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Abstract

CORXDERBMIL. MABRERON—FT 4 —OFEFREI YL UV /Y —LEROITHRTIZLTH B, 2O
RLLT, BHS 707 VBT 2 4MEMPANA RO AROMITE T2, S5, AN EFON—F 1 —FERD
4T Thp of (718

1 4>hO545> 3>

N 2EE8¥. Q%2 RN 0OERBREL T2, | 2EBRE LT, H(Q) TEEDY
RV 7BMERT. /IVARRTERT %,

1/2
=3 (/wu |2dx) < +o0. (1.1)

lvI<l

H{(Q) 2 CP(Q) oZ D/ VAICET 352MtE 35,
KIN—FT 4 —DFEXZ2BVWHZES,

Theorem 1.1 Ifl < %, then it holds that for any u € H}(Q)

/ IVu|?dz > C, / Ju( z 12, dm. (1.2)
Here V! = {D"}, where |y| =1 and V = V!, namely
Vil = ) D ()P, (1.3)
lyl=t

where v = (71,72, YN) 18 @ multi-indez as usual, and then D7 = (3= 3:1:1)

(3= 622)72 -~ ( afN) . C} 18 a positive number independent of each u.
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COMXTIREELCRDY L 7DN—F 4 —FERXEZFARDZ I LIRS,
RO u e HZ(Q),

|u(z)|®

Q |33|4l

H(N,AY (1=1,2) RROEABETEI SN BRERTH 2,

‘ﬁNWMZHWAﬁ de for 1=1,2. (1.4)
Q

|u(z)|®

Q |33|4l

inf [/ Al dz : u e HE(Q), dx = 1], [=1,2. (1.5)
Q

bLOeQ 2D N>4Thhik, HN,AY (1=1,2) BIRTEZ6h3Z L HR
CHIBh T3,

(1.6)

H(N,A) = (M),

H(N,A?) = (N(N—4)(11\2;+4)(N—8))2_
HLUCESEXM [1] & 4|28Re L. 5i0, WEEERT 2880 H Q)0
KIIFELRN ZeDBHONTEY., ChiZFRE - TBHEE - PEATRETH
PILIFRLTVEDTH B, foT. ZOESREITRNF¥F—25ZHE(Q)I
BOWTUIHETTRNEDINZ D0 TOXIICLT, TON—F 1 OFRERICITE
"missing terms ” BN T2 LEZZ0PERL RS, BRLIZZOBHTN—F 4
DAFADmissing termsz RO, HEMRTERXERRTEIL2ENL T 3.
ZOWAL LT, BREICBVWTEES 75 S 7 U ICBET 2 858 M85 RE R
& .

{ A%y = \f(u,r) in B (1.7)

u=Au=0 on 0B,

CZTr=lz|,B={zeRY:|z| <1} . N ZEABNISA—¥—TH 3,
Nonlinearity f(u,r) ELTRETD f, & fZBRATZI LTk %,

{ Folu,r) = (1+u+ Qy(r)),

fe(u, 'I") = evtQe(n),

ZZTQY(r) & Qe(r) B LOFEAMRNFMBHI ST TERIN TS, Thb DRIEIC
BAL T, BAERODEANLRMEZIAK TSI LIC2%, 7= p-harmonic equations
( [B)ICEAT ZRABROBEE RS &L FICEANBREAT EN—FT 4 —DOFRER BB
I3 LilRB, .

(1.8)
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CORXDBRIIUTOLS TH B, 2T N—F 4 —DFERICHTIEER
BERHIBRENTNS. §3 IIXQ2TRRSNEHERZIIAT 5 DICLBEREARN R
BENDERSNS. §4 & §5 ICBWVWT Theorems 2.1 & 2.2 HIADRT v F 8
ah3, §6 Theorems 2.3 & 2.4 DHWHHICFABAEI NS, §7 ICBWTIXRERMS 5 1E
KOBEREREANDISADPBRSNTVS.

2 Main results

Let r > 0 and let M be an arbitraly positive integer. We set
B —{zecRM:|z| <r}). (2.1)

By || and wy we denote the N-dimensional measure of the domain {2 and
that of a unit ball B respectively. Further, we set

Ay = 3;7+—7+ +—Q§-
PR 5 v (2.2)
Vum =
M= (axl’azz’“wam)‘

Conventionally we set A = Ay and V = V. In the next we introduce the
first eigenvalues for various elliptic problems.

