Asymptotic Shape of a Solution for the Plasma Problem in Higher Dimension

都立大 理学研究科 柴田 将敬 (Masataka Shibata)

Department of Mathematics,

Tokyo Mertopolitan Univ.

1 Introduction and Main Theorem

In this paper, we consider a simple model of a confined plasma which is described by

$$\begin{cases} \Delta u - \lambda u_{-} = 0 & \text{in } \Omega, \\ u = u(\Gamma) & \text{on } \Gamma, \\ \int_{\Gamma} \frac{\partial u}{\partial \nu} dS(x) = I \end{cases}$$
 (1)

where Ω is a bounded domain in \mathbb{R}^n $(n \geq 3)$ with C^2 boundary Γ , $u_+ = \max\{u, 0\}$, $u = u_+ - u_-$, $u(\Gamma)$ is a unknown constant, λ and I are given positive parameters. In this paper, we denote by λ_i the *i*th eigenvalue of $-\Delta$ with Dirichlet zero boundary condition on Ω . For physical background of this problem, see [10], [11].

Many authors treat this problem (cf. [2] [3], [7], [8], [11], [12]). In the case $n \geq 2$, Temam [11, 12] showed that there exists a solution u of (1) if and only if $\lambda > 0$ and it holds that

$$u(\Gamma) > 0 \text{ if } \lambda > \lambda_1, \quad u(\Gamma) = 0 \text{ if } \lambda = \lambda_1, \quad u(\Gamma) < 0 \text{ if } \lambda < \lambda_1,$$

furthermore, if $0 < \lambda < \lambda_2$ then (1) has unique solution.

If $\lambda > \lambda_1$, we can easily to obtain that $\{x \in \Omega; u(x) < 0\}$ is nonempty by using (1) and the maximum principle. In this case, the set

$$\Omega_p = \{ x \in \Omega; u(x) < 0 \}$$

is called the plasma set, and $\Gamma_p = \partial \Omega_p$ is called the free boundary. In [7, 8], they proved Γ_p is a simple closed analytic curve.

We consider this problem by using variational method. Put

$$W:=\{u\in H^1(\Omega); u\equiv ext{constant on }\Gamma\}, \quad X:=\{u\in W; \int_\Omega u_-=rac{I}{\lambda}\}$$

and we define energy functional E_{λ} on W by

$$E_{\lambda}[u] := rac{1}{2} \int_{\Omega} \left|
abla u
ight|^2 \, dx - rac{\lambda}{2} \int_{\Omega} u_{-}^2 \, dx - Iu(\Gamma).$$

Temam [12] showed that there is a global minimizer u_{λ} and u_{λ} is a weak solution of (1) i.e.

$$E_{\lambda}[u_{\lambda}] = \min_{u \in X} E_{\lambda}[u], \tag{2}$$

$$\int_{\Omega} \nabla u_{\lambda} \nabla v + (u_{\lambda})_{-} v \, dx = Iv(\Gamma) \tag{3}$$

for all $v \in W$. Hereafter, we denote by u_{λ} obtained in [12]. In [3], Caffarelli and Friedman consider the shape, size and location of Ω_p where λ increases to infinity in the case n=2. They proved that

diameter
$$(\Omega_p) < C\lambda^{-\frac{1}{2}}, \quad |\Omega_p| \ge C\lambda^{-1}$$

for some C > 0. Furthermore,

$$\max_{x \in \Gamma_p} |\lambda^{\frac{1}{2}}|x - x_{\lambda}| - R| \to 0 \quad \text{ if } \lambda \to \infty.$$

for suitable point x_{λ} and some R. It means the shape of Γ_p is approximated by a circle with center x_{λ} and radius $R\lambda^{-1/2}$. About the location of Γ_p , they showed that x_{λ} converges to a point which is called the harmonic center determined by the geometry of Ω . Moreover, they concerned the case n=3 but they proved only

$$|\Omega_p| < C\lambda^{-\frac{3}{2}}.$$

In this paper, we consider the case $n \geq 3$ and prove Caffarelli and Friedman's result is valid if $n \geq 3$. To prove our result, we need to approximate u_{λ} as $\lambda \to \infty$. For it, the following limiting problem is very important.

$$\begin{cases} \Delta w_0 + (w_0 - 1)_+ = 0, & w_0 > 0 \\ \nabla w_0(0) = 0, & \lim_{|y| \to \infty} w_0(y) = 0. \end{cases}$$
 in \mathbb{R}^n ,

This equation has a unique solution w_0 (see Lemma 2.1). Now we state Theorem A.

Theorem A. Suppose u_{λ} a solution of (1) obtained in Temam [12] then

- (i) There exists a constant $\lambda_0 > 0$ such that u_{λ} has only one local maximal point x_{λ} in Ω if λ is sufficiently large.
- (ii) u_{λ} is approximated by w_0 in the following sense:

$$w_{\lambda}(y) = \frac{u_{\lambda}(\Gamma) - u_{\lambda}(x)}{u_{\lambda}(\Gamma)} \to w_0(y) \quad \text{in } C^2_{\mathrm{loc}}(\mathbf{R}^n) \cap L^{\infty}(\mathbf{R}^n) \text{ as } \lambda \to \infty$$

where
$$y = \lambda^{\frac{1}{2}}(x - x_{\lambda})$$
.

(iii) $\max_{x \in \Gamma_p} \left| \lambda^{\frac{1}{2}} | x - x_{\lambda}| - \lambda^{\frac{1}{2}}_{1} \right| \to 0$ as $\lambda \to \infty$. Furthermore the free-boundary $\partial \Omega_p$ is of class C^2 and the plasma λ_p is strictly convex.

In Theorem A, one find the plasma set Γ_p is approximately a ball with center x_{λ} and radius $\lambda_1^{1/2}\lambda^{-1/2}$. Next, we state Theorem B about the location of x_{λ} . To state Theorem B, the geometry of Ω , namely the Robin function for Ω , plays an important role. The Robin function is defined by

$$t(x) := H_x(x),$$

where $H_x(y)$ is a solution of

$$\begin{cases} \Delta_y H_x(y) = 0 & \text{in } \Omega, \\ H_x(y) = (n-2)^{-1} \left| \partial B_1 \right|^{-1} \left| x - y \right|^{2-n} & \text{on } \partial \Omega. \end{cases}$$

Here B_1 is a ball with radius 1. It is well-known that the Robin function t(x) is a positive continuous function with $t(x) \to \infty$ as $x \to \partial \Omega$. A minimal point of t(x) is called a harmonic center. So there exists at least one harmonic center for any bounded domain Ω . For the details of the harmonic center, see e.g. [1]. We denote by Ω_h the set of all harmonic center i.e.

$$\Omega_h = \{x \in \Omega; x \text{ is a harmonic center}\}.$$

Now we state Theorem B.

Theorem B. In addition to Theorem A, the following properties holds:

- (i) $\lim_{\lambda \to \infty} \operatorname{dist}(x_{\lambda}, \Omega_h) = 0$.
- (ii) The energy $E_{\lambda}[u_{\lambda}]$ has the following asymptotic formula:

$$E_{\lambda}[u_{\lambda}] = rac{I^2 \lambda^{rac{n-2}{2}}}{k_0} \Big\{ -1 + k_0 \lambda^{-rac{n-2}{2}} \min_{x \in \Omega} t(x) + o(\lambda^{-rac{n-2}{2}}) \Big\}$$

where k_0 is a positive constant defined by $k_0 = (n-2)|\partial B_1|\lambda_1^{\frac{n-2}{2}}$.

In Section 2, we define $w_{\lambda,z}$ for approximate the solution and we note the properties of w_0 and $w_{\lambda,z}$. In Section 3 and Section 4, we give the proof of Theorem A and B. In Section 5, we give the proof of Lemma 4.2 which is used in Section 4 for the proof of Theorem B.

2 Preliminaries

In this section, we define $w_{\lambda,z}$ and note the properties of w_0 , $w_{\lambda,z}$. w_0 , $w_{\lambda,z}$ will be use in Section 3 and Section 4 for approximation of the solution.

