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Asymptotic Shape of a Solution
for the Plasma Problem in Higher Dimension
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1 Introduction and Main Theorem

In this paper, we consider a simple model of a confined plasma which is described

by
Au—du_=0 in Q,
u = u(l) on T, (1)
Ou dS(z) =1
r 31/

where € is a bounded domain in R (n > 3) with C2? boundary I, uy = max{u, 0},
u = u; — u_, u(l') is a unknown constant, A and I are given positive parameters.
In this paper, we denote by A; the ith eigenvalue of —A with Dirichlet zero
boundary condition on . For physical background of this problem, see [10], [11].

Many authors treat this problem (cf. [2] [3], [7], [8], [11], [12] ). In the case
n > 2, Temam [11, 12] showed that there exists a solution u of (1) if and only if
A > 0 and it holds that

wl) >0 A> N, u@)=0ifA=2X;, u(l)<0if)< A,

furthermore, if 0 < A < A, then (1) has unique solution.
If A > A;, we can easily to obtain that {z € Q;u(z) < 0} is nonempty by
using (1) and the maximum principle. In this case, the set

Q, = {z € Qu(z) <0}
is called the plasma set, and I', = 8, is called the free boundary. In [7, 8], they

proved I', is a simple closed analytic curve.
We consider this problem by using variational method. Put

| I
W:={ue€ HI(Q);u =constant on I'}, X :={u€ W;/ U = X}
o
and we define energy functional E) on W by

A
Ej\[u] := %/ﬂ |Vul? dz — 3 /9'112_ dz — Iu(T).



Temam [12] showed that there is a global minimizer u, and u, is a weak solution
of (1) i.e.

Ex[ux] = min Ej[u], (2)
/ VuaVo+ (uy)_vdz = To(T) 3)
Q .

for all v € W. Hereafter, we denote by u, obtained in [12]. In [3], Caffarelli and
Friedman consider the shape, size and location of 2, where X increases to infinity
in the case n = 2. They proved that

diameter(Q,) < CA™%, |Q,| > CA~!
for some C > 0. Furthermore,

max | Az — z;| — R| = 0 if A = oo.
z€lp

for suitable point z) and some R. It means the shape of T, is approximated by a
circle with center z, and radius RA~'/2. About the location of I',, they showed
that z, converges to a point which is called the harmonic center determined by
the geometry of (2. Moreover, they concerned the case n = 3 but they proved
only

1Q,| < CA~2.

In this paper, we consider the case n > 3 and prové Caffarelli and Friedman’s
result is valid if n > 3. To prove our result, we need to approximate uy as A — oo.
For it, the following limiting problem is very important.

Awg+ (wp— 1) =0, we>0 in R™,
Vwe(0) =0, limyy|—00 wo(y) = 0.

This equation has a unique solution wy(see Lemma 2.1). Now we state Theorem
A.

Theorem A. Suppose uy a solution of (1) obtained in Temam [12] then

(i) There erists a constant Ao > 0 such that uy has only one local mazimal
point z in Q if A is sufficiently large.

(11) uy is approzimated by wy in the following sense:

wn) = 20 ) o) 0 LR 092 o o

where y = \i(z — 1,).
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1
(1i1) maxzepp|)\%|x — 23| = AZ| = 0 as A = 0o. Furthermore the free-boundary
08, 1s of class C? and the plasma ), is strictly convex.

In Theorem A, one find the plasma set I, is approximately a ball with center

z), and radius )\i/ 2\-1/2, Next, we state Theorem B about the location of z,. To

state Theorem B, the geometry of {2, namely the Robin function for €2, plays an
important role. The Robin function is defined by

t(.’l:) = Hz(x)’
where H,(y) is a solution of
AyH,(y) =0 in €,
Hy(y)=(n—2)"110By| " |z —y|*™ on 0.

Here B is a ball with radius 1. It is well-known that the Robin function ¢(z) is
a positive continuous function with ¢(z) — oo as £ — J0Q2. A minimal point of
t(z) is called a harmonic center. So there exists at least one harmonic center for
any bounded domain 2. For the details of the harmonic center, see e.g. [1]. We
denote by €, the set of all harmonic center i.e.