Definition 2.1 Let us set

= inf [ [, |[Vovl*d : v € Hy(BY), fps |v|* dz = 1],

[ [: AP dz v € H3(BY), [ps lv|?dz = 1],

4 = inf [ [3¢ |[Ve(Aev) *dz: v e HY( B6 ), [ 0] dz = 1], (2.3)
= inf [fB? |Afv|?dz : v € HY(BY), [ps lv|2dz = 1],

)‘2 = inf [ [p [Agqv[*dz v € H*(BY) N H3 (), [y lv]* dz = 1].

= inf

\

Then the numbers A\t (k = 1,2, 3,4) and A} are characterized as follows:

Proposition 2.1 The numbers A\, (k = 1,2,3,4) and X\ are the first eigen-
values of the elliptic boundary value problems below. Namely there exist pos-
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itive smooth functions vi (k = 1,2,3,4) and v in B such that they satisfy

( —A2v1 = )\1’01, n B%, V1 = 0 on 832
A2vy = ova, in Bf, v = a—’Uz 0 on OB}

{ —Adyy = Agus, in Bf, 3= Lv3= v3=0 on OB (2.4)
Afvy = Mgug, in B}, wvg= Loy = 34:'5?)4 igm 0 on OB}
(A2 = Mws, in Bf, v3= A3 =0 o0ndBj.

Here by n we denote the unit outer normal on 0B.
Now we are in a position to state our results:

Theorem 2.1 Suppose N > 4. Let Q be a bounded domain of RN. Then we
have the following two inequalities.

(1) For any u € H3(Y), it holds that
[ul?

o lalt

N\TN(N —4) [ |ul? WN\ ¥ 5
(2) For any u € H%(QY) N Hy (), it holds that

/lAu|2 dx > H(N, A) dx (2.5)

2
/lAuPdm > H(N,A) le||4 dx : (2.6)
Q
wn\ ¥ N(N — 4) uf? . (WN %/ 2
+ A1 (IQI) — 5 | EEd (IQI) ol do
where
_N(N - 4)y?
H(N,A) = (——4——) . (2.7)

Theorem 2.2 Suppose N > 8. Let 2 be a bounded domain of RY. Then it
holds that for any u € Hg(Q)

2
/IAzulzda:ZH(N,A2) i dx (2.8)
Q

won\# [ Juf wy :*vfluP
Fag- - (Iﬂl> |x16dx+a2 A - (IQI) Q|x|4dx

+a3-)\3-<%)% Q:Z:de)\ (IQI> /Qlu|2da:.



140

H(N, A?) = (N(N— 4)(]\1/6—{— 4)(N — 8))2 (2.9)
By a1,az and a3 we denote positive constants defined by
a = 11—6N2(N —4)2(N + 4)(N — 8),
= 3N(N — 4)(N + 4)(N —8), (2.10)

= (N +4)(N -28).

In the next we state the results concerned with the weighted Hardy inequal-
ities.

Theorem 2.3 Suppose that a positive integer N and a real number a satisfy
N+a>2 Then it holds that for any u € H}(Q)

/|Vu| |z|*dz > H(N,V, ) /|u|2|a:|°“2dx (2.11)
0
+)\1 |Q| /|u| |z|* dz,
where N
_(n—2+a\2
H(N,V,a) = (T) . (2.12)

Remark 2.1 When o = 0, this result was initially established in [3] by H.
Brezis and J.L. Vdzquez. They also investigated in [3] fundamental properties
of blow-up solutions of some nonlinear elliptic problems.

We also note that when one linearlizes the p-laplacian at the singular func-
tion such as log|z|, the weighted Hardy inequalities appear in a natural way.

A similar result can be expected for A. In fact, the following weighted in-
equality hold.

Theorem 2.4 Suppose that a positive integer N and a real number o satisfy
N + o > 4. Then it holds that for any u € HZ(Q)

/Q |Au|2|x|°‘dx+—(aT—i) / (|v |2—2( Vu 2)|:1:|°“2dx (2.13)

2
> 1(N,8,0) | el dz + 3T 4) ()" | tublole2 s
Q

2 9]
i 2|,.|a
+2(#0)" [ el da,




141

I(N,A0) = (N(N—4))2_ a(a—4)(a—|—2N—4)(a+2N—$).

4 16
If we further assume either a < 0 or a > 4, we have the following.

