline{x}^{3})-\nu)=\overline{C}(x^{3},\overline{x}^{3})$ .

We have $(\nu(;x^{3})-\nu)=e^{\overline{C}(x^{3},\overline{x}^{3})}(\nu(;\overline{x}^{3})-\nu)$. If we take $\overline{x}^{3}=a$ , then $\nu(;a)-\nu=0$ .
Therefore, we have $\nu(;x^{3})=\nu$ for each $x^{3}$ . $\mathrm{q}.\mathrm{e}.\mathrm{d}$ .

Lemma 5.5. We can replace functions $f$ and $h$ so that they do not depend on
variabl$e$

$x^{3}$ .
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Proof. First we fi $x^{3}$ distinct from $a$ . We denote the metric $\hat{g}$ of $\hat{M}_{x^{3}}$ by

$\hat{g}=e^{2(\hat{P}+\hat{f})}(dx^{1})^{2}+e^{2(\hat{P}+\hat{h})}(dx^{2})^{2}+e^{2\hat{P}}dt^{2}$ .

Then, we have $\hat{P}+\hat{f}=P+f$ and $\hat{P}+\hat{h}=P+h$ on $M^{a}=(\hat{M}_{x^{3}})^{a}$ . Since

$-e^{-P-f}P_{1}= \frac{\nu_{\alpha}}{\nu-\lambda}=\frac{\nu_{\alpha}(,x^{3})}{\nu(x^{3})-\lambda}.=-e^{-P-f}\hat{P}_{1}$

on $M^{a}=(\hat{M}_{x^{3}})^{a}$ by Lemma 5.4 and (2.4), we have $P_{1}=\hat{P}_{1}$ on $M^{a}=(\hat{M}_{x^{3}})^{a}$ .
Similarly, we have $P_{2}=\hat{P}_{2}$ on $M^{a}=(\hat{M}_{x^{3}})^{a}$ by Lemma 5.4 and (2.4). Since there
exists aconstant $c_{1}$ such that $\hat{P}-P=c_{1}$ on $M^{a}=(\hat{M}_{x^{3}})^{a}$ , we may assume $\hat{P}=P$

on $M^{a}=(\hat{M}_{x^{3}})^{a}$ by changing parameter $t$ .
Since $\varphi[x^{3}]$ is aconformal transformation of $R^{4}$ , there exists afunction $\hat{\varphi}(x^{1}, x^{2}, x^{3})$

satisfying $g_{p}=\hat{g}_{p}=e^{2\hat{\varphi}(q)}g_{q}$ for any point $p=\varphi[x^{3}](q)\in M^{a}=(\hat{M}_{x^{3}})^{a}$ . This shows

$(P+f)(p)=\hat{\varphi}(q)+(P+f)(q)$ ,

$(P+h)(p)=\hat{\varphi}(q)+(P+h)(q)$ , $P(p)=\hat{\varphi}(q)+P(q)$ .
Therefore, we have $f(p)=f(q)$ and $h(p)=h(q)$ .

Second, since we can take arbitrary $x^{3}$ in the above arguement, we can take functions
$f$ and $h$ so that they do not depend on $x^{3}$ by changing the parameter. $\mathrm{q}.\mathrm{e}.\mathrm{d}$ .

Proof of Theorem 5.2-(2). We have

$( \frac{\nu_{\alpha}}{\nu-\lambda})_{\gamma}=-e^{-P}(e^{-P-f}P_{1})_{3}=-e^{-2P-[}\{P_{13}-P_{1}(P+f)_{3}\}=0$,

$( \frac{\nu_{\beta}}{\nu-\mu})_{\gamma}=-e^{-P}(e^{-P-h}P_{2})_{3}=-e^{-2P-h}\{P_{23}-P_{2}(P+h)_{3}\}=0$

by Lemma 5.5, (2.6) and (2.7). Furthermore, since $\nu$ does not depend on $x^{3}$ , we have

(5.4) $( \nabla_{X_{\gamma}}’)^{2}X_{\gamma}=-\{(\frac{\nu_{\alpha}}{\nu-\lambda})^{2}+(\frac{\nu_{\beta}}{\nu-\mu})^{2}+\nu^{2}\}X_{\gamma}$ .