Qp = {z € Q; z is a harmonic center}.
Now we state Theorem B.
Theorem B. In addition to Theorem A, the following properties holds:
(i) imyoo dist(zy, ) =0.
(i) The energy Ej[u,] has the following asymptotic formula:

2\

E,\[u,\] = ko

_n=2 . _nc2
{—1+k0/\ 2 erIGISI]lt(x)—l-O()\ D )}

' n—2
where ko is a positive constant defined by ko = (n — 2)|0B; |\, % .

In Section 2, we define w) , for approximate the solution and we note the
properties of wp and wy,. In Section 3 and Section 4, we give the proof of
Theorem A and B. In Section 5, we give the proof of Lemma 4.2 which is used in
Section 4 for the proof of Theorem B.



2 Preliminaries

In this section, we define w) . and note the properties of wp, wy .. wo, wy,, will
be use in Section 3 and Section 4 for approximation of the solution.

Lemma 2.1. There is a unique solution in C*(R™) for

Awo(y) + (wo(y) —1)+ =0, w(y) >0 nR"
Vwe(0) =0, limpye wo(y) = 0.

Moreover, wy has the following formula.

"T—2 2-n ; %
wo(y) =4 M > )
aOTi) +1 el <.

Here ¢, is a first eigenfunction of —A on B, which satisfies |V¢1| =n-—2 on
0B;.

Proof. First, we show uniqueness of the solution. If wy € C?(R") is a solution,
by [9, Theorem 2], we obtain u(y) = u(r) for r = |y| and ¥'(r) < 0if r > 0. So
there is an unique positive constant R with u(R) = 1. Since u(r) < 1 if r > R,
we have —Au = 0 in R"\ Bg. It follows from (4) that u(z) = c|z|> " on R™\ By
for some positive constant c. Since u(R) = 1, we have ¢ = R*2. We define v by
v(z) = wo(y) — 1 for y = Rx. Then we have

A'U(.’II) = Azwo(R-’E) = R2A’wo(RI) = —Rz(wo - 1) = —

ifz € B, and v =0 if z € 9B,. It mean v is first eigenfunction of —A on B; w1th

Dirichlet zero boundary condition and R? is its first eigenvalue. Hence, R = /\2
Since wy is continuous, we have

2Rn wh(R) = ’(1)

Such v is unique and we get v = ¢,. Consequently, wp is a unique solution.
On the other hand, wy defined by (5) is a C? solution of (4). It completes the
proof of this lemma. O

It follows from 2.1 that the following corollary.
Corollary 2.2.

=2

/ (wo — 1), dy = ko = (n — 2)|0B AT
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For A > 0, z € 2, we denote by w) . the unique solution of

{Aw,\,z +(wp—1)y =0 in Qy,,
wy, =0 on Q.
where Q,, = A2( — 2), and we define k, by h,(y) = H,(A\"7y + 2).
Lemma 2.3. For w) ;, the following properties hold:
(i) wo > wy ..
(ii) wo(y) = wrz(y) + koA~"F h(y) if Byiz C .
(iii) h.(y) — t(z) in LS. (R™) as A — oo.

(iv) wy.(y) = wo(y) — koA "7 (t(2) + o(1)) as A — oo in L2 (R™).

loc

Remark that Lemma 2.3 (iii) may be not valid if z €  is depend on X since

t(z) ¢ C(@). |
Proof of Lemma 2.3. By the equation and Lemma 2.1, w(y) = wo(y) — wx ()

satisfies
{Aw(y) =0 in Q, ,,
ne2 ,
w(y) =wo(y) =A% [yl>™ on oy,

1
if |yl > Af. By the definition of h,, we find

Ah,(y) =0 in Q).
hz(y) = (’I’l - 2)_1lBll_1|y|2_n)\nT—2 on 89)\,2.

Consequently, (ii) holds. It follows from (ii) and h, > 0 that (i) holds. (iii) is
clear because of H, is continuous. (ii),(iii) mean (iv). a

3 Proof of Theorem A

Proposition 3.1. Let uy be a global minimizer, then the following asymptotic

formula holds as A — oo.

D%
2%y

-2

{1+ koA~ "7 mint(z) + o(A~ "7
reN

Ejuy] <

)}

n—2
Here kg is a positive constant defined by ko = (n — 2)|0B1|A; % .



Remark. To prove Theorem A, The second order term is not necessary.