Lemma 2.1. There is a unique solution in $C^2(\mathbb{R}^n)$ for

$$\begin{cases} \Delta w_0(y) + (w_0(y) - 1)_+ = 0, & w(y) > 0 \quad \text{in } \mathbf{R}^n, \\ \nabla w_0(0) = 0, & \lim_{|y| \to \infty} w_0(y) = 0. \end{cases}$$
(4)

Moreover, w_0 has the following formula.

$$w_0(y) = \begin{cases} \lambda_1^{\frac{n-2}{2}} |y|^{2-n} & \text{if } |x| > \lambda_1^{\frac{1}{2}}, \\ \phi_1(\lambda_1^{-\frac{1}{2}} y) + 1 & \text{if } |x| \le \lambda_1^{\frac{1}{2}}. \end{cases}$$
 (5)

Here ϕ_1 is a first eigenfunction of $-\Delta$ on B_1 which satisfies $|\nabla \phi_1| = n-2$ on ∂B_1 .

Proof. First, we show uniqueness of the solution. If $w_0 \in C^2(\mathbf{R}^n)$ is a solution, by [9, Theorem 2], we obtain u(y) = u(r) for r = |y| and u'(r) < 0 if r > 0. So there is an unique positive constant R with u(R) = 1. Since u(r) < 1 if r > R, we have $-\Delta u = 0$ in $\mathbf{R}^n \setminus \overline{B_R}$. It follows from (4) that $u(x) = c|x|^{2-n}$ on $\mathbf{R}^n \setminus \overline{B_R}$ for some positive constant c. Since u(R) = 1, we have $c = R^{n-2}$. We define v by $v(x) = w_0(y) - 1$ for y = Rx. Then we have

$$\Delta v(x) = \Delta_x w_0(Rx) = R^2 \Delta w_0(Rx) = -R^2(w_0 - 1) = -R^2 v$$

if $x \in B_1$ and v = 0 if $x \in \partial B_1$. It mean v is first eigenfunction of $-\Delta$ on B_1 with Dirichlet zero boundary condition and R^2 is its first eigenvalue. Hence, $R = \lambda_1^{\frac{1}{2}}$. Since w_0' is continuous, we have

$$\frac{2-n}{R} = w_0'(R) = \frac{v'(1)}{R}.$$

Such v is unique and we get $v \equiv \phi_1$. Consequently, w_0 is a unique solution.

On the other hand, w_0 defined by (5) is a C^2 solution of (4). It completes the proof of this lemma.

It follows from 2.1 that the following corollary.

Corollary 2.2.

$$\int_{\mathbf{R}^n} (w_0 - 1)_+ \, dy = k_0 = (n - 2) |\partial B_1| \lambda_1^{\frac{n-2}{2}}.$$

For $\lambda > 0$, $z \in \Omega$, we denote by $w_{\lambda,z}$ the unique solution of

$$\begin{cases} \Delta w_{\lambda,z} + (w_0 - 1)_+ = 0 & \text{in } \Omega_{\lambda,z}, \\ w_{\lambda,z} = 0 & \text{on } \Omega_{\lambda,z} \end{cases}$$

where $\Omega_{\lambda,z} = \lambda^{\frac{1}{2}}(\Omega - z)$, and we define h_z by $h_z(y) = H_z(\lambda^{-\frac{1}{2}}y + z)$.

Lemma 2.3. For $w_{\lambda,z}$, the following properties hold:

- (i) $w_0 > w_{\lambda,z}$.
- (ii) $w_0(y) = w_{\lambda,z}(y) + k_0 \lambda^{-\frac{n-2}{2}} h_z(y)$ if $B_{\lambda_1^{1/2}} \subset \Omega_{\lambda,z}$.
- (iii) $h_z(y) \to t(z)$ in $L_{loc}^{\infty}(\mathbf{R}^n)$ as $\lambda \to \infty$.

(iv)
$$w_{\lambda,z}(y) = w_0(y) - k_0 \lambda^{-\frac{n-2}{2}} (t(z) + o(1))$$
 as $\lambda \to \infty$ in $L^{\infty}_{loc}(\mathbf{R}^n)$.

Remark that Lemma 2.3 (iii) may be not valid if $z \in \Omega$ is depend on λ since $t(x) \notin C(\overline{\Omega})$.

Proof of Lemma 2.3. By the equation and Lemma 2.1, $w(y) := w_0(y) - w_{\lambda,z}(y)$ satisfies

$$\begin{cases} \Delta w(y) = 0 & \text{in } \Omega_{\lambda,z}, \\ w(y) = w_0(y) = \lambda_1^{\frac{n-2}{2}} |y|^{2-n} & \text{on } \partial \Omega_{\lambda_z} \end{cases}$$

if $|y| \geq \lambda_1^{\frac{1}{2}}$. By the definition of h_z , we find

$$\begin{cases} \Delta h_z(y) = 0 & \text{in } \Omega_{\lambda,z}, \\ h_z(y) = (n-2)^{-1} |B_1|^{-1} |y|^{2-n} \lambda^{\frac{n-2}{2}} & \text{on } \partial \Omega_{\lambda,z}. \end{cases}$$

Consequently, (ii) holds. It follows from (ii) and $h_z > 0$ that (i) holds. (iii) is clear because of H_z is continuous. (ii),(iii) mean (iv).

3 Proof of Theorem A

Proposition 3.1. Let u_{λ} be a global minimizer, then the following asymptotic formula holds as $\lambda \to \infty$.

$$E_{\lambda}[u_{\lambda}] \leq \frac{I^{2}\lambda^{\frac{n-2}{2}}}{2k_{0}} \{-1 + k_{0}\lambda^{-\frac{n-2}{2}} \min_{x \in \Omega} t(x) + o(\lambda^{-\frac{n-2}{2}})\}$$

Here k_0 is a positive constant defined by $k_0 = (n-2)|\partial B_1|\lambda_1^{\frac{n-2}{2}}$.

Remark. To prove Theorem A, The second order term is not necessary.

Proof. Take $z \in \Omega$ with $t(z) = \min_{x \in \Omega} t(x)$. Then there is a large constant β such that $B_{\lambda_1^{1/2}} \subset \Omega_{\lambda,z}$ if $\lambda > \beta$. We define v by $v(x) = c(1 - w_{\lambda,z}(y))$ where $y = \lambda^{1/2}(x-z)$. Here, we choose c which satisfies $\int_{\Omega} v_{-} dx = \frac{I}{\lambda}$. Then we have

$$I\lambda^{\frac{n-2}{2}} = c \int_{\Omega_{\lambda,z}} (w_0 - 1 - k_0 \lambda^{-\frac{n-2}{2}} h_z)_+ dy$$

$$= c \int_{\{w_0(y) > 1\}} (w_0 - 1) - k_0 \lambda^{-\frac{n-2}{2}} t(z) dy + o(\lambda^{-\frac{n-2}{2}})$$

$$= c \left(k_0 - k_0 \lambda^{-\frac{n-2}{2}} |B_{\lambda_1^{1/2}}| t(z) + o(\lambda^{-\frac{n-2}{2}})\right)$$

because of Corollary 2.2. So we obtain

$$c = \frac{I\lambda^{\frac{n-2}{2}}}{k_0} \left(1 + \lambda^{-\frac{n-2}{2}} |B_{\lambda_1^{1/2}}| t(z) + o(\lambda^{-\frac{n-2}{2}}) \right).$$
 (6)

Using $\Delta v(x) = -\lambda c \Delta w_{\lambda,z}(y) = \lambda c(w_0(y) - 1)_+$, we obtain

$$\int_{\Omega} |\nabla v|^2 dx = \int_{\Omega} \nabla (v \nabla v) dx - \int_{\Omega} v \Delta v dx
= \int_{c} \nabla v \nu dS(x) - \int_{\Omega} v \Delta v dx = c \int_{\Omega} \Delta v dx - \int_{\Omega} v \Delta v dx
= \int_{\Omega} (c - v) \Delta v dx = c^2 \lambda^{-\frac{n-2}{2}} \int_{\Omega_{\lambda}} (w_0 - 1)_{+} w_{\lambda, z} dy,
\lambda \int_{\Omega} v_{-}^2 dx = c^2 \lambda^{-\frac{n-2}{2}} \int_{\Omega_{\lambda}} (w_{\lambda, z} - 1)^2 dy
= c^2 \lambda^{-\frac{n-2}{2}} \int_{\Omega_{\lambda}} (w_{\lambda, z} - 1)_{+} w_{\lambda, z} dy - cI.$$