Since the coefficient of $X_{\gamma}$ on the right hand side of (5.4) does not depend on $x^{3}$ , each
$x^{3}$-curve is a(part of) circle or line in $\mathrm{R}^{4}$ . However, if all $x^{3}$-curves in some open set
$U$ are lines, the the metric $g$ on $U$ belongs to (T.2) by $P_{1}=P_{2}=0$ . When we
consider this situation in $S^{4}$ , we have that the hypersurface $M$ belongs to one of the
parabolic class, the elliptic class and the hyperbolic class, and its rotation parameter is
$x^{3}$ by Lemma 5.1 and Lemma 5.3-(2). $\mathrm{q}.\mathrm{e}.\mathrm{d}$ .
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When we consider the situation of Theorem 5.2 in $S^{4}$ we have the following fact: Even
if we replace the condition $(P+f)\mathrm{a}\supset$ 0 in Theorem 5.2 by the assumption that the set
$\{\mathrm{r}^{3}|(eP(P+f)_{3})(x^{3})\ovalbox{\tt\small REJECT}$ 0} is isolated, we also have the same result as Theorem 5.2.

Next, we consider the case one of the equations $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ satisfies on
each admissible coordinate neighborhood. In this case, the conformally flat hypersurface
becomes one of the the parabolic class, the elliptic class and the hyperbolic class on the
each coodinate neighborhood. However, since the family of 3-spheres $\{S_{t}^{3}\}$ in $S^{4}$ given
at examples (S-1), (S-2) and (S-3) in \S 4 is determined by the initial date $S_{0}^{3}$ and $X|_{S_{\mathrm{O}}^{3}}$ ,
we have the following theorem from Theorem 5.1 and Theorem 5.2:

Theorem 5.3. Let $M$ be a generic and conformally flat hypersurface in $R^{4}$

belonging essentially to (T.3). Furthermore, we assume that the metric satisfies one of the
equations $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ for an admissible coodinate system at each point.
Then, $M$ belongs to one of the parabolic class, the elliptic class and the hyperbolic class.

6. Reconsideration of results in paper[4]: Hypersurfaces of (T.I) and
(T.2).

All metrics of generic and conformally flat hypersurfaces of (T.I) and (T.2) obtained
in paper[4] satisfy one of the conditions $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h$ . Therefore, in this
section we reconsider Theorems 1and 2-(3b) of the paper[4] under the results of \S 4 and
\S 5.

We note the following fact: Conformally flat hypersurfaces in Theorems 1of the pa-
Per[4] have (T. 1)-type metrics

(T. I) $g=e^{2P(x^{1},x^{2},x^{3})}\{(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}\}$ .

Then, these metrics trivially satisfy the conditions $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ .
Conformally flat hypersurfaces in Theorems 2-(3b) of the paper[4] have $(\mathrm{T}.2)$ -type metrics,
and their metrics are particularly represented as

$g=e^{2f(x^{3})}(dx^{1})^{2}+e^{2h(x^{3})}(dx^{2})^{2}+(dx^{3})^{2}$ .

Then, these metrics also satisfy the conditions $f_{2}=h_{1}=0$ .
First, Theorem 1of [4] is stated in the following form:

Theorem 6.1 Let $M$ be a generic and conformally flat hypersurface with (T. 1)-
metric in $R^{4}$ . Then $M$ belongs to the hyperbolic class. In particular, when we normaliz$e$
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it to a cone type, the base surface of the cone is a Clifford torus $in$ $S^{3}$ .