Proof. Take z € Q with ¢(z) = mingeqt(z). Then there is a large constant j

such that BA{” C Q. if A > B. We define v by v(z) = ¢(1 — wy,(y)) where

y = A/2(z — 2). Here, we choose c which satisfies [, v_dz = £. Then we have
n-2

INT = ¢ (wo—1—kA "Th,),dy
QX,:

= ¢ / (wo — 1) — koA="74(2) dy + o(A-*F)
{wo(y)>1}
= C(ko - ko/\__IBl\l/zlt(Z) + 0(/\__))
because of Corollary 2.2. So we obtain

s _n=2 =2
. (14 22|BA1/2|t(z)+o()‘ 7). (6)

CcC =

Using Av(z) = —AcAw, ,(y) = Ae(wo(y) — 1)+, we obtain

/IVvlzdz = /VvVv )dz — /vAvdz

Q

/VdeS:c —/vAvda:=c/Avdz—/vAvdx
c Q Q Q

/(c —v)Avdz = AN (wo — 1)4wy . dy,
Q Q.
A / vdr = AT / (wr, — 1)2dy

Q Q

= 02/\‘"—53/ (wr,z — 1)3wy . dy —cl.
L)Y

So we have

c2/\‘"_—2' Ic

Byl = { f (w0 — 1) — (wrs — Dt} dy = .

Noting w) , < wp and

_n=2
If wy, — 1] < / [,z — woldy = o(A™77),
{wa,.<1<wo} {wx,.<1<wo}

we obtain

A\~ =2
5 {/{ 1}(wo—1—w,\,,,+l)w,\,zdy+o(/\‘ 22)}——
wo>

C2A_ﬂT_2 n=2 _n=2
= {/ AT kgt(2)wody + o(A2 )} - =
2 {wo>1}

EA [’U]
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Using (6) and ¢ = I?A"2k;2(1 + o(1)),
I? Ic
2—’%{‘/{w0>1} t(z)wo dy + 0(1)} - 7

- 5%{ /{ o t(2)(wo — 1 + 1) dy + 0(1)}

I? | a2
~ g W5+ Byalt(z) + o(D)

E)‘[’U] =

2 n=2
= 2—k0{kot(z) + t(Z)'BA}/zl -7 — lB)‘i/zit(Z) + 0(1)}

2y B2 :
= I;k’ {—14 kA" T t(2) + o(A""T)}
0

O
Hereafter, we denote by z, a local minimal point of uy in €2 for each A > 0

and define wy and Q) by Q0 = A2(Q —z,), wa(y) = (ur(T) — ua(z))/ur(T) where
y = A2(z — z,). Then w, is a solution of

{Aw;\ +(wyx—1)1 =0, wy>0, inQ,, (7)

wy =0 on Q).
Using the maximum principle, we find wy(y) > 1 if y is a local maximal point of
w)y.

Lemma 3.2. Suppose A > A;. Then ||lwa|lcre,) and ||wallw2r(q,) i uniformly
bounded with respect to A where a > 0 and 2 < p < n is some constant. Moreover,
wy, 18 a classical solution.

Proof. By (3) we have

— = E,\[U)\]. (8)

2
Using Proposition 3.1, we obtain
ux() 2 5-A""5 (1 + o(1)). (9
2kg
as A — oo. First, we show the following claim.
Claim.
/ (wy —1)2dy < C, (10)
Q)
/ [Vwa[?dy < C (11)
L)%

where C is a positive constant independent of A.
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Suppose A > \; and define vy by vx(z) = (uA(TI") — ur(z))/ua(T). Noting that
ux(l') > 0 and vy, € W01’2(Q), it follows from interpolation inequality, Sobolev’s
inequality and uy € X that

l(vx — Dtllzzy < lwa = Dlloyeyll(wa = D4 llzer @)

1-6
C(:\E\%ﬁ)o (/{m>1} IVvA|2 dx) 2

where 0 =2/(n+2),2* =2n/(n—2) and C is a pos1t1ve constant depend on n.
By E'[u;][(ua)-] = 0, we have

/ V[P dz = / ()2 da, / V|2 do = / (v5 — 1)2 da.
{ua<0} 1) {va<1} 1)

So we obtain

IA

165 = Dillzer < () 0= Dlizfy

It follows from this inequality and (9) that
/(vx-1 Tdr < CAFAT = CA T,
where C is a positive constant depend on I,n. Consequently,
fa (vx - 1)2 dz < CA3
holds and it means (10). By (8), (9)and (10), we have
/{;leAde = u_,\fIT) + /ﬂ Mva—1)2dz < C_')\‘"_;Z.