So we have

$$E_{\lambda}[v] = \frac{c^2 \lambda^{-\frac{n-2}{2}}}{2} \left\{ \int_{\Omega_{\lambda}} (w_0 - 1)_+ w_{\lambda,z} - (w_{\lambda,z} - 1)_+ w_{\lambda,z} \right\} dy - \frac{Ic}{2}.$$

Noting $w_{\lambda,z} < w_0$ and

$$\left| \int_{\{w_{\lambda,z} < 1 < w_0\}} w_{\lambda,z} - 1 \right| \leq \int_{\{w_{\lambda,z} < 1 < w_0\}} \left| w_{\lambda,z} - w_0 \right| dy = o(\lambda^{-\frac{n-2}{2}}),$$

we obtain

$$E_{\lambda}[v] = \frac{c^{2}\lambda^{-\frac{n-2}{2}}}{2} \left\{ \int_{\{w_{0}>1\}} (w_{0} - 1 - w_{\lambda,z} + 1) w_{\lambda,z} \, dy + o(\lambda^{-\frac{n-2}{2}}) \right\} - \frac{Ic}{2}$$

$$= \frac{c^{2}\lambda^{-\frac{n-2}{2}}}{2} \left\{ \int_{\{w_{0}>1\}} \lambda^{-\frac{n-2}{2}} k_{0}t(z) w_{0} \, dy + o(\lambda^{-\frac{n-2}{2}}) \right\} - \frac{Ic}{2}.$$

Using (6) and
$$c^2 = I^2 \lambda^{n-2} k_0^{-2} (1 + o(1)),$$

$$E_{\lambda}[v] = \frac{I^2}{2k_0} \Big\{ \int_{\{w_0 > 1\}} t(z) w_0 \, dy + o(1) \Big\} - \frac{Ic}{2}$$

$$= \frac{I^2}{2k_0} \Big\{ \int_{\{w_0 > 1\}} t(z) (w_0 - 1 + 1) \, dy + o(1) \Big\}$$

$$- \frac{I^2}{2k_0} \Big(\lambda^{\frac{n-2}{2}} + |B_{\lambda_1^{1/2}}| t(z) + o(1) \Big)$$

$$= \frac{I^2}{2k_0} \Big\{ k_0 t(z) + t(z) |B_{\lambda_1^{1/2}}| - \lambda^{\frac{n-2}{2}} - |B_{\lambda_1^{1/2}}| t(z) + o(1) \Big\}$$

$$= \frac{I^2 \lambda^{\frac{n-2}{2}}}{2k_0} \Big\{ -1 + k_0 \lambda^{-\frac{n-2}{2}} t(z) + o(\lambda^{-\frac{n-2}{2}}) \Big\}$$

Hereafter, we denote by x_{λ} a local minimal point of u_{λ} in Ω for each $\lambda > 0$ and define w_{λ} and Ω_{λ} by $\Omega_{\lambda} = \lambda^{\frac{1}{2}}(\Omega - x_{\lambda})$, $w_{\lambda}(y) = (u_{\lambda}(\Gamma) - u_{\lambda}(x))/u_{\lambda}(\Gamma)$ where $y = \lambda^{\frac{1}{2}}(x - x_{\lambda})$. Then w_{λ} is a solution of

$$\begin{cases} \Delta w_{\lambda} + (w_{\lambda} - 1)_{+} = 0, & w_{\lambda} > 0, & \text{in } \Omega_{\lambda}, \\ w_{\lambda} = 0 & \text{on } \Omega_{\lambda}. \end{cases}$$
 (7)

Using the maximum principle, we find $w_{\lambda}(y) > 1$ if y is a local maximal point of w_{λ} .

Lemma 3.2. Suppose $\lambda > \lambda_1$. Then $\|w_{\lambda}\|_{C^{1,\alpha}(\Omega_{\lambda})}$ and $\|w_{\lambda}\|_{W^{2,p}(\Omega_{\lambda})}$ is uniformly bounded with respect to λ where $\alpha > 0$ and $2 is some constant. Moreover, <math>w_{\lambda}$ is a classical solution.

Proof. By (3) we have

$$-\frac{Iu_{\lambda}(\Gamma)}{2} = E_{\lambda}[u_{\lambda}]. \tag{8}$$

Using Proposition 3.1, we obtain

$$u_{\lambda}(\Gamma) \ge \frac{I}{2k_0} \lambda^{-\frac{n-2}{2}} (1 + o(1)).$$
 (9)

as $\lambda \to \infty$. First, we show the following claim.

Claim.

$$\int_{\Omega_{\lambda}} (w_{\lambda} - 1)_+^2 dy \le C, \tag{10}$$

$$\int_{\Omega_{\lambda}} |\nabla w_{\lambda}|^2 \, dy \le C \tag{11}$$

where C is a positive constant independent of λ .

Suppose $\lambda > \lambda_1$ and define v_{λ} by $v_{\lambda}(x) = (u_{\lambda}(\Gamma) - u_{\lambda}(x))/u_{\lambda}(\Gamma)$. Noting that $u_{\lambda}(\Gamma) > 0$ and $v_{\lambda} \in W_0^{1,2}(\Omega)$, it follows from interpolation inequality, Sobolev's inequality and $u_{\lambda} \in X$ that

where $\theta = 2/(n+2)$, $2^* = 2n/(n-2)$ and C is a positive constant depend on n. By $E'[u_{\lambda}][(u_{\lambda})_{-}] = 0$, we have

$$\int_{\{u_{\lambda}<0\}} |\nabla u_{\lambda}|^2 dx = \int_{\Omega} (u_{\lambda})_{-}^2 dx, \quad \int_{\{v_{\lambda}<1\}} |\nabla v_{\lambda}|^2 dx = \int_{\Omega} (v_{\lambda}-1)_{+}^2 dx.$$

So we obtain

$$\|(v_{\lambda}-1)_{+}\|_{L^{2}(\Omega)} \leq \left(\frac{I}{\lambda u_{\lambda}(\Gamma)}\right)^{\theta} \|\lambda(v_{\lambda}-1)_{+}\|_{L^{2}(\Omega)}^{1-\theta}.$$

It follows from this inequality and (9) that

$$\left(\int_{\Omega} (v_{\lambda} - 1)_{+}^{2}\right)^{\frac{\theta}{2}} dx \leq C\lambda^{-\frac{n\theta}{2}}\lambda^{\frac{1-\theta}{2}} = C\lambda^{-\frac{n}{2(n+2)}}.$$

where C is a positive constant depend on I, n. Consequently,

$$\int_{\Omega} (v_{\lambda} - 1)_+^2 dx \le C\lambda^{-\frac{n}{2}}$$

holds and it means (10). By (8), (9) and (10), we have

$$\int_{\Omega} |\nabla v_{\lambda}|^2 dx = \frac{I}{u_{\lambda}(\Gamma)} + \int_{\Omega} \lambda (v_{\lambda} - 1)_+^2 dx \le C \lambda^{-\frac{n-2}{2}}.$$

It means (11) and this claim is valid.

Secondly, we show the following claim.