Explanation ofTheorem 6.1. We use same notations as in Theorem 1and Corollary
1of [4]. At the begining, we note that the statement of Corollary 1-(1) is also true even
in the case $C_{1}=C_{3}=C_{4}=0$ . This fact follows from the proof of Corollary 1in [4].

Now, we have the following result: Let $T_{x^{2}}^{2}$ be atorus in $M$ with paramerets $x^{1}$

and $x^{3}$ for fixed $x^{2}$ . Then each $T_{x^{2}}^{2}$ is included in a3-sphere of $\mathrm{R}^{4}$ .
Indeed, we have

$-\lambda_{\beta}/(\lambda-\mu)=-\nu_{\beta}/(\nu-\mu)=e^{-P}P_{2}$

by (2.4) and $f=h=0$. The function $e^{-P}P_{2}$ depends only on parameter $x^{2}$ , because
$[e^{-P}P_{2}]_{i}=e^{-P}[P_{2i}-P_{2}P_{i}]=0$ for $i=1,3$ by (2.5) and (2.6). Let us put $C(x^{2})=$

$(e^{-P}P_{2})(x^{1}, x^{2},x^{3})$ . Then we have

$\nabla_{X_{\alpha}}’X_{\beta}=CX_{\alpha}$ , $\nabla_{X_{\gamma}}’X_{\beta}=CX_{\gamma}$

by (2.3) and (2.4). This shows that $T_{x^{2}}^{2}$ is included in a3-sphere.
Second, if $C_{2}C_{3}>0$ , then each $x^{2}$-curve is aconnected open part of circle in $\mathrm{R}^{4}$

and $M$ collapses respectively to apoint if $x^{2}$ tends to fop by Corollary 1-(2) and
(3). This shows that $M$ belongs to the hyperbolic class with rotation parameter $x^{2}$ if
$C_{2}C_{3}>0$ .

If $C_{1}=C_{3}=C_{4}=0$ , then the function $e^{-P(x)}$ depends only on $x^{2}$ . Therefore,
each $x^{2}$-curve is aray from $\nabla_{X\rho}’X\beta=0$ by (2.3), (2.4) and Theorem 1-(2) of [4].

Furthermore, when we put $\overline{x}^{1}=\sqrt{C-1}x^{1}/A,\overline{x}^{2}=(A/C_{2}\sqrt{C-1})e^{-\sqrt{C-1}x^{2}/A}$ and
$\overline{x}^{3}=\sqrt{C-1}x^{3}/A$ , the metric is represented as $g=(d\overline{x}^{2})^{2}+(\overline{x}^{2})^{2}\{(d\overline{x}^{1})^{2}+(d\overline{x}^{3})^{2}\}$ .
This shows that $M$ is acone tyPe with rotation parameter $x^{2}$ if $C_{1}=C_{3}=C_{4}=0$ .

By the above arguement and the fact that the family of hypersurfaces with (T. 1)-metric
is invariant by the action of conformal transformations of $S^{4}$ , we know that hypersurfaces
determined by the condition $C_{1}=C_{3}=C_{4}=0$ are normal forms of all hypersurfaces in
Theorem 1of [4].

Next, we prove that the base surface in the case $C_{1}=C_{3}=C_{4}=0$ is aClifford
torus. For fixed $x^{2}$ , the radius of each $x^{1}$ -circle(resp. $x^{3}$-circle)does not depend on $x^{3}$

(resp. $x^{1}$ ) from the proof of Corollary 1 of [4]. Furthermore, since the torus $T_{x^{2}}^{2}$ is in
a3-sphere, all $x^{1}$ -circles(resp. $x^{3}$-circles)are congruent to each other with respect to
transformation by orthogonal matrices. Transformation ffom one $x^{1}$ -circle to the other
$x^{1}$ -circle is given by an orthogonal matrix $A(x^{3})$ depending only on $x^{3}$ . However, since
$\nabla_{X_{\gamma}}’X_{\alpha}=0$ by (2.3) and (2.4), the tangent vector $X_{\alpha}$ of $x^{1}$ -circle does not depend on
$x^{3}$ . Thus, the action of $A(x^{3})$ on $x^{1}$ -circles is aparallel translation. In the similar way
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the action of an orthogonal matrix o$\mathrm{n}$

$x^{3}$-circles is also aparallel translation. Therefore,
$T_{x^{2}}^{2}$ is aClifford torus.