(2.14)

Corollary 2.1 Suppose that the same assumptions as in the previous theorem
2.4. Moreover we assume either o < 0 ora>4. Then it holds that for any
u € H}(Q)

/ | Aul?|z|® dz + ala — 4) / (|Vu|2— (ﬂ Vu) )|x|°‘_2dx (2.15)
> H(N,A,« /|u| ||~ 4da:+b1)\1 IQ| /|u| |z|* 2 dz

+)\2 Im /Iul |z|* dex,

where

4 4

by — N(N 4) fala) (2.16)

In a similar way we have the following.

Corollary 2.2 Suppose that the same assumptions as in the previous theorem
2.4. Moreover we assume that 0 < a < 4. Then it holds that for any
u € H3(Q)

/ |Au|2|x|ada:+g(4;a) / Vul?|z]*2 do (2.17)

#N(N —4
> I(N, A, a /Iul | 4dac+>\1(lﬂ|) ( 5 )/Qlulzlxla"2dx

+)\2 IQI /lul |z|* dz.

Remark 2.2 In Theorem 2.4 and its corollaries, we can replace the admissi-
ble space H3(Y) by H2(Q) N HE(Q). Then the same results hold if we replace
A2 by A5 as before.
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3 Lemmas

For a domain 2 we define the ball having the same measure as Q by
Q* = {z e RY : wy|z|N < ||}, (3.1)

where by wy we denote the measure of a unit ball. If || = 400, we put
Q* = RM. For a measurable function u, we denote by u *(z) the spherically
symmetric decreasing rearrangemant of u (the Schwarz symmetrization of ).
Namely,

{ u*(z) =inf{t > 0: u(t) < wy|z|¥} in Q* (3.2)
p(t) = {z € Q: |u(z)| > ¢}.
Then it is well-known that
Lemma 3.1 Under these notations we have for every p > 0
{ Jolu(@)Pde = [, u*(z)Pdz, (3.3)
Jo IVu(@)P dz > |, |Vu (2)lP da,

Let g € C°((0,00)) be a nonnegative decreasing function. Then we have

/ u(@)Pg(|2]) dz < / ut (2)g(|a]) d. (3.4)

From this we see in particular that the symmetric rearrangement does not
change the L*-norm and increases the integral [,(|u?|/|z|") dz. The following
is due to G. Talenti (See [9]).

Lemma 3.2 (Talenti) Let Q be a domain of RN. Assume that N > 3 and
f € LP(Q), where p = —1\27%

If a measurable function u is the weak solution to the Dirichlet problem
—Au = f in Q,ul q = 0; v is the weak solution to the Dirichlet problem
—Av = f*in Q*’“ran* = 0; then

(1) v > u* pointwise.

(2)

/ |Vv|?dx > / |Vul?dz, if0<qg<2. (3.5)
Qr Q
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Let us set
I'"u; Q) = [, |Alu?dz,u € CR(Q)
I' = inf | I'(u; Q) :ueCS"(Q),fQ%;dle], (3.6)
s *\ ., 00 * ul?
I} = inf | (0 Q%) s u € G g(Q°), fo 1 do = 1].

By C5%44(€2%), we denote the set of all spherically symmetric functions u €
C5°(€2*). Under these preparations, we can show the following:

Lemma 3.3 (Reduction) Under these notations, it holds that I' > I! for
every positive integer I. If ) is a ball with its center being the origin, then it
holds that I' = I'.

Sketch ofProof. Without a loss of generality, we can assume u € C$°(9).
It suffices to show that there is a function v € Cgfmd(ﬂ*) such that

Fw® L)
Jolul?/|z®dz = [o. [v]?/]|* dz’
We shall prove this assuming [ = 1.
We put —Au = f € Cg°(Q). From the definition of the decreasing re-
arrangement, we see that f* is spherically symmetric in Q* and Lipschitz

continuous. Let v € C%(2*) N C3(2*) be the unique solution of the Dirichilet
problem defined by

@37

—Av=f* inQ* v=0 ondQ (3.8)
Then we see from Lemma 3.2 that v* < v in Q* and
/ | Aul? dz = / fPde= [ |fPde= [ |avfPde.  (39)
0 9) O O+ '
Further we see that
Jul? / Ju*|? / jv]?
—dzr < dr < —dx. 3.10
q |z|* o |2/t o |z[4 ( )

Therefore we see I' > I', and this proves the assertion when [ = 1.