It means (11) and this claim is valid.
Secondly, we show the following claim.

Claim. For 1 < p < n, p* = np/(n—p), there is a positive constant C independent
of A such that

IVwallze* (2,) < CllAwa||L2(0y), (12)
(13)
| D?w | o) < CllAwa||Le(ay)- (14)

| (w
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By the L? regularity theorem, we have

|D?vAll Lo () < |loallwze(@) < CllAvA||Lr()

where C'is a positive constant independent of \. It asserts (14) immediately. Let
B be a ball with @ CC B. By the extension theorem (cf. [6, Theorem 7.25)),
there is a bounded linear operator E from W2?" (Q2) to W2*" (B) such that Fu = u
on 2. This and Sobolev’s inequality assert

”VUA”LP‘(Q) < HVEUA“LP‘(B)) < C”EU«\“W:-P(B)) < C”'U)‘“Wz,}’(ﬂ))
where C is a positive constant independent of A\. So we have
VoAl e () < CllAva|Le(e)-

We can easily check that this inequality asserts (12). Noting vy > 0 and vy €
W, (), Sobolev’s inequality asserts

[(vx = D+llze@) < lloalle 9y < ClIVUallLee)

where C' is a positive constant independent of A. It means (13) and completes
the proof of this claim.
Using (13) with p = 2 and (11), we have

|(wx = 1)4llg2e(a,) < C.

This and the interpolation theorem assert

|| (wx — 1)+”Lq(9,\) <C.

for 2 < g < 2n/(n — 2) where C is a positive constant independent of ) and g.
Noting —Awy = (wy—1)4, if 2n/(n—4) > 0 then using (12) with p = 2n/(n—2),
if 2n/(n — 4) < 0 then using (12) with p = 2 then we obtain

IVwallLs(a,) < C.

where C' is a positive constant independent of A and ¢ for 2 < ¢ < 2n/(n —4) or
2 < g <2n/(n — 2) with 2n/(n — 4) < 0. After finite iteration, we have

lwallwzay) < C

where C is a positive constant independent of A and ¢ Here 2 < ¢ < ¢ :=
2n/(n — 2k) and k satisfies 2n/(n — 2k) > 0 > 2n/(n — 2k — 2). It means
1/¢—1/n < 0 and ¢’ < n. Take p with p < n and p is sufficiently close to n.
Then (12) and (13) assert

lwallwrea,y < C



for ¢ > n. By using (14), we have

lwallwze@y < C

for some ¢ > n. The definition of 2, and the assumption of J0f2 assert that there
exists a constant 7 > 0 such that for any z € Q,, there is a ball B with radius

r satisfying z € B € Q. By Morrey’s inequality, the extension theorem, we have
wy € C?*(Q,) and

lwallcrasy < Cllwallwzeey < Cllwallwzaa,)-

where « is a constant in (0,1) and C is a constant independent of A, z. Con-
sequently, ||wx|lcr.(q,) is a uniformly bounded. Moreover, Schauder’s regularity
theorem asserts wy, € C?%(f2,) and w is a classical solution. O

Lemma 3.3. 1
distAz(z,,09) =

holds. Especially, it holds that limy_,o 2x = R™ as A — oo.

Proof. If not, there exists a subsequence {);}%2, and a positive constant C' such

that dist(z,,, 69))\;/ 2 < C. By passing to a subsequence if necessary, we may
assume there exists € [0, c0) such that

lim X;/*dist(zy,;, 0Q) = 6
j—o0

If § = 0, take £, € 9 with dist(z,, 0N) = dist(zy, Zx). Put §x := (Zr— T))AZ.
By Oj, C Q) and the mean value theorem, there exists # € (0,1) such that

U - Vwa(09x) = wa(§r) — wa(0) = —wx(0)
We can apply Lemma 3.2 to obtain

< walw)] < [l [Vwa(03x)]
< Adist(zy, 89) [Vwy (89)] < CAY2dist(z,, 09),
for some constant C. This is a contradiction.