Finally, we add aremark about Theorem 6.1. We omitted hypersurfaces of the case
$(C-1)\mathrm{C}\mathrm{i}=C_{1}$ from the statement of Theorem 1in [4], because the function $e^{-P(x)}$

vanishes at apoint $(x^{1}, x^{2}, x^{3})$ with

$(\sin(\sqrt{C}x^{1}/A+\theta_{1}), e^{\sqrt{C-1}x^{2}/A}, \sin(\sqrt{C(C-1)}x^{3}/A+\theta_{2}))=(-1, (C_{1}+C_{4})/2C_{2},$ -1).

However, we can include these hypersurfaces in the statement of Theorem 6.1. Indeed,
when we consider ahypersurface $M$ of (T.I) in $S^{4}$ not in $\mathrm{R}^{4}$ and we map $M$ into
$\mathrm{R}^{4}$ by astereographic projection from apoint of $M$ , the hypersurface obtained in $\mathrm{R}^{4}$

satisfies $(C-1)C_{4}=C_{1}$ . This follows from the arguement in the proof of Corollary 1in
[4]. q.e.d.

Second, let $(u(t), v(t))$ be plane curves saisfying

(6.1) $\{$

$(u’)^{2}+(v’)^{2}=1$ , $(u’, v’)=\nu(-v’, u’)$ ,

$a^{2}(u’+\nu v)^{2}\pm b^{2}(v’-\nu u)^{2}=1$ ,

where $\nu=\nu(t)$ , $a$ and $b$ are positive constants. In Theorem 2-(3b) of the paper[4],
we showed that hypersurfaces in $\mathrm{R}^{4}$ obtained by revolutions of these curves to two
orthogonal directions are generic and conformally flat. Now, we can imagine that these
hypersurfaces belong to the revolution type. Moreover, we have the following Theorems:

Theorem 6.2 Curves $(u(t), v(t))$ defined by $a^{2}(u’+\nu v)^{2}+b^{2}(v’-\nu u)^{2}=1$ and
(6.1) have the following properties:

(1) Surfaces $(u(t)\cos s, u(t)\sin s,$ $|v|(t))$ for $|v|\neq 0$ in the hyperbolic 3-space $H^{3}$

have constant Gaussian curvature $a^{-2}-1$ .
(2) Surfaces $(v(t)\cos s, v(t)\sin s,$ $|u|(t))$ for $|u|\neq 0$ in the hyperbolic 3-space $H^{3}$

have constant Gaussian curvature $b^{-2}-1$ .

Proof. We only prove the statement (1) in the case $v>0$ . The statement (2) and
the case $v<0$ can be proved in the same way. The first fundamental form $g$ and the
Gaussian curvature $K$ are respectively given by

$g=( \frac{u}{v})^{2}(ds)^{2}+(\frac{1}{v})^{2}(dt)^{2}$ , $K= \frac{1}{u}\{(uu’+vv’)(u’+\nu v)-u\}$ .

Then, we have $K=A^{-1}-1=a^{-2}-1$ by (4.34) of [4]. (We can also prove Theorem 6.2
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by using the explicit representation of curves $(u(t), v(t))$ given at Corollary 2.) q.e.d.

In the same way as the proof of Theorem 6.2, we have the following Theorem:

Theorem 6.3 Curves $(u(t), v(t))$ defined by $a^{2}(u’+\nu v)^{2}-b^{2}(v’-\nu u)^{2}=1$ and
(6.1) have the following properties:

(1) Surfaces $(u(t)\cos s, u(t)$ Sin ce $|v|(t))$ for $|v|\neq 0$ in the hyperbolic 3-s ace $H^{3}$

have constant Gaussian curvature $a^{-2}-1$ .
(2) Surfaces $(v(t)\cos s, v(t)$ Sin ce $|u|(t))$ for $|u|\neq 0$ in the hyperbolic 3-s ace $H^{3}$

have constant Gaussian curvature $-b^{-2}-1$ .