4 Proof of Theorems 2.1 and 2.2

Definition 4.1 (m Laplacian) Form € R and v € C?((0, oo)), we set

1-m 0 (rm—l_a_v(r)) _ Flr) | m— 19v(r) (4.1)

Omu(r) =1 or or or? r or
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Lemma 4.1 Let M and m be positive integers. Let us setr = |z| forz € RM,
For o € R and v € C*((0,00)) it holds that

Apv(r) = dpyv(r) (1)

ARy (o)) = 1 (Bya + SHLEEZIN "

Proof of Theorem?2.1. -

Since the assertion (2) follows in a quite similar way, we prove the assertion
(1) only. From Lemma 3.3, it is enough to prove the result in the symmetric
case. To this end we set

wNRN = | (4.2)

and replace 2 by Q*. In addition to this fact, since C§°(€2) is densely con-
tained in HE(R), we also replace the function space Hg(2) by Cg3,q,(2%).
Moreover, a simple scaling allows to consider the case R = 1.

Let us set for B = By (0) and u € C§%,4(B)

u=r"7y, ve 0rad(B)- (4.3)

Here we note that v vanishes at the origin, if N > 4. We see from Lemma
41 witha =2 — % that

A(rz"?v(r)) =727 (54'0(7') + Q%)—), Q= —-N—(]y(—l:i) (4.4)

Then
/ Auf? dz = / A(r3) 2 dz
B B
o 0 \2
= |SN-| / (641) + ﬁv) r3dr ( Polar coordinate )
0
1 2
= |SN‘1|/ (|(54'v|2 — 27‘—?|8,.v|2 + Q—fvz)r3 dr
0

SN-1 20|SN-1
B I |53 l/34|Av(|y|)|2dy Q||51 I/ |Vau(ly|) |2dy+Q2/ (lyD dy
1
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Here by |S™~!| we denote the measure of the M-dimensional unit sphere.
Then it holds that

/lAu|2d93=/ |A(r2_%v)|2daz (4.5)
N 1 SN 1
Lt [ty —2onBgrl [ wneay + @ [ 24

2 N(N—4) [
> H(N,A) :x:4dx+xl- (2 )B:w:Q

where \; and ), are defined in (2.3). This proves the assertion.

dx—l—)\z-/ |lu|? dz,
.JB

Remark 4.1 To prove the assertion (1), it suffices to replace C§°(2) by
H%(Q) N C3(Q).

5 Proof of Theorem?2.2.

Again from Lemma 3.2 and Lemma 3.3, it is enough to prove the result in
the symmetric case. Let us set for B = BI¥(0) and u € orad(B)

u=r""%y, veCL,.4B). (5.1)

Here we note that v vanishes at the origin, if N > 8 We see from Lemma
4.1 with o =4 — & that

(N +4)(N —8)
4

A(ri=3o(r)) = r=s (681)( )+ o olr )) P=— (5.2)

As before we see

S 2
/|A2u|2dx |SN= 1|/ 62v(r) +—56v() Ffv(r)) r’ dr,

where
N(N —4)(N + 4)(N — 8)
16

toh-

S = H(N,A?)3.

(5.3)

Integration by parts gives



146

Lemma 5.1 For any v € C§°((0,1)), we have

! 2P S \2
/ (58'0 + —-06v + —v) r’ dr (5.4)
0

1,2
=/ |5§v|2r7dr+52/ —dr
0 o T

1 1 1
+ a; / |0,v[%r dr + a2/ |64v|%rt dr + a3/ |0,66v|*r° dr-.
0 0 0

Here ay,a; and a3 are defined by (2.10).

The proof is omitted. The end of proof of Theorem 2.2
From the previous lemma, we see

2 SN 1
[t = [ 1 19 o R
SN—I N 1
ol / AaoyDPdy +as et [ [Vaseollyh Py

SN—l
S [l 1abuR

SN 1|
252/v(||)d+a)\l /’U 2

Ll : - »
rapalirt [ D dy-+ skt / o(ly)I dy

Sl / (g dy
K

2
=H(N,A2)/ 8dx+a1)\1 lu—|6dx
2B| z| 213| z|
+a2A2/: :4dx+a A3 : :2dy+)\ /|u|2dx
B

This proves the assertion.