If § # 0, by using a rotation and a translation of coordinates, we can assume
zy; = O and limj_,o 2, = R}, := {z € R*; z, > —3d} because of smoothness of
8Q. By Lemma 3.2 and C%* (B) is compactly imbeded to C*(B) if 0 < ¢/ < «
for any ball B, by passmg to a subsequence if necessary, there is a w € C** (R%,)
such that

1,0
wy, #w  in G (RE,)-
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Moreover, we can apply the interior Schauder estimate to obtain

wy, = w in Cf(;f(R3‘+)

and w € C**(R™) by passing to a subsequence if necessary. By equation, we
have Aw + (w — 1); = 0 in R},, w(0) > 1 and Vw(0) = 0. Denote by wy,
the extension of w; then we can easily to see ||w;||co1mn) = l[wa;llcor(a,;) and
Wy, — @ in LS (R"). It mean w = 0 on R}, . Consequently, w satisfies

Aw+ (w—-1); =0 in R},
w=0 on Ry, .

By using global Schauder estimate, we can find w € C*(R},). The definition of
w and the uniform estimate for w),; assert

/ |Vwo|? dy < oo, (wp — 1)+ dy < o0.
Rn

3 R,

By Esteban-Lions’s result [4], w must be the tribial solution i.e. wy =0 in Rj,.
It contradicts to w(O) > 1. O

Based on Lemma 3.3, we can approximate the solution uy by using the ground
state when A is sufficiently large.

Lemma 3.4. Let =, be a local minimal point of uy. Then
wy = wy in C2 (R™)
holds as A — oc.

Proof. By Lemma 3.3, lim;_, 2); = R". Using similar argument in Lemma 3.3,
by passing to a subsequence if necessary, there exists w € C?(f2) such that

lim wy, =w in C(R"). (15)

j—ro0
Here, w is a solution of

Aw+ (w—1)y =0in R",
Vw(0) =0

and ||w||coagrn) < 00, ||lw|lwis@n) < co. Obviously, it mean limy o w(y) = 0.
By Lemma 2.1, such w is unique. Hence w = wy. So we obtain

wy, Hwp in Ch (R™). (16)



Finally, we show (3.4). If not, there exists a subsequence {};}%2; of A — oo,
€ > 0 and R > 0 such that

”’w)\j — ’l.Uo“c2(BR) > €.

By the above argument asserts (16) by passing to a subsequence if necessary. It
contradicts to the assumption. Hence (3.4) was proved. O

Now, we can prove the following proposition.
Proposition 3.5. uy has only one local minimal point if ) is sufficiently large.

Proof. If not, then there exists a subsequence {);}?2; of A = oo such that u,;
have two maximal points z,; and Zy;. Define 6y, := |a:,\j —5:,\,.|)\]1-/2. Then,
by passing to a subsequence if necessary, there exists § € [0,00] such that
limj_m 5,\_7. =4.

First, consider the case § € (0,00). Define 4y, = (&), — x,\j)/\;/ 2. Then
Vuwy, (0) = 0, Vs, (§ix;) = 0. Since lim;_,o |§;| = 9, by passing to a subsequence
if necessary, we may assume lim;_,o, §5; = o and §o = 6. By Lemma 3.4, we may
assume wy, — wo in CZ (R™). So Vwg(f) = 0 and it contradicts to Lemma 2.1.

Next, consider the case § = 0. Let R), be the rotation of coordinates so
that i, = (9,10, .- ,0) and we define wy;(y) = (ux; (T') — ux,(z))/u», (T) where
¥y = Ry;(z — z»;)/j, and Qy; = Ry, (Q — z);)/);. In a similar way to the proof
of Lemma 3.4, we have

wy, Hwp  in CL(R™) (j — 00).

Since Vwy;(0) = Vwy, (§ir;) = 0and §; = (§,,1,0, .. .,0), there exists 8, € (0,1)

such that 5 0) -5 B
0= lwA_,'( ~— lwAj (yz\_,') — afwhj (0]!7/\,)
ij 1
Since 6 = 0, we have lim;_, §; = 0, and hence 87w, (O) = 0. Since wy is radially
symmetric about the origin, it follows 82wy(0) = 0 (i = 1,2,...,n), and hence

Awp(0) = 0. Since Awg(O) + (wp(0) — 1)+ = 0, it follows we(O) < 1 and which
contradicts to Lemma 2.1. .
Finally, we consider the case § = co. Fix R > 0, then B(z»;,A;*R) N

B(Z»;, /\;%R) = 0 holds for sufficiently large j. We define
Wy, (y) = (uz\j (P) — Uy (/\_1/2’!/ + zz\j))/uz\j (F)’
wt\j (y) = (u/\j (F) — Uy (’\_l/2y + iAj))/uAj (P)
From Lemma 3.4, we have

— Wy in Cl%c(Rn)3
— Wy in Clic(Rn)

w,\j
By,
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as A — oo where wy is the unique solution to Awy + (wp — 1)+ = 0in R*. On
the other hand, using (8) and the definition of w), we have

Tuy, () = / Vs, [? — (wn, — 1)2 dyA~"".