Finally, we have the following result ffom Theorems 5.3, 6.1, 6.2, 6.3 and results of [4]:

Theorem 6.4. Let $M$ be a generic and confor mally flat fypersurface in $S^{4}$ .
Assume that the metric satisfies one of the equations $f_{2}=0$ , $h_{1}=0$ and $f_{3}=h_{3}$ for
an admissible coordinate system at each point Then, $M$ belongs to one of the classes of
parabolic, elliptic and hyperbolic.

7. Flat metric due to Hertrich-Jeromin: Another particular solution .
In this section, as we state in the introduction we detemine all flat metrics of type

(7. 1) $e^{2P(x)}\{(\cos\varphi(x))^{2}(dx^{1})^{2}+(\sin\varphi(x))^{2}(dx^{2})^{2}+(dx^{3})^{2}\}$

under the assumption $\varphi 13=0$ , $\varphi 23=0$ , $\varphi_{1}\neq 0$, $\varphi_{2}\neq 0$ and $\varphi_{3}\neq 0$. This problem is
equivalent to determine aU coordinate systems of $\mathrm{R}^{3}$ (or of open sets in $\mathrm{R}^{3}$ ) such that
the canonical flat metric of $\mathrm{R}^{3}$ is represented as (7.1) by the coordinate system, under
the assumption. Such acoodinate system in $\mathrm{R}^{3}$ is called the Guichard’s net [2]. Under
the assumption, we will obtain aclass of the Guichard’s nets including the net given by
Hertrich-Jeromin.

Any flat metric (7.1) satifies the following equations: By the assumption $\varphi_{13}=0$ ,
$\varphi_{23}=0$ , we have

(7.2) (1) $\psi_{13}=P_{1}(P+f)_{3}-P_{13}=0$, (2) $\psi_{23}=P_{2}(P+h)_{3}-P_{23}=0$,

where f $=\log(\cos\varphi)$ and h $=\log(\sin\varphi)$ . Since ametric is flat, we have $R_{1212}=\# 1313=$

$R_{2323}=0$ :

(7.3) $(P+f)_{3}(P+h)_{3}=-e^{-2h}\{(P+f)_{22}+(P+f)_{2}(f-h)_{2}\}$
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$-e^{-2f}\{(P+h)_{11}+(p+h)_{1}(h-f)_{1}\}$,

(7.4) $e^{-2h}P_{2}(P+f)_{2}=-e^{-2f}\{P_{11}-P_{1}f1\}-\{(P+f)_{33}+f_{3}(P+f)_{3}\}$,

(7.5) $e^{-2f}P_{1}(P+h)_{1}=-e^{-2h}\{P_{22}-P_{2}h_{2}\}-\{(P+h)_{33}+h_{3}(P+h)_{3}\}$ .

Since ametric $\overline{g}=(\cos\varphi(x))^{2}(dx^{1})^{2}+(\sin\varphi(x))^{2}(dx^{2})^{2}+(dx^{3})^{2}$ is conformally flat, we
have

(7.6) 2 $\cos 2\varphi\varphi_{2}(\varphi_{22}-\varphi_{11})+\sin 2\varphi(\varphi_{112}-\varphi_{222})-\sin 2\varphi\varphi_{2}33$

$+2\cos 2\varphi\varphi_{3}\varphi_{23}=2\varphi_{3}\varphi_{23}-2\varphi_{2}\varphi_{33}$ ,

(7.7) 2 $\cos 2\varphi\varphi_{1}(\varphi_{22}-\varphi_{11})+\sin 2\varphi(\varphi_{111}-\varphi_{122})+\sin 2\varphi\varphi_{133}$