6 Sketch of Proofs of Theorem 2.3 and Theorem 2.4

Theorems easily follow from the next lemmas:
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Lemma 6.1 Let  be a domain of RY. Assume that u € CP(Q) and f €
C?(Q). Then it holds that

| e = [ (vupsdz =3 [ A -2vifds  (61)

Lemma 6.2 Let  be a domain of RY. Assume that u € C3(2) and f €
C*(Q). Then it holds that

/Q A(uf) dz = /Q (A2 + /Q 2fAf)de 6.2)
N

0*f Ou Ou
2 2
+2/Q (|Vu| V| 2fj§k::18 )da:.

z;0xk Ox; Oy,

7 Applications

Let Q be a bounded domain of RY. In connection with combustion theory
and other applications, many authors have been studied positive solutions of
the semi-linear elliptic boundary value problem defined by

—Au = Af(u), in 2, wu=0on oN. (7.1)

Here ) is a nonnegative parameter, and the nonlinearity f is, roughly speak-
ing, continuous, positive, increasing, superlinear and convex function. A
typical example is f(u) = e*. It is well-known that there is a finite number
A* such that (7.1) has a classical positive solution u € C?(£2) if 0 < X < A*.
On the other hand no solution exists, even in the weak sense, for A > \*.
This value A\* is often called the extremal value and solutions for this extremal
value are called extremal solutions. It has been a very interesting problem to
find and study the properties of these extremal solutions. In this section we
shall consider a similar problem for the fourth order equations.

Let B be a unit ball of RY. Let f(t,r) be a continuous positive function
defined for ¢t > 0 and » > 0. Moreover we assume that f(-,r) is increasing
and strictly convex with

f(0,r) >0 and lim f(tt’ r) =0 for any r > 0. (7.2)

t—00
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Now we consider the boundary value problem: For r = |z|

A%y = \f(u,r) in B (7.3)
u=Au=0, on OB

This problem is a generalization of (7.1). First we define a weak solution of
the problem (7.3).

Definition 7.1 (Weak solution of (7.3)))
Let us set 6(x) = dist(x,0B) (the distance to the boundary from z). A
function u € L'(B) is called a weak solution of (7.3) if f(u,|z|) satisfy

5(2)f (u, |2]) € Li,(B) (7.4)

and u satisfies (7.3) in the following weak sense:
/('u,Azgo - Af(u,m)p)dz =0 (7.5)
B
for all ¢ € C4(B) with p = Ap =0 on dB.

From the standard elliptic regularity theory it follows that bounded weak
solutions for this problem are classical solutions. Moreover u satisfies the
boundary conditions u© = Au = 0 in this case. Now we consider unbounded
solutions. To this end we introduce an energy solution and a singular energy
solution.

Definition 7.2 ( Energy solution, singular energy solution)
A weak solution u of (7.3) is said to be an energy solution if u € H*(B) N
Hj(B). If an energy solution u is not bounded, u is said to be singular.

Remark 7.1 Later we shall specify the nonlinearity f(u,r) in order to study
singular extremal solutions precisely. From the definition, an energy solution
u satisfies

/B (Aulyp — Af(u, |z])p) dz = 0 (7.6)

for all ¢ € C*(B) with p = Ap =0 on dB.
If u € H*(B) and u is an energy solution of (7.3), then u satisfies the
boundary conditions u = Au = 0.
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It is not difficult to see that the maximum principle works in this boundary
value problem,even if the operator is of the fourth order. Therefore we can
show that there exists a solution to (7.3) for sufficiently small A > 0. In fact
we can construct so-called supersolution and subsolution as follows.

Lemma 7.1 Under these assumptions, there exist a supersolution and a sub-
solution for a sufficiently small A > 0. Moreover there exists at least one
classical solution u of (7.3).

The proof is omitted.

By virtue of this, we can define the mimimal solution u) € C*(B) which is
minimal among all possible solutions. Then we define the extremal value \*
as a upper bound of A for which the minimal solution exists. The family of
such solutions depends smoothly and monotonically on A. Then the following
property is well known. N

Lemma 7.2 Minimal solutions are stable. More precisely, the linearized op-
erator

Lyp = A% = Af'(ur, )y (7.7)
has a positive first eigenvalue for all 0 < X < A*.

From the properties lim;_, @ = oo and @ < f'(t,r), we can show the
following:
Lemma 7.3 As A — X\, a finite limit u*(xz) = limy_ - ux(x) and u* is a
weak solution of (7.8) with A = \*.
The proof is omitted.

The limit u* can be classical or singular. Assume that u* is a classical

solution. From the implicit function theorem, it is clear that the linearized
operator

Ly@ = A% — f'(u*,r)p (7.8)

has zero first eigenvalue.
If u* is singular, then we have the following characterizations:

Proposition 7.1 Assume that u € _H2(B’) N HY(B) is an unbounded weak
solution of (7.3) for some A > 0. Assume that

)\/Bf'(u,r)QDdeS/B|A<p12dx (7.9)
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for all ¢ € C2(B). Then A = X\* and u = u*.
Conversely, if A = X* and u = u*, then (7.13) holds.