Q)‘j

It follows from (7) that
[ vy = [ o= 1wdy= [ =13+ (- D
,Q).j ij - QAJ.

So we have

Fu (TN = [ (un, =Dy
Q)‘j

Noting the definition of w,;, we have

[ s, = Dsdy+ [ @y, -y < TuptaT
Bp Br

Taking A — oo and using Proposition 3.1, we obtain

) 2 ('U)g - 1)+ d’y _<_ kg.
Br

IfR> )\}/ 2 Corollary 2.2 asserts that the left hand side equals to 2ko-and it is
contradiction. O

The following proposition completes the proof of Theorem A.

1 i
Proposition 3.6. maxxepplx\%h: — x| — /\fl — 0 as A — oo. Furthermore the
free-boundary 09, is of class C? and the plasma §Q, is strictly convez if A is
sufficiently large.

Proof. ), has only one component if X is sufficiently large, because each compo-
nent has a maximal point and u, has only one maximal point if A is large. By
Lemma 2.1, wo(y) is radially symmetric and strictly decreasing, and hence there
are unique s and ¢ such that s > 1 >t and

B, = {y € R*wo(y) > s} C By C {y € R*|wo(y) > t} = Br.
By Lemma 3.4, we obtain

wy, = wp in Cﬁ)c(R”)



as A — 0o. Since Bp C Q, if ) is large,
Wy — Wy in C2(—B§) (17)
as A — o0o. So, if A is large, then |wy — wp| < min{s — 1,1 — ¢} /2 and

1 t+1 . .
3; >1 in B,, w,\<——+—<1 in Bg.

2
Since €, has only one component,

wy >

B, C {y € Qxlw,\(y) > 1} C Bg.
Hence B(z, \~Y2r) C Q, C B(zx, A"/2R) holds if A is sufficiently large. It mean

1
maxlz\%lx—x,\l—/\fl -0 as\— oo
z€lp

Next, we show that 0, is of class C? if ) is large. Since wj(s) < 0 on (0, 00),
there exists a > 0 such that

[Vwo(y)l = |wy(lyl)l > @  in Br\ B,.

As (17), ||[Vwo| — |Vws|| < a/2 in Bg if X is large. So we have |Vuw,| > a/2
in Br \ B;. Especially Vw, # 0 on 8Q,. Since w, is of class C?, the implicit
function theorem asserts that 9, is of class C? if ) is sufficiently large.

Finally, we show that Q, is strictly convex if A is sufficiently large. As above,
Q) C Bp for all small A and

wy, > wp in C*(Bpg) (18)

as A — 0o. On the other hand, the principal curvature of 8, is determined by
D?w,. Consequently, Q, is strictly convex for sufficiently small A because of the
strict positivity of D?w,. O

4 Proof of Theorem B

To prove Theorem B, we need precisely lower estimate for Ej[uy]. The argument
of the proof of Theorem B is dependent on Flucher and Wei [5]. To estimate
E)[uy], we need the following two lemmas.

Lemma 4.1.

: hz)‘ — ; o .
Il‘l_l’)I‘lJ Hoy) 1 inC (le\i/z).

In particular, \="T h,, = A" 4(z5)(1 + 0(1)) as A = oo and hz, /t(z)) is
uniformly bounded on B”i/z for sufficiently large .
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We can obtain this Lemma by using similar argument as [1, p196]
Lemma 4.2. Suppose ¢ > n/(n —2) and R > 0. We define the operator L by
Lv:=Av+xpv forve WHR") NWHARM).
Then ker L = span{d,wy, . .., O,wo} holds.
For the proof of this lemma, see Appendix.
Lemma 4.3. We have the following formuld for wy as A — oo:
Wx — Wrg, — (koA "T (wo 4+ 0(1)) =0 in R™. (19)
Proof. Define ¢, by
t(x,\)kox\_"T_quA =W\ — Wxg, — t(x,\)kox\“n—;gwo.
Then

t(.’l;‘)‘)ko/\_nT_zAQSA = ('on - 1)+ - (w,\ - 1)+ + t(.’l')‘)ko/\_nT_z(’wO - 1)+

So we have
t(z2)ko AT |Ad|
n—2
< [(wo = 1)+ — (wx — )| + t(za)koA™ 2 (wo — 1)+
< |wo — wa| + t(za) koA "T (wo — 1)
= |koA™"T hg, — t(z2) koA "T wo — t(zx)koA " T |
+H(2x) koA T (wo — 1),
Hence B
<=2 —wp - -1 in R™.
lga] < 1) wo — @x| + (wo — 1)+ in