-2 $\cos 2\varphi\varphi_{3}\varphi_{13}=2\varphi_{3}\varphi_{13}-2\varphi_{1}\varphi_{33}$,

(7.8) $\sin 2\varphi(\varphi_{113}+\varphi_{223}+\varphi_{333})-2\cos 2\varphi(\varphi_{3}\varphi_{33}+\varphi_{1}\varphi_{13}+\varphi_{2}\varphi_{23})$

$=2\varphi_{1}\varphi_{13}-2\varphi_{2}\varphi_{23}-2\varphi_{3}(\varphi_{11}-\varphi_{22})$,

by (2. (1), (2. 12) and (2. 13).
The assumption $\varphi_{13}=\varphi 23=0$, $\varphi_{1}\neq 0$ , $\varphi_{2}\neq 0$ and $\varphi_{3}\neq 0$ is equivalent that the

function $\varphi$ is represented as

$\varphi(x^{1}, x^{2}, x^{3})=A(x^{1}, x^{2})+B(x^{3})$ ,

where $A_{1}\neq 0$ , $A_{2}\neq 0$ and $B_{3}\neq 0$ .

Theorem 7.1. Let $\{x^{1}, x^{2}, x^{3}\}$ be a Guichard’s net of $R^{3}$ (or of an open set in
$R^{3})$ and the canonical flat metric $g$ of $R^{3}$ be represented as (7.1) by the net. We assume
that the function $\varphi$ is represented as

(7.9) $\varphi(x^{1}, x^{2}, x^{3})=A(x^{1},x^{2})+B(x^{3})$ ,

where $A_{1}\neq 0$ , $A_{2}\neq 0$ and $B_{3}\neq 0$ . Then, we have the following facts (1), (2), (3) and
(4):
(1) Each $x^{3}$ -curve in $R^{3}$ is a circle (or a part of circle)
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(2) The function $A(x^{1}, x^{2})$ satisfies the Sine-Gordon equation:

$A_{11}-A_{22}=\overline{C}\cos 2A-\overline{D}\sin 2A$ ,

where $\overline{C}$ and $\overline{D}$ are constant.
(3) The function $B(x^{3})$ is given by the following equation:

$B_{3}(x^{3})=\sqrt{G^{2}-E^{2}(\sin(B(x^{3})+F))^{2}}$ ,

where $E$ , $F$ and $G$ are constant. That is, $B(x^{3})$ is an amplitude function.
(4) In particular, we assume $G^{2}=E^{2}$ in the above (3). Then, the Guichard’s net is
made from either the parallel surfaces of a constant negative curvature surface $in$ $R^{3}$ or $a$

confo rmal transformation of the parallel surfaces.

Proof. The proof is divided into several steps.

(Step 1) Each $x^{3}$ -curve i$\mathrm{n}$

$\mathrm{R}^{3}$ is acircle (or apart of circle).

(Proof) We have

$\{-e^{-(P+f)}P_{1}\}_{3}=e^{-(P+f)}\{P_{1}(P+f)_{3}-P_{13}\}=0$ ,

$\{-e^{-(P+h)}P_{2}\}_{3}=e^{-(P+h)}\{P_{2}(P+h)_{3}-P_{23}\}=0$

by (7.2). Therefore, we have

(7.10) $(\nabla_{X_{\gamma}}’)^{2}X_{\gamma}=-(c_{1}^{2}+c_{2}^{2})X_{\gamma}$

ffom the equations (2.3) and (2.4), where $c_{1}$ and $c_{2}$ are constant. (In this case, we have
no meaning for principal curvatures, and so we only look at the Chistofell’s symbols. $\nabla’$ is
the canonical connection of $\mathrm{R}^{3}$ . We consider in (2.3) as $N=0.$ ) By (7.10) each $x^{3}$-curve
in $\mathrm{R}^{3}$ is acircle.