Claim. For $1 , there is a positive constant C independent of <math>\lambda$ such that

$$\|\nabla w_{\lambda}\|_{L^{p^{*}}(\Omega_{\lambda})} \le C\|\Delta w_{\lambda}\|_{L^{p}(\Omega_{\lambda})},\tag{12}$$

$$\|(w_{\lambda}-1)_{+}\|_{L^{p^{*}}(\Omega_{\lambda})} \leq C\|\nabla w_{\lambda}\|_{L^{p}(\Omega_{\lambda})},\tag{13}$$

$$||D^2 w_{\lambda}||_{L^p(\Omega_{\lambda})} \le C||\Delta w_{\lambda}||_{L^p(\Omega_{\lambda})}. \tag{14}$$

By the L^p regularity theorem, we have

$$||D^2v_{\lambda}||_{L^p(\Omega)} \le ||v_{\lambda}||_{W^{2,p}(\Omega)} \le C||\Delta v_{\lambda}||_{L^p(\Omega)}$$

where C is a positive constant independent of λ . It asserts (14) immediately. Let B be a ball with $\Omega \subset\subset B$. By the extension theorem (cf. [6, Theorem 7.25]), there is a bounded linear operator E from $W^{2,p^*}(\Omega)$ to $W^{2,p^*}_0(B)$ such that Eu=u on Ω . This and Sobolev's inequality assert

$$\|\nabla v_{\lambda}\|_{L^{p^*}(\Omega)} \le \|\nabla E v_{\lambda}\|_{L^{p^*}(B))} \le C\|E v_{\lambda}\|_{W_0^{2,p}(B))} \le C\|v_{\lambda}\|_{W^{2,p}(\Omega))}$$

where C is a positive constant independent of λ . So we have

$$\|\nabla v_{\lambda}\|_{L^{p^*}(\Omega)} \le C\|\Delta v_{\lambda}\|_{L^p(\Omega)}.$$

We can easily check that this inequality asserts (12). Noting $v_{\lambda} > 0$ and $v_{\lambda} \in W_0^{1,2}(\Omega)$, Sobolev's inequality asserts

$$||(v_{\lambda}-1)_{+}||_{L^{p^{*}}(\Omega)} \leq ||v_{\lambda}||_{L^{p^{*}}(\Omega)} \leq C||\nabla v_{\lambda}||_{L^{p}(\Omega)}$$

where C is a positive constant independent of λ . It means (13) and completes the proof of this claim.

Using (13) with p = 2 and (11), we have

$$||(w_{\lambda}-1)_{+}||_{L^{2^{*}}(\Omega_{\lambda})} \leq C.$$

This and the interpolation theorem assert

$$\|(w_{\lambda}-1)_{+}\|_{L^{q}(\Omega_{\lambda})}\leq C.$$

for $2 \le q \le 2n/(n-2)$ where C is a positive constant independent of λ and q. Noting $-\Delta w_{\lambda} = (w_{\lambda} - 1)_{+}$, if 2n/(n-4) > 0 then using (12) with p = 2n/(n-2), if $2n/(n-4) \le 0$ then using (12) with p = 2 then we obtain

$$\|\nabla w_{\lambda}\|_{L^{q}(\Omega_{\lambda})} \leq C.$$

where C is a positive constant independent of λ and q for $2 \le q \le 2n/(n-4)$ or $2 \le q \le 2n/(n-2)$ with $2n/(n-4) \le 0$. After finite iteration, we have

$$||w_{\lambda}||_{W^{2,q}(\Omega_{\lambda})} \leq C$$

where C is a positive constant independent of λ and q Here $2 \le q \le q' := 2n/(n-2k)$ and k satisfies $2n/(n-2k) > 0 \ge 2n/(n-2k-2)$. It means $1/q - 1/n \le 0$ and $q' \le n$. Take p with p < n and p is sufficiently close to n. Then (12) and (13) assert

$$||w_{\lambda}||_{W^{1,q}(\Omega_{\lambda})} \leq C$$

for q > n. By using (14), we have

$$||w_{\lambda}||_{W^{2,q}(\Omega_{\lambda})} \leq C$$

for some q > n. The definition of Ω_{λ} and the assumption of $\partial \Omega$ assert that there exists a constant r > 0 such that for any $x \in \Omega_{\lambda}$, there is a ball B with radius r satisfying $x \in B \in \Omega$. By Morrey's inequality, the extension theorem, we have $w_{\lambda} \in C^{2,\alpha}(\Omega_{\lambda})$ and

$$||w_{\lambda}||_{C^{1,\alpha}(B)} \le C||w_{\lambda}||_{W^{2,q}(B)} \le C||w_{\lambda}||_{W^{2,q}(\Omega_{\lambda})}.$$

where α is a constant in (0,1) and C is a constant independent of λ , x. Consequently, $\|w_{\lambda}\|_{C^{1,\alpha}(\Omega_{\lambda})}$ is a uniformly bounded. Moreover, Schauder's regularity theorem asserts $w_{\lambda} \in C^{2,\alpha}(\Omega_{\lambda})$ and w_{λ} is a classical solution.

Lemma 3.3.

$$\mathrm{dist}\lambda^{\frac{1}{2}}(x_{\lambda},\partial\Omega)=\infty$$

holds. Especially, it holds that $\lim_{\lambda\to\infty} \Omega_{\lambda} = \mathbb{R}^n$ as $\lambda\to\infty$.

Proof. If not, there exists a subsequence $\{\lambda_j\}_{j=1}^{\infty}$ and a positive constant C such that $\operatorname{dist}(x_{\lambda_j},\partial\Omega)\lambda_j^{1/2}\leq C$. By passing to a subsequence if necessary, we may assume there exists $\delta\in[0,\infty)$ such that

$$\lim_{j\to\infty}\lambda_j^{1/2}\mathrm{dist}(x_{\lambda_j},\partial\Omega)=\delta.$$

If $\delta = 0$, take $\hat{x}_{\lambda} \in \partial \Omega$ with $\operatorname{dist}(x_{\lambda}, \partial \Omega) = \operatorname{dist}(x_{\lambda}, \hat{x}_{\lambda})$. Put $\hat{y}_{\lambda} := (\hat{x}_{\lambda} - x_{\lambda})\lambda^{\frac{1}{2}}$. By $O\hat{y}_{\lambda} \subset \overline{\Omega}_{\lambda}$ and the mean value theorem, there exists $\theta \in (0, 1)$ such that

$$\hat{y}_{\lambda} \cdot \nabla w_{\lambda}(\theta \hat{y}_{\lambda}) = w_{\lambda}(\hat{y}_{\lambda}) - w_{\lambda}(O) = -w_{\lambda}(O)$$

We can apply Lemma 3.2 to obtain

$$1 \leq |w_{\lambda}(y_{\lambda})| \leq |\hat{y}_{\lambda}| |\nabla w_{\lambda}(\theta \hat{y}_{\lambda})|$$

$$\leq \lambda^{1/2} \operatorname{dist}(x_{\lambda}, \partial \Omega) |\nabla w_{\lambda}(\theta \hat{y}_{\lambda})| \leq C \lambda^{1/2} \operatorname{dist}(x_{\lambda}, \partial \Omega),$$

for some constant C. This is a contradiction.

If $\delta \neq 0$, by using a rotation and a translation of coordinates, we can assume $x_{\lambda_j} = O$ and $\lim_{j\to\infty} \Omega_{\lambda_j} = \mathbf{R}_{\delta+}^n := \{x \in \mathbf{R}^n; x_n > -\delta\}$ because of smoothness of $\partial\Omega$. By Lemma 3.2 and $C^{1,\alpha'}(B)$ is compactly imbeded to $C^{1,\alpha}(B)$ if $0 < \alpha' < \alpha$ for any ball B, by passing to a subsequence if necessary, there is a $w \in C^{1,\alpha'}(\mathbf{R}_{\delta+}^n)$ such that

$$w_{\lambda_j} \to w$$
 in $C^{1,\alpha'}_{loc}(\mathbf{R}^n_{\delta+})$.

Moreover, we can apply the interior Schauder estimate to obtain

$$w_{\lambda_j} \to w$$
 in $C^{2,\alpha}_{\mathrm{loc}}(\mathbf{R}^n_{\delta+})$

and $w \in C^{2,\lambda}(\mathbf{R}^n)$ by passing to a subsequence if necessary. By equation, we have $\Delta w + (w-1)_+ = 0$ in $\mathbf{R}^n_{\delta+}$, $w(0) \geq 1$ and $\nabla w(0) = 0$. Denote by \tilde{w}_{λ_j} the extension of w_{λ_j} then we can easily to see $\|\tilde{w}_{\lambda_j}\|_{C^{0,1}(\mathbf{R}^n)} = \|w_{\lambda_j}\|_{C^{0,1}(\Omega_{\lambda_j})}$ and $\tilde{w}_{\lambda_j} \to \tilde{w}$ in $L^{\infty}_{loc}(\mathbf{R}^n)$. It mean w = 0 on $\partial \mathbf{R}^n_{\delta+}$. Consequently, w satisfies

$$\begin{cases} \Delta w + (w-1)_{+} = 0 & \text{in } \mathbf{R}_{\delta+}^{n}, \\ w = 0 & \text{on } \mathbf{R}_{\delta+}^{n}. \end{cases}$$

By using global Schauder estimate, we can find $w \in C^2(\mathbf{R}_{\delta+}^n)$. The definition of w and the uniform estimate for w_{λ_j} assert

$$\int_{\mathbf{R}_{\delta+}^n} |\nabla w_0|^2 dy < \infty, \quad \int_{\mathbf{R}_{\delta+}^n} (w_0 - 1)_+ dy < \infty.$$

By Esteban-Lions's result [4], w must be the tribial solution i.e. $w_0 = 0$ in $\mathbf{R}_{\delta+}^n$. It contradicts to $w(O) \geq 1$.