Since wy — wp in CZ (R™), for any € > 0, if ) is sufficiently large, we have
wy > 1l,wg > 1 on Rg_. and

t(za)koA™"T Ay = wo — wx + (T2 koA~ "7 (wp — 1)

Hence, we obtain

Ady = (t?_:fj —1) —¢» in Bg_,
A¢A = 0 in R‘n \ BR+5.
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To show ||@»||z=(rn) is bounded as A — oo, we suppose ||@x ||z @n) — oo for some
subsequence. Define 1) by 95 = ¢)/||da|lL~®~). Then 9, satisfies the following
properties:

A < C in R",
Ay = (t’(l;,\) )/||¢A|IL°°(R") — Yy in Bg_,
Ar=0 in R"\ Bare.

Furthermore, The support of v, is bounded for each A. By the maximum princi-
ple, we obtain

l¥a] < clyl*™

for some positive constant ¢ which is independent of A\. And the maximal point
of 9, is contained in Bg,. because of 9, is harmonic in R" \ Bg,.. The standard
elliptic estimate and Ascoli-Arzela’s Theorem assert

Yr— 1P in C**(R") as A — oo

loc

by passing to a subsequence if necessary. Here, v is a solution of

Ao = —p in Bp,
Ao =0 in R™ \ Bpg,
[v(y)| < cly*™ in R™

So we obtain ¥y € W24(R") for some ¢ > n/(n — 2) and 9 € ker L. It follows
from Lemma 4.2 that

n
Yo = E a;0jwo
i=1

for some a = (a;,...,a,) € R™. It follows from 0;;we(0) = &;;wg (0) that Vo (0) =
wy(0)a. On the other hand,

Wo — Wrzy, — ko/\ = (x,\)_ hz, — t(z)
koA~ T24(z;) t(x»)

is uniformly bounded on B and
A(wy — wy z, — ko)\'"T_zt(z;‘))) =0 inR".

By the interior Schauder estimates, we have

l Wo — Wrgz, — ko/\_nT—zt(.'II,\)
koz\_nT_zt(x)‘)

t(x,\)
<oz, o
lcm(BR) t(zy) L°°(Bn) @




because of Lemma 4.1. Especially, we obtain
koA—Tt(l' )‘)
as A = oo. Using Vuwyp(0) = Vw,(0) = 0 and the definition of ¢,, we have

[V$A(0)] = o(1).

as A — oo. Especially, V1,(0) = o(1) as A — co. Hence we obtain 9 = 0. It
means ¥, — 0 in CZ_(R™) and contradicts to ||¢x||L=(s,,.) = 1. Consequently,
@) is uniformly bounded as A — oc.

Finally we show ||@)|lz~®~) = o(1) as A — oo. If not, we can assume
|#all L (rm) = c+0(1) as A — oo for some ¢ > 0 by taking a subsequence if neces-
sary. Noting h,, /t(z)) — 1 = o(1) as A = oo by Lemma 4.1, the above argument
with 9, = ¢, asserts ¢y — 0 in CZ (R™). It contradicts to ||¢x||Lemn) = c+0o(1)
as A — o0o. a

Proposition 4.4 (Lower estimate). F)[uy]| has the following asymptotic for-
mula as A = oo:

I2)\

Exuy] = { 1+ kot(z)A™"T + o(t(za) A~ 7))}

Proof. For the global minimizer uy, put wx = (ux(T') — u»)/ua(T) then we have
Wy = Wy — ko/\—n_gghxk + t(x)‘)ko)\—nT_z(’wo + 0(1))

because of Lemma 4.3. It follows from E}[u,] = 0 that Ey[uy] = —Iux([')/2 and
we have

= /Q(u,\ dz = A" 2uy(T) A (wy — 1)+ dy.
So we obtain
I7]A " u(T) |
= {[ o= B Py +t(a) b0 w0 + o(1)) = D}
. _"T—z t(x )_ )\ -t
- {/m(wo — 1+ koX t(l',\)(;\(x—)\) +wo — 14 0(1)))+ dy}

= {0 02X Pt + D+ o0 Tt}

- {ko(kO/\”Tt(x,\) +1)+ o(A‘"_Zzt(x,\))}_l
= k{1 — koA "T t(zy) + oA T t(2y)) )

It completes the proof of this lemma. g

79



Proposition 4.5. It holds that

t(z)) @ mint(z) as A — oo.
zeN

Hence, limj_, o, dist(zy, ) = 0.
This proposition completes the proof of Theorem B.