(Step 2) The function $A(x^{1},x^{2})$ satisfies the Sine-Gordon equation:

(7.11) $A_{11}-A_{22}=\overline{C}\cos 2A-\overline{D}\sin 2A$ ,

where $\overline{C}$ and $\overline{D}$ are constant.

(Proof) By (7.9) and the conformally flatness condition (7.6) and (7.7), we have

(7.12) 2 $\cos 2\varphi A_{2}(A_{22}-A_{11})+\sin 2\varphi\{\mathrm{A}\mathrm{n}2-A_{222})=-2A_{2}B_{33}$ ,
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(7.13) 2 $\cos$ $2\varphi$ $A_{1}(A_{22}-A_{11})$ $+\sin 2\varphi$ $(A_{111}-A_{122})$ $=$ $-2A_{1}B_{33}$ .

Therefore, the following function $C(x^{1},x^{2})$ is independent of $i=1$ and 2:

$2C(x^{1}, x^{2})=-(A_{11}-A_{22})_{i}/A_{i}$ $(i=1,2)$ .

We define functions $D(x^{1}, x^{2})$ and $\zeta(x^{1}, x^{2})$ by

$D(x^{1}, x^{2})=A_{11}-A_{22}$ , $\sqrt{C^{2}+D^{2}}(x^{1}, x^{2})\cos\zeta(x^{1}, x^{2})=C(x^{1}, x^{2})$

and $\sqrt{C^{2}+D^{2}}(x^{1},x^{2})\sin\zeta(x^{1}, x^{2})=D(x^{1}, x^{2})$.

Then, we have

(7.14) $B_{33}=C\sin 2\varphi+D\cos 2\varphi=\sqrt{C^{2}+D^{2}}\sin(2\varphi+\zeta)$

$=(\sqrt{C^{2}+D^{2}}\sin(2A+\zeta))\cos 2B+(\sqrt{C^{2}+D^{2}}\cos(2A+\zeta))\sin 2B$,

by (7.12) and (7.13). Further, since the function $B$ only depends on $x^{3}$ , we have that

$\overline{C}=(\sqrt{C^{2}+D^{2}}\sin(2A+\zeta))(x^{1}, x^{2})$ ,

$\overline{D}=(\sqrt{C^{2}+D^{2}}\cos(2A+\zeta))(x^{1}, x^{2})$

are constant. Therefore, $(C^{2}+D^{2})(x^{1}, x^{2})$ and $(2A+\zeta)(x^{1}, x^{2})$ are also constant. Then,
we have

(7.15) $B_{33}=\overline{C}\cos 2B+\overline{D}\sin 2B$.

On the other hand, by the conformal flatness condition (7.8) we have

(7.16) $\sin 2\varphi B_{333}=2B_{3}(\cos 2\varphi B_{33}-A_{11}+A_{22})$ .

When we insert (7.15) into (7.16), we have the Sine-Gordon equation

$A_{11}-A_{22}=\overline{C}\cos 2A-\overline{D}\sin 2A$ .

(step 3) The fuction $B(x^{3})$ is given by the following equation:

(7.17) $B_{3}(x^{3})=\sqrt{G^{2}-E^{2}(\sin(B(x^{3})+F))^{2}}$ ,
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where EF and G are constant.

(Proof) Since the function $B(x^{3})$ satifies the equation (7.15), we have

$\{(B_{3})^{2}\}_{3}=2B_{3}\{\sqrt{\overline{C}^{2}+\overline{D}^{2}}\sin(2B+2F)\}$ ,

if we define constant $F$ by $\sqrt{C^{2}+D^{2}}\sin 2F=\overline{C}$ and $\sqrt{C^{2}+D^{2}}\cos 2F=\overline{D}$ . Therefore,
for aconstant $c$ , we have

$(B_{3})^{2}=c-\sqrt{\overline{C}^{2}+\overline{D}^{2}}\cos(2B+2F)$ .