Based on Lemma 3.3, we can approximate the solution u_{λ} by using the ground state when λ is sufficiently large.

Lemma 3.4. Let x_{λ} be a local minimal point of u_{λ} . Then

$$w_{\lambda} \to w_0$$
 in $C^2_{loc}(\mathbf{R}^n)$

holds as $\lambda \to \infty$.

Proof. By Lemma 3.3, $\lim_{j\to\infty} \Omega_{\lambda_j} = \mathbf{R}^n$. Using similar argument in Lemma 3.3, by passing to a subsequence if necessary, there exists $w \in C^2(\Omega)$ such that

$$\lim_{i \to \infty} w_{\lambda_j} = w \quad \text{in } C^2_{\text{loc}}(\mathbf{R}^n). \tag{15}$$

Here, w is a solution of

$$\begin{cases} \Delta w + (w-1)_+ = 0 \text{ in } \mathbf{R}^n, \\ \nabla w(0) = 0 \end{cases}$$

and $||w||_{C^{0,1}(\mathbf{R}^n)} < \infty$, $||w||_{W^{1,p}(\mathbf{R}^n)} < \infty$. Obviously, it mean $\lim_{|y|\to\infty} w(y) = 0$. By Lemma 2.1, such w is unique. Hence $w \equiv w_0$. So we obtain

$$w_{\lambda_j} \to w_0 \quad \text{in } C^2_{\text{loc}}(\mathbf{R}^n).$$
 (16)

Finally, we show (3.4). If not, there exists a subsequence $\{\lambda_j\}_{j=1}^{\infty}$ of $\lambda \to \infty$, $\epsilon > 0$ and R > 0 such that

$$||w_{\lambda_j}-w_0||_{C^2(B_R)}>\epsilon.$$

By the above argument asserts (16) by passing to a subsequence if necessary. It contradicts to the assumption. Hence (3.4) was proved.

Now, we can prove the following proposition.

Proposition 3.5. u_{λ} has only one local minimal point if λ is sufficiently large.

Proof. If not, then there exists a subsequence $\{\lambda_j\}_{j=1}^{\infty}$ of $\lambda \to \infty$ such that u_{λ_j} have two maximal points x_{λ_j} and \tilde{x}_{λ_j} . Define $\delta_{\lambda_j} := \left|x_{\lambda_j} - \tilde{x}_{\lambda_j}\right| \lambda_j^{1/2}$. Then, by passing to a subsequence if necessary, there exists $\delta \in [0, \infty]$ such that $\lim_{j \to \infty} \delta_{\lambda_j} = \delta$.

First, consider the case $\delta \in (0, \infty)$. Define $\tilde{y}_{\lambda_j} = (\tilde{x}_{\lambda_j} - x_{\lambda_j}) \lambda_j^{1/2}$. Then $\nabla w_{\lambda_j}(O) = 0$, $\nabla w_{\lambda_j}(\tilde{y}_{\lambda_j}) = 0$. Since $\lim_{j \to \infty} |\tilde{y}_{\lambda_j}| = \delta$, by passing to a subsequence if necessary, we may assume $\lim_{j \to \infty} \tilde{y}_{\lambda_j} = \tilde{y}_0$ and $\tilde{y}_0 = \delta$. By Lemma 3.4, we may assume $w_{\lambda_j} \to w_0$ in $C^2_{\text{loc}}(\mathbf{R}^n)$. So $\nabla w_0(\tilde{y}_0) = 0$ and it contradicts to Lemma 2.1.

Next, consider the case $\delta=0$. Let R_{λ_j} be the rotation of coordinates so that $\tilde{y}_{\lambda_j}=(\tilde{y}_{\lambda_j,1},0,\ldots,0)$ and we define $w_{\lambda_j}(y)=(u_{\lambda_j}(\Gamma)-u_{\lambda_j}(x))/u_{\lambda_j}(\Gamma)$ where $y=R_{\lambda_j}(x-x_{\lambda_j})/\lambda_j$, and $\Omega_{\lambda_j}=R_{\lambda_j}(\Omega-x_{\lambda_j})/\lambda_j$. In a similar way to the proof of Lemma 3.4, we have

$$w_{\lambda_i} \to w_0$$
 in $C^2_{loc}(\mathbf{R}^n)$ $(j \to \infty)$.

Since $\nabla w_{\lambda_j}(O) = \nabla w_{\lambda_j}(\tilde{y}_{\lambda_j}) = 0$ and $\tilde{y}_{\lambda_j} = (\tilde{y}_{\lambda_j,1}, 0, \dots, 0)$, there exists $\theta_j \in (0, 1)$ such that

$$0 = \frac{\partial_1 w_{\lambda_j}(O) - \partial_1 w_{\lambda_j}(\tilde{y}_{\lambda_j})}{\tilde{y}_{\lambda_j,1}} = \partial_1^2 w_{\lambda_j}(\theta_j \tilde{y}_{\lambda_j}).$$

Since $\delta = 0$, we have $\lim_{j\to\infty} \tilde{y}_{\lambda_j} = 0$, and hence $\partial_1^2 w_0(O) = 0$. Since w_0 is radially symmetric about the origin, it follows $\partial_i^2 w_0(O) = 0$ (i = 1, 2, ..., n), and hence $\Delta w_0(O) = 0$. Since $\Delta w_0(O) + (w_0(O) - 1)_+ = 0$, it follows $w_0(O) \leq 1$ and which contradicts to Lemma 2.1.

Finally, we consider the case $\delta = \infty$. Fix R > 0, then $B(x_{\lambda_j}, \lambda_j^{-\frac{1}{2}}R) \cap B(\tilde{x}_{\lambda_j}, \lambda_j^{-\frac{1}{2}}R) = \emptyset$ holds for sufficiently large j. We define

$$w_{\lambda_j}(y) = (u_{\lambda_j}(\Gamma) - u_{\lambda_j}(\lambda^{-1/2}y + x_{\lambda_j}))/u_{\lambda_j}(\Gamma),$$

$$\tilde{w}_{\lambda_j}(y) = (u_{\lambda_j}(\Gamma) - u_{\lambda_j}(\lambda^{-1/2}y + \tilde{x}_{\lambda_j}))/u_{\lambda_j}(\Gamma).$$

From Lemma 3.4, we have

$$w_{\lambda_j} \to w_0 \quad \text{in } C^2_{\text{loc}}(\mathbf{R}^n),$$

 $\tilde{w}_{\lambda_j} \to w_0 \quad \text{in } C^2_{\text{loc}}(\mathbf{R}^n)$

as $\lambda \to \infty$ where w_0 is the unique solution to $\Delta w_0 + (w_0 - 1)_+ = 0$ in \mathbb{R}^n . On the other hand, using (8) and the definition of w_{λ} , we have

$$Iu_{\lambda_j}(\Gamma)^{-1} = \int_{\Omega_{\lambda_j}} |\nabla w_{\lambda_j}|^2 - (w_{\lambda_j} - 1)_+^2 dy \lambda^{-\frac{n-2}{2}}.$$

It follows from (7) that

$$\int_{\Omega_{\lambda_j}} |\nabla w_{\lambda_j}|^2 \, dy = \int_{\Omega_{\lambda_j}} (w_{\lambda_j} - 1)_+ w_{\lambda_j} \, dy = \int_{\Omega_{\lambda_j}} (w_{\lambda_j} - 1)_+^2 + (w_{\lambda_j} - 1)_+ \, dy.$$

So we have

$$Iu_{\lambda_j}(\Gamma)^{-1}\lambda^{\frac{n-2}{2}} = \int_{\Omega_{\lambda_j}} (w_{\lambda_j} - 1)_+ dy.$$

Noting the definition of \tilde{w}_{λ_i} , we have

$$\int_{B_R} (w_{\lambda_j} - 1)_+ \, dy + \int_{B_R} (\tilde{w}_{\lambda_j} - 1)_+ \, dy \le I u_{\lambda_j}^{-1} \lambda^{\frac{n-2}{2}}.$$

Taking $\lambda \to \infty$ and using Proposition 3.1, we obtain

$$2\int_{B_R} (w_0 - 1)_+ \, dy \le k_0.$$

If $R > \lambda_1^{1/2}$, Corollary 2.2 asserts that the left hand side equals to $2k_0$ and it is contradiction.