Proof. Combining Proposition 3.1 and Proposition 4.4, we have
koA~ "7 t(zx) (1 + 0(1)) < koA~ "7 min t(z)(1 + o(1)).

Taking A — oo, it follows mingeqt(z) < limsup,_, t(z)) < mingeqt(z). By
continuity of ¢(z) and the definition of Q, dist(zx,2s) = 0 holds and completes
the proof. - a

5 Appendix

In this section, we give the proof of Lemma 4.2.

Proof of Lemma 4.2. For any ¢ € C°(R"), we have 0,4 € C{°(R") and

V’on61¢ - (’u}o - 1)+61¢d$ =0.
R»

As wo(z) = C|z|*™" on R" \ Bg, we obtain wy € H? and

—V(ale)V¢ + XBRal’(Uo¢ dr =0
Rﬁ

for any ¢ € C°(R"). It means LA,wp = 0. Similarly, we have LOywo = 0 for
1 <k < nand ker L D span{d,wy,...,0,wo}-

Let ui be kth eigenvalue of —A on dB; and ¢, be kth eigenfunction which
orthonormalized in L2. It is well known that po = O,y = ++- = p, = n — 1,
Mk >n—1if k > n. Fix any v € ker L and define v; by

oi(r) = /a _o(r0)6u(6) d.

By v € ker L, v € W24(R™) and the standard elliptic regularity theorem, we have
v € CY*(R™")NC?**(BR)NC?>*(R™\ Bg). It asserts vx € C'([0,00))NC?((0, R))N
C?((R, 00)) N Hjz((0, 00)) and

vp+ 22y — S +v. =0 on (O,R),
o+ nT_I”;c - lﬁ.vk =0 on (R, 00), (20)
v,(0) = 0.
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We show vy = 0if k =0 or k > n+ 1. For k > n + 1, taking " 'wg as a test
function on (r;,72), one finds

n-—1

T2
[{v;w(,—k vkw{,+vk(wo—1)+}r"_l]m+(n—1—uk)/ vewpr™ 3 dz = 0. (21)
™ 1

In the case v; has a zero point on (0,00), we choose r; € (0,00) with v(r;) = 0.
If v(r;) = O then the uniqueness of ODE asserts vx = 0 on (0,00). If v'(r1) #0
then linearity asserts we can assume v'(r;) > 0. Put r, = sup{r € (0, 00);v(t) >
0 on (ry,t)}. If r, < 0o then we have vg(r1) = vk(r2) =0, vx > 0 on (r1,72) and
v'(ry) < 0. It contradicts to (21) since wy < 0 on (0,00) and px > n—1. If
ro = 00 then vg(r) > 0 on (r1,73). Since v is subharmonic on (max{r, R}, o0),
we have v (r)r"~2 = O(1) as r — oo. So we obtain (21) is a contradiction. In the
case vx has no zero point, by linearity we can assume v > 0 on (0,00). As above
we obtain vk(r)r" 2 = o(1) as r — oo. Taking r; = 0 and r; = oo then (21) is
a contradiction by vj(r;) = 0. Consequently we obtain vy = 0 if K > n — 1. For
k =0, (20) asserts that v, is a solution of

Avy+ xBrvo =0 in R™.

Taking (wo — 1)4 as a test function and integrating on B,, we have

Avg(wy — 1) — voAwedz =0
B.

by noting —Awgy = (wo — 1)+. Green’s Theorem asserts
[ o)) = 1)+ = vo(r)u(r) dS(e)

So we obtain v}(r)(we(r) — 1)4+ = vo(r)wp(r) if r > 0. Hence vo(R) = 0. Since v
is harmonic in R™ \ By and lim,_,, vo(r) = 0, we obtain v = 0 on (R, o0). By
uniqueness of the solution to ODE, we have v = 0 on (0,00). It completes the
proof of this lemma. O
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