When we put $G^{2}=c-\sqrt{C^{2}+D^{2}}$, $E^{2}=2\sqrt{C^{2}+D^{2}}$ and replace $F$ by $F-\pi/2$ , we have
the statement of the step 3.

(Step 4) We assume that each $x^{3}$ -curve is aline in $\mathrm{R}^{3}$ . The Guichard’s net is made
from the parallel surfaces of aconstant negative curvature surface. Futhermore, in this
case, the function $B(x^{3})$ is given by the following equation

(7.18) $B_{3}(x^{3})=E\cos(B(x^{3})+F)$ ,

where E and F are constant.

(Proof) We assume that each $x^{3}$ -curve is aline. By (2.3) and (2.4) we have $P_{1}=P_{2}=0$ .
That is, the function $P$ only depends on $x^{3}$ . For the first statement, we can make a
constant negative curvature surface with parameters $x^{1}$ and $x^{2}$ in $\mathrm{R}^{3}$ corresponding to
the function $A(x^{1}, x^{2})$ , because $A$ satisfies the Sine-Gordon equation. Then, each $x^{3}$ line
passes through apoint of the surface and it is perpedicular to the surface. Therefore, the
Guichard’s net is made bom this parallel surfaces.

For the second statement, since the function $P$ only depends on $x^{3}$ , there exist functions
$C_{1}(x^{1}, x^{2})$ and $C_{2}(x^{1}, x^{2})$ such that

$e^{h}(P+h)_{3}=C_{1}$ , and $e^{f}(P+f)_{3}=C_{2}$ ,

because we have $(P+f)_{33}+f_{3}(P+f)_{3}=0$ and $(P+h)_{33}+h_{3}(P+h)_{3}=0$ ffom (7.4)
and (7.5). Therefore, since $f=\log(\cos\varphi)$ and $h=\log(\sin\varphi)$ , we have

$P_{3}(x^{3})=C_{1}(x^{1},x^{2})\sin\varphi(x^{1},x^{2},x^{3})+C_{2}(x^{1},x^{2})\cos\varphi(x^{1}, x^{2},x^{3})$ ,

and
$B_{3}(x^{3})=C_{1}(x^{1},x^{2})\cos\varphi(x^{1},x^{2}, x^{3})-C_{2}(x^{1}, x^{2})\sin\varphi(x^{1}, x^{2},x^{3})$ .
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Since $\mathrm{C}^{P}3^{\ovalbox{\tt\small REJECT}}+B\mathrm{V}$ ) $(x^{3})\ovalbox{\tt\small REJECT}(\mathrm{C}\ovalbox{\tt\small REJECT} +\mathrm{C}177)(\mathrm{r}^{1},\mathrm{z}^{2})$ , $(7^{\ovalbox{\tt\small REJECT}}3^{\ovalbox{\tt\small REJECT}}+B\mathrm{N})(1^{3})$ is aconstant number, which we
put $E^{2}$ . Therefore, when we take afunction $\mathrm{y}\mathrm{y}(x^{\mathit{1}},x^{2})$ by

$E\cos\eta=C_{1}$ and $E\sin\eta=C_{2}$ ,

we have that $(\varphi+\eta)(x^{1}, x^{2})$ is constant $F$ , and

$P_{3}(x^{3})=E\sin(B(x^{3})+F)$ , $B_{3}(x^{3})=E\cos(B(x^{3})+F)$ ,

because functions $P$ and $B$ only depend on $x^{3}$ .

(Step 5) We consider the case that the functions $A(x^{1}, x^{2})$ and $B(x^{3})$ are given by
(7.11) and (7.18), respectively. The metric in this case is conformal to ametric made by the
parallel surfaces of constant negative curvature surface (given by the step 4). Therefore,
the Guichard’s net is obtained by aconformal transformation of aGuchard’s net made
from the parallel surfaces.

By the above steps, we completely proved Theorem 7.1. q.e.d.
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