The following proposition completes the proof of Theorem A.

Proposition 3.6. $\max_{x \in \Gamma_p} \left| \lambda^{\frac{1}{2}} | x - x_{\lambda}| - \lambda_1^{\frac{1}{2}} \right| \to 0$ as $\lambda \to \infty$. Furthermore the free-boundary $\partial \Omega_p$ is of class C^2 and the plasma Ω_p is strictly convex if λ is sufficiently large.

Proof. Ω_p has only one component if λ is sufficiently large, because each component has a maximal point and u_{λ} has only one maximal point if λ is large. By Lemma 2.1, $w_0(y)$ is radially symmetric and strictly decreasing, and hence there are unique s and t such that s > 1 > t and

$$B_r = \left\{ y \in \mathbf{R}^n \middle| w_0(y) > s \right\} \subset B_{\lambda_1^{1/2}} \subset \left\{ y \in \mathbf{R}^n \middle| w_0(y) > t \right\} = B_R.$$

By Lemma 3.4, we obtain

$$w_{\lambda} \to w_0$$
 in $C^2_{\mathrm{loc}}(\mathbf{R}^n)$

as $\lambda \to \infty$. Since $B_R \subset \Omega_{\lambda}$ if λ is large,

$$w_{\lambda} \to w_0 \quad \text{in } C^2(\overline{B_R})$$
 (17)

as $\lambda \to \infty$. So, if λ is large, then $|w_{\lambda} - w_0| \le \min\{s - 1, 1 - t\}/2$ and

$$w_{\lambda} > \frac{s+1}{2} > 1$$
 in B_r , $w_{\lambda} < \frac{t+1}{2} < 1$ in B_R^c .

Since Ω_p has only one component,

$$B_r \subset \{y \in \Omega_{\lambda} | w_{\lambda}(y) > 1\} \subset B_R.$$

Hence $B(x_{\lambda}, \lambda^{-1/2}r) \subset \Omega_p \subset B(x_{\lambda}, \lambda^{-1/2}R)$ holds if λ is sufficiently large. It mean

$$\max_{x\in\Gamma_p} \left|\lambda^{\frac{1}{2}}|x-x_\lambda|-\lambda_1^{\frac{1}{2}}\right|\to 0\quad \text{ as }\lambda\to\infty.$$

Next, we show that $\partial \Omega_p$ is of class C^2 if λ is large. Since $w_0'(s) < 0$ on $(0, \infty)$, there exists a > 0 such that

$$|\nabla w_0(y)| = |w_0'(|y|)| > a \quad \text{in } \overline{B_R} \setminus B_r.$$

As (17), $||\nabla w_0| - |\nabla w_\lambda|| < a/2$ in $\overline{B_R}$ if λ is large. So we have $|\nabla w_\lambda| > a/2$ in $\overline{B_R} \setminus B_r$. Especially $\nabla w_\lambda \neq 0$ on $\partial \Omega_p$. Since w_λ is of class C^2 , the implicit function theorem asserts that $\partial \Omega_p$ is of class C^2 if λ is sufficiently large.

Finally, we show that Ω_p is strictly convex if λ is sufficiently large. As above, $\Omega_p \subset B_R$ for all small λ and

$$w_{\lambda} \to w_0 \quad \text{in } C^2(\overline{B_R})$$
 (18)

as $\lambda \to \infty$. On the other hand, the principal curvature of $\partial \Omega_p$ is determined by $D^2 w_{\lambda}$. Consequently, Ω_p is strictly convex for sufficiently small λ because of the strict positivity of $D^2 w_0$.

4 Proof of Theorem B

To prove Theorem B, we need precisely lower estimate for $E_{\lambda}[u_{\lambda}]$. The argument of the proof of Theorem B is dependent on Flucher and Wei [5]. To estimate $E_{\lambda}[u_{\lambda}]$, we need the following two lemmas.

Lemma 4.1.

$$\lim_{\mu\to 0}\frac{h_{x_{\lambda}}}{t(x_{\lambda})}=1\quad in\ C^0(\overline{B_{2\lambda_1^{1/2}}}).$$

In particular, $\lambda^{-\frac{n-2}{2}}h_{x_{\lambda}}=\lambda^{-\frac{n-2}{2}}t(x_{\lambda})(1+o(1))$ as $\lambda\to\infty$ and $h_{x_{\lambda}}/t(x_{\lambda})$ is uniformly bounded on $B_{2\lambda_{1}^{1/2}}$ for sufficiently large λ .

We can obtain this Lemma by using similar argument as [1, p196]

Lemma 4.2. Suppose q > n/(n-2) and R > 0. We define the operator L by

$$Lv := \Delta v + \chi_{B_R} v \quad \text{for } v \in W^{2,q}(\mathbf{R}^n) \cap W_0^{1,2}(\mathbf{R}^n).$$

Then $\ker L = \operatorname{span}\{\partial_1 w_0, \ldots, \partial_n w_0\}$ holds.

For the proof of this lemma, see Appendix.

Lemma 4.3. We have the following formula for w_{λ} as $\lambda \to \infty$:

$$w_{\lambda} - w_{\lambda, x_{\lambda}} - t(x_{\lambda}) k_0 \lambda^{-\frac{n-2}{2}} (w_0 + o(1)) = 0$$
 in \mathbb{R}^n . (19)

Proof. Define ϕ_{λ} by

$$t(x_{\lambda})k_0\lambda^{-\frac{n-2}{2}}\phi_{\lambda}=w_{\lambda}-w_{\lambda,x_{\lambda}}-t(x_{\lambda})k_0\lambda^{-\frac{n-2}{2}}w_0.$$

Then

$$t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}\Delta\phi_{\lambda} = (w_{0}-1)_{+} - (w_{\lambda}-1)_{+} + t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}(w_{0}-1)_{+}.$$

So we have

$$t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}|\Delta\phi_{\lambda}|$$

$$\leq |(w_{0}-1)_{+}-(w_{\lambda}-1)_{+}|+t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}(w_{0}-1)_{+}$$

$$\leq |w_{0}-w_{\lambda}|+t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}(w_{0}-1)_{+}$$

$$= |k_{0}\lambda^{-\frac{n-2}{2}}h_{x_{\lambda}}-t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}w_{0}-t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}\phi_{\lambda}|$$

$$+t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}(w_{0}-1)_{+}.$$

Hence

$$|\phi_{\lambda}| \leq \left| \frac{h_{x_{\lambda}}}{t(x_{\lambda})} - w_0 - \phi_{\lambda} \right| + (w_0 - 1)_+ \quad \text{in } \mathbf{R}^n.$$

Since $w_{\lambda} \to w_0$ in $C^2_{loc}(\mathbf{R}^n)$, for any $\epsilon > 0$, if λ is sufficiently large, we have $w_{\lambda} > 1, w_0 > 1$ on $R_{R-\epsilon}$ and

$$t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}\Delta\phi_{\lambda} = w_{0} - w_{\lambda} + t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}(w_{0} - 1)_{+}.$$

Hence, we obtain

$$\begin{cases} \Delta \phi_{\lambda} = \left(\frac{h_{x_{\lambda}}}{t(x_{\lambda})} - 1\right) - \phi_{\lambda} & \text{in } B_{R-\epsilon}, \\ \Delta \phi_{\lambda} = 0 & \text{in } \mathbf{R}^{n} \setminus \overline{B_{R+\epsilon}}. \end{cases}$$