The proof is omitted.
Remark 7.2 If f(u,r) satisfies

)

then any extremal solution u* lies in the energy class (c.f. §3 in [3]).

> 1 ( uniformly in r € [0,1]), (7.10)

Now we consider the concrete example for which we can apply our refined
Hardy inequalities. For 1 < p < oo and r = |z|, we adopt as the nonlinearity
f(u,r) the following f, and f,, that is,

- P
[ Hun=trurain o
Here

Qp(r) = B(1—12),

AN(p) =a(a—2)(N+a—2)(N +a-—4), (7.12)
o= 7t 8=t (p - ¥3)

We define the function U, as follows:

Up(r) = r* —1—Qy(r), a= —p—f—l. (7.13)

Under these notations, we have the following.
Lemma 7.4 Assume that A = An(p) and f = f,. Then it holds that:
1. Ifp> NL‘U then U, is a weak solution of (7.3).
2. Ifp> N , then U, is a singular energy solution of (7.8) .
3. If p> 2, then U, € H(B).

Now we define

H(p) = pAn(p) (7.14)



151

Since it holds that
lim H(p) = 8(N —2)(N —4), (7.15)

p—-too

. N(N—4)\2 . .
we see lim, oo H(p) < (=5=)" if and only if N > 13. For N > 4 we also
note that H(§5%) > (N(]X"‘l) )2 and that H(p) is monotonously decreasing

for p > % +i Then the results of Section 2 allow us to study the singular

energy solutions.

Theorem 7.1 (Polynomial case)Assume that N > 13.

(1) There exists a number p* € (8t, 00) such that U, is a singular extremal
solution with \* = An(p) for any p > p*.

(2) If p € (§*3,p%), the U, is not a singular extremal solution and Ay (p) <
A\*. Here p* is the same number in (1).

(3) If p € (33 4 1 %*3] Up is not an energy solution but a weak solution.
Therefore U, is not singular extremal and An(p) < A*.

Remark 7.3 In the case that N > 13 and p > p*, the linealized operator L},
defined by

Ro = A% — M, (Up,m)p - (7.16)
=A% — p/\iﬁ4

has a positive first eigenvalue pu(X) for any A € (0, A\n(p)] corresponding to
an eigenfunction ¢ € H?(B) N H}(B). In order to characterize the first
etgenvalue we may consider the variational inequality

[ 18P ds = (o) [ fUpr)eda (7.17)
B B

= [ (186 - 1)) do

> (1— IGH(p /IAsOVde

Therefore we see

p(An(p)) = (1 1 Nl(?vapi))z)m, (7.18)

where 1y 1 the first éz’gem}alue of A? with the boundary condition p = Ap =0
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Ifp = p*, then L]/D\N(,,) does not have a first eigenfunction in H*(B)NH}(B).
However, the previous arguement gives a positive value for w(AN(p)) defined
as

pOANE) = Lim p(d) 2 Xs.
TAN(p)
Remark 7.4 We consider the case that 4 < N < 13. Assume that p > N4 +
Then Uy is not singular extremal, since the Hardy inequality (7.13) does not
holds. In the next we assume that p < xjrj Then U, is not an energy solution
but a ( singular ) weak solution. Therefore we see that there exists a range

of p where U, is a weak solution and satisfies the Hardy inequality (7.13).

In the next we consider the limit of this problem as p — +o00. Let us set

—_ 2
{ Qulr) = T2 (1-r%), (7.19)
=8(N —2)(N —4)
and we set
U = —4logr — Q(r) (7.20)

As p — +00 we see that
(pRe(r): £5(2,7) PN (D), Up) — (Qelr), feluy ), X, V) (721)

for any r € (0,1).
Therefore the boundary value problem (7.3) with A = X% and f = f. is
considered as a formal limit of the previous one.

Lemma 7.5 Assume that A = X and f = f.. Then it holds that:
1. If N > 4, U, is a singular energy solution of (7.3).
2. If N > 8 then U, € H4(B).

Then we have the following:

Theorem 7.2 (Exponential case)
(1) If N > 13, then U, is a singular extremal solution with \* = Ay
(2) If N < 13, then U, is not a singular extremal solution and AN < A
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Remark 7.5 In the case that N > 13, the linealized operator LS, defined by

Se0 = A% — Ay fo(Ue, ) (7.22)
= A2 A;,% (7.23)

has a positive first eigenvalue u(A%) as before.
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