To show $\|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^{n})}$ is bounded as $\lambda \to \infty$, we suppose $\|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^{n})} \to \infty$ for some subsequence. Define ψ_{λ} by $\psi_{\lambda} = \phi_{\lambda}/\|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^{n})}$. Then ψ_{λ} satisfies the following properties:

$$\begin{cases} |\Delta \psi_{\lambda}| \leq C & \text{in } \mathbf{R}^{n}, \\ \Delta \psi_{\lambda} = \left(\frac{h_{x_{\lambda}}}{t(x_{\lambda})} - 1\right) / \|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^{n})} - \psi_{\lambda} & \text{in } B_{R-\epsilon}, \\ \Delta \psi_{\lambda} = 0 & \text{in } \mathbf{R}^{n} \setminus \overline{B_{R+\epsilon}}. \end{cases}$$

Furthermore, The support of ψ_{λ} is bounded for each λ . By the maximum principle, we obtain

$$|\psi_{\lambda}| \le c|y|^{2-n}$$

for some positive constant c which is independent of λ . And the maximal point of ψ_{λ} is contained in $B_{R+\epsilon}$ because of ψ_{λ} is harmonic in $\mathbf{R}^n \setminus \overline{B_{R+\epsilon}}$. The standard elliptic estimate and Ascoli-Arzela's Theorem assert

$$\psi_{\lambda} \to \psi_0 \quad \text{in } C^{2,\alpha}_{\text{loc}}(\mathbf{R}^n) \quad \text{as } \lambda \to \infty$$

by passing to a subsequence if necessary. Here, ψ_0 is a solution of

$$egin{cases} \Delta\psi_0 = -\psi_0 & ext{in } B_R, \ \Delta\psi_0 = 0 & ext{in } \mathbf{R}^n \setminus \overline{B_R}, \ |\psi(y)| \leq c|y|^{2-n} & ext{in } \mathbf{R}^n. \end{cases}$$

So we obtain $\psi_0 \in W^{2,q}(\mathbb{R}^n)$ for some q > n/(n-2) and $\psi_0 \in \ker L$. It follows from Lemma 4.2 that

$$\psi_0 = \sum_{j=1}^n a_j \partial_j w_0$$

for some $a = (a_1, \ldots, a_n) \in \mathbf{R}^n$. It follows from $\partial_{ij} w_0(0) = \delta_{ij} w_0''(0)$ that $\nabla \phi_0(0) = w_0''(0)a$. On the other hand,

$$\frac{w_0-w_{\lambda,x_\lambda}-k_0\lambda^{-\frac{n-2}{2}}t(x_\lambda)}{k_0\lambda^{-\frac{n-2}{2}}t(x_\lambda)}=\frac{h_{x_\lambda}-t(x_\lambda)}{t(x_\lambda)}$$

is uniformly bounded on B_R and

$$\Delta(w_0 - w_{\lambda, x_{\lambda}} - k_0 \lambda^{-\frac{n-2}{2}} t(x_{\lambda}))) = 0 \quad \text{in } \mathbf{R}^n.$$

By the interior Schauder estimates, we have

$$\left\| \frac{w_0 - w_{\lambda, x_{\lambda}} - k_0 \lambda^{-\frac{n-2}{2}} t(x_{\lambda})}{k_0 \lambda^{-\frac{n-2}{2}} t(x_{\lambda})} \right\|_{C^{1, \alpha}(B_R)} \le C \left\| \frac{h_{x_{\lambda}} - t(x_{\lambda})}{t(x_{\lambda})} \right\|_{L^{\infty}(B_R)} = o(1)$$

because of Lemma 4.1. Especially, we obtain

$$\Big|\frac{\nabla w_0(0) - \nabla w_{\lambda, x_{\lambda}}(0)}{k_0 \lambda^{-\frac{n-2}{2}} t(x_{\lambda})}\Big| = o(1)$$

as $\lambda \to \infty$. Using $\nabla w_0(0) = \nabla w_\lambda(0) = 0$ and the definition of ϕ_λ , we have

$$|\nabla \phi_{\lambda}(0)| = o(1).$$

as $\lambda \to \infty$. Especially, $\nabla \psi_{\lambda}(0) = o(1)$ as $\lambda \to \infty$. Hence we obtain $\psi_0 = 0$. It means $\psi_{\lambda} \to 0$ in $C^2_{\text{loc}}(\mathbf{R}^n)$ and contradicts to $\|\psi_{\lambda}\|_{L^{\infty}(B_{R+\epsilon})} = 1$. Consequently, ϕ_{λ} is uniformly bounded as $\lambda \to \infty$.

Finally we show $\|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^n)} = o(1)$ as $\lambda \to \infty$. If not, we can assume $\|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^n)} = c + o(1)$ as $\lambda \to \infty$ for some c > 0 by taking a subsequence if necessary. Noting $h_{x_{\lambda}}/t(x_{\lambda}) - 1 = o(1)$ as $\lambda \to \infty$ by Lemma 4.1, the above argument with $\psi_{\lambda} = \phi_{\lambda}$ asserts $\phi_{\lambda} \to 0$ in $C^2_{\text{loc}}(\mathbf{R}^n)$. It contradicts to $\|\phi_{\lambda}\|_{L^{\infty}(\mathbf{R}^n)} = c + o(1)$ as $\lambda \to \infty$.

Proposition 4.4 (Lower estimate). $E_{\lambda}[u_{\lambda}]$ has the following asymptotic formula as $\lambda \to \infty$:

$$E_{\lambda}[u_{\lambda}] = \frac{I^{2}\lambda^{\frac{n-2}{2}}}{2k_{0}} \{-1 + k_{0}t(x_{\lambda})\lambda^{-\frac{n-2}{2}} + o(t(x_{\lambda})\lambda^{-\frac{n-2}{2}})\}.$$

Proof. For the global minimizer u_{λ} , put $w_{\lambda} = (u_{\lambda}(\Gamma) - u_{\lambda})/u_{\lambda}(\Gamma)$ then we have

$$w_{\lambda} = w_0 - k_0 \lambda^{-\frac{n-2}{2}} h_{x_{\lambda}} + t(x_{\lambda}) k_0 \lambda^{-\frac{n-2}{2}} (w_0 + o(1))$$

because of Lemma 4.3. It follows from $E'_{\lambda}[u_{\lambda}] = 0$ that $E_{\lambda}[u_{\lambda}] = -Iu_{\lambda}(\Gamma)/2$ and we have

$$rac{I}{\lambda} = \int_{\Omega} (u_{\lambda})_{-} \, dx = \lambda^{-rac{n}{2}} u_{\lambda}(\Gamma) \int_{\Omega_{\lambda}} (w_{\lambda} - 1)_{+} \, dy.$$

So we obtain

$$\begin{split} I^{-1}\lambda^{-\frac{n-2}{2}}u_{\lambda}(\Gamma) &= \left\{ \int_{\Omega_{\lambda}} (w_{0} - k_{0}\lambda^{-\frac{n-2}{2}}h_{x_{\lambda}} + t(x_{\lambda})k_{0}\lambda^{-\frac{n-2}{2}}(w_{0} + o(1)) - 1)_{+} dy \right\}^{-1} \\ &= \left\{ \int_{\Omega_{\lambda}} (w_{0} - 1 + k_{0}\lambda^{-\frac{n-2}{2}}t(x_{\lambda})(\frac{t(x_{\lambda}) - h_{x_{\lambda}}}{t(x_{\lambda})} + w_{0} - 1 + o(1)))_{+} dy \right\}^{-1} \\ &= \left\{ \int_{\Omega_{\lambda}} (w_{0} - 1)_{+}(k_{0}\lambda^{-\frac{n-2}{2}}t(x_{\lambda}) + 1) dy + o(\lambda^{-\frac{n-2}{2}}t(s_{\lambda})) \right\}^{-1} \\ &= \left\{ k_{0}(k_{0}\lambda^{-\frac{n-2}{2}}t(x_{\lambda}) + 1) + o(\lambda^{-\frac{n-2}{2}}t(x_{\lambda})) \right\}^{-1} \\ &= k_{0}^{-1} \left\{ 1 - k_{0}\lambda^{-\frac{n-2}{2}}t(x_{\lambda}) + o(\lambda^{-\frac{n-2}{2}}t(x_{\lambda})) \right\}. \end{split}$$

It completes the proof of this lemma.

Proposition 4.5. It holds that

$$t(x_{\lambda}) \to \min_{x \in \Omega} t(x)$$
 as $\lambda \to \infty$.

Hence, $\lim_{\lambda\to\infty} \operatorname{dist}(x_{\lambda}, \Omega_{h}) = 0$.

This proposition completes the proof of Theorem B.

Proof. Combining Proposition 3.1 and Proposition 4.4, we have

$$k_0 \lambda^{-\frac{n-2}{2}} t(x_\lambda) (1 + o(1)) \le k_0 \lambda^{-\frac{n-2}{2}} \min_{x \in \Omega} t(x) (1 + o(1)).$$

Taking $\lambda \to \infty$, it follows $\min_{x \in \Omega} t(x) \le \limsup_{\lambda \to \infty} t(x_{\lambda}) \le \min_{x \in \Omega} t(x)$. By continuity of t(x) and the definition of Ω_h , $\operatorname{dist}(x_{\lambda}, \Omega_h) = 0$ holds and completes the proof.

5 Appendix

In this section, we give the proof of Lemma 4.2.

Proof of Lemma 4.2. For any $\phi \in C_0^{\infty}(\mathbb{R}^n)$, we have $\partial_1 \phi \in C_0^{\infty}(\mathbb{R}^n)$ and

$$\int_{\mathbf{R}^n} \nabla w_0 \nabla \partial_1 \phi - (w_0 - 1)_+ \partial_1 \phi \, dx = 0.$$

As $w_0(x) = C |x|^{2-n}$ on $\mathbb{R}^n \setminus B_R$, we obtain $w_0 \in H^2$ and

$$\int_{\mathbf{R}^n} -\nabla(\partial_1 w_0) \nabla \phi + \chi_{B_R} \partial_1 w_0 \phi \, dx = 0$$

for any $\phi \in C_0^{\infty}(\mathbf{R}^n)$. It means $L\partial_1 w_0 = 0$. Similarly, we have $L\partial_k w_0 = 0$ for $1 \le k \le n$ and $\ker L \supset \operatorname{span}\{\partial_1 w_0, \ldots, \partial_n w_0\}$.

Let μ_k be kth eigenvalue of $-\Delta$ on ∂B_1 and ϕ_k be kth eigenfunction which orthonormalized in L^2 . It is well known that $\mu_0 = 0, \mu_1 = \cdots = \mu_n = n-1, \mu_k > n-1$ if k > n. Fix any $v \in \ker L$ and define v_k by

$$v_k(r) = \int_{\partial B_1} v(r,\theta) \phi_k(\theta) d\theta.$$

By $v \in \ker L$, $v \in W^{2,q}(\mathbf{R}^n)$ and the standard elliptic regularity theorem, we have $v \in C^{1,\alpha}(\mathbf{R}^n) \cap C^{2,\alpha}(B_R) \cap C^{2,\alpha}(\mathbf{R}^n \setminus \overline{B_R})$. It asserts $v_k \in C^1([0,\infty)) \cap C^2((0,R)) \cap C^2((R,\infty)) \cap H^2_{loc}((0,\infty))$ and

$$\begin{cases} v_{k}'' + \frac{n-1}{r}v_{k}' - \frac{\mu_{k}}{r^{2}}v_{k} + v_{k} = 0 & \text{on } (0, R), \\ v_{k}'' + \frac{n-1}{r}v_{k}' - \frac{\mu_{k}}{r^{2}}v_{k} = 0 & \text{on } (R, \infty), \\ v_{k}'(0) = 0. \end{cases}$$
(20)

We show $v_k \equiv 0$ if k = 0 or $k \geq n + 1$. For $k \geq n + 1$, taking $r^{n-1}w'_0$ as a test function on (r_1, r_2) , one finds

$$\left[\left\{v_{k}'w_{0}'+\frac{n-1}{r}v_{k}w_{0}'+v_{k}(w_{0}-1)_{+}\right\}r^{n-1}\right]_{r_{1}}^{r_{2}}+\left(n-1-\mu_{k}\right)\int_{r_{1}}^{r_{2}}v_{k}w_{0}'r^{n-3}\,dx=0. \tag{21}$$

In the case v_k has a zero point on $(0,\infty)$, we choose $r_1 \in (0,\infty)$ with $v(r_1) = 0$. If $v'(r_1) = 0$ then the uniqueness of ODE asserts $v_k \equiv 0$ on $(0,\infty)$. If $v'(r_1) \neq 0$ then linearity asserts we can assume $v'(r_1) > 0$. Put $r_2 = \sup\{r \in (0,\infty); v(t) > 0 \text{ on } (r_1,t)\}$. If $r_2 < \infty$ then we have $v_k(r_1) = v_k(r_2) = 0$, $v_k > 0$ on (r_1,r_2) and $v'(r_2) \leq 0$. It contradicts to (21) since $w'_0 < 0$ on $(0,\infty)$ and $\mu_k > n-1$. If $r_2 = \infty$ then $v_k(r) > 0$ on (r_1,r_2) . Since v_k is subharmonic on $(\max\{r_1,R\},\infty)$, we have $v_k(r)r^{n-2} = O(1)$ as $r \to \infty$. So we obtain (21) is a contradiction. In the case v_k has no zero point, by linearity we can assume $v_k > 0$ on $(0,\infty)$. As above we obtain $v_k(r)r^{n-2} = o(1)$ as $r \to \infty$. Taking $r_1 = 0$ and $r_2 = \infty$ then (21) is a contradiction by $v'_k(r_1) = 0$. Consequently we obtain $v_k \equiv 0$ if $k \geq n-1$. For k = 0, (20) asserts that v_0 is a solution of

$$\Delta v_0 + \chi_{B_R} v_0 = 0 \quad \text{in } \mathbf{R}^n.$$

Taking $(w_0 - 1)_+$ as a test function and integrating on B_r , we have

$$\int_{B_{\tau}} \Delta v_0 (w_0 - 1)_+ - v_0 \Delta w_0 \, dx = 0$$

by noting $-\Delta w_0 = (w_0 - 1)_+$. Green's Theorem asserts

$$\int_{\partial B_r} v_0'(r)(w_0(r)-1)_+ - v_0(r)w_0'(r)\,dS(x).$$

So we obtain $v_0'(r)(w_0(r)-1)_+=v_0(r)w_0'(r)$ if r>0. Hence $v_0(R)=0$. Since v_0 is harmonic in $\mathbb{R}^n\setminus\overline{B_R}$ and $\lim_{r\to\infty}v_0(r)=0$, we obtain $v\equiv 0$ on (R,∞) . By uniqueness of the solution to ODE, we have $v\equiv 0$ on $(0,\infty)$. It completes the proof of this lemma.

References

- [1] C. Bandle and M. Flucher, Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations $\Delta U = e^U$ and $\Delta U = U^{\frac{n+2}{n-2}}$, SIAM Review 38 (1996), no. 2, 191–238.
- [2] C. Bandle and M. Marcus, On the size of the plasma region, Applicable Analysis 15 (1983), 207–225.

- [3] Luis A. Caffarelli and Avner Friedman, Asymptotic estimates for the plasma problem, Duke Math. J. 47 (1980), no. 3, 705-742.
- [4] M.J. Esteban and P. L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proceedings of the Royal Society of Edinburgh 93A (1982), 1-14.
- [5] M. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems, Math. Zeitschr. 228 (1998), 683-703.
- [6] D. Gilberg and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Springer-Verlag, 1983.
- [7] D. Kinderlehrer, L. Nirenberg, and J. Spruck, Regularity in elliptic free boundary problems, J. d'Analyse Math. 34 (1978), 86-119.
- [8] D. Kinderlehrer and J. Spruck, The shape and smoothness of stable plasma configurations, Ann Scuola Norm. Sup. Pisa, Ser IV 5 (1978), 131-148.
- [9] Yi Li and Wei-Ming Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n , Comm. in Partial Differential Equations 18 (1993), 1043-1054.
- [10] C. Mercier, The magnetohydrodynamic approach to the problem of plasma confinment in closed magnetic configurations, Publication of EURATOM C.E.A., Luxembourg, 1974.
- [11] R. Temam, A nonlinear eigenvalue problem: The shape at equilibrium of a confined plasma, Arch. Rat. Mech. and Analysis 60 (1975), 51-73.
- [12] _____, Remarks on a free boundary value problem arising in plasma physics, Comm. in Partial Differential Equations 2 (1977), 563-585.