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1 Introduction

In this note we are mainly concerned with the structure of radial solutions to the
following semilinear elliptic equation

$\{$

$\triangle u+f(u)=0$ , $x\in B_{R}$ ,

$u=0$ , $x\in\partial B_{R)}$

(1.1)

where $B_{R}=\{x\in \mathrm{R}^{N}||x|<R\}$ and $N\geq 3$ . For aradial solution $u=u(r)$ ,
$r=|x|$ , (1.1) is reduced to the ordinary differential equation

(E) $\{$

$(r^{N-1}u_{r})_{r}+r^{N-1}f(u)=0$ , $0<r<R$ ,
$u_{r}(0)$ $=u(R)=0$ .

Throughout this note, the nonlinearity $f$ is assumed to fulfill the following con-
ditions:
Assumption (A)
(A1) $f\in C(\mathrm{R})\cap C^{2}(\mathrm{R}\backslash \{0\})$ ;
(A2) $f(u)>0$ and $f(u)=-f(-u)$ for $u>0$ ;
(A3) There exists $a>0$ such that $f’(u)\leq 0(\not\equiv 0)$ for $u\in(0, a)$ and $f’(u)\geq 0(\not\equiv$

$0)$ for $u\in(a, \infty)$ ;
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As typical examples of $f$ , we can give

(f1) $f(u)=|u|^{q-1}u+|u|^{p-1}u(0<q<1<p<(N+2)/(N-2))$ ,
(f2) $f(u)=-u\log|u|+|u|^{p-1}u(1<p<(N+2)/(N-2))$ ,
(f3) $f(u)=u-|u|u+u^{3}(N=3)$ .

In particular for the nonlinearity (f1), as the problem in ageneral bounded
domain, (1.1) has been discussed by many authors, see e.g., $[2]-[6]$ . Moreover,
Adimurthi-Pacella-Yadava [1] have studied (E) for the case (f1). As the summary
of all their results, it is known that the problem (E) has exactly two positive
solutions if $R<R_{1}$ with some positive $R_{1}$ ; aunique positive solution if $R=R_{1}$ ;
no positive solution if $R>R_{1}$ and infinitely many sign-changing solutions for
any $R>0$ . The complete structure of solutions of (E) for the (f1) and $N=1$
case was obtained by the author [13]. Moreover, in the series of studies [17]-[19],
Ouyang-Shi have established the method for counting exact number of positive
solutions of (E) for various nonlinearities $f’ \mathrm{s}$ from the bifurcation argument point
of view [9]. In [18] and [19], they have obtained the exact multiplicity result
for positive solutions of (E) with the additional condition that $uf’(u)/f(u)\in$
$(-(N-4)/(N-2), N/(N-2))$ and $N\geq 4$ .

Our aim is to obtain astructure of solutions of (E) under the more general
assumptions $(\mathrm{A}1)-(\mathrm{A}5)$ by aslightly different approach from [17]-[19]. Let us
introduce the related initial value problem

$\{$

$(r^{N-1}u_{r})_{r}+r^{N-1}f(u)=0$ , $|r$ $>0$ ,
$u_{r}(0)=0$ , $u(0)=\alpha$ ,

(1.1)

where $\alpha$ is apositive parameter since $f$ is an odd function. Our strategy is to
profile the $n$-th zero $z_{n}(\alpha)$ with respect to aof the solution $u(r, \alpha)$ of (1.2). Before
stating our results, let us take the case $f(u)=|u|^{p-1}u$ with $p\in(0, (N+2)/(N-$
$2))$ . In this case, it is well known that $u(r, \alpha)$ has infinitely many zeros $\{z_{n}(\alpha)\}$

and easily verified that $u(r, \alpha)=\alpha u(\alpha^{(p-1)/2}r, 1)$ for any $\alpha>0$ . Therefore, for
each $n\in \mathrm{N}$ ,

$z_{n}(\alpha)=\alpha^{(1-p)/2}z_{n}(1)$ for $\alpha>0$ . (1.3)

It follows from (1.3) that for the sublinear case $p\in(0,1)$ ,
(i) 4( $\cdot$ ) is monotone increasing in $(0, \infty)$ , $\lim_{\alpha\downarrow 0}z_{n}(\alpha)=0$ and $\lim_{\alpha\uparrow\infty}z_{n}(\alpha)=+\infty$ ;

on the other hand, for the superlinear case $p\in(1, (N+2)/(N-2))$ ,
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(ii) $z_{n}(\cdot)$ is monotone decreasing in $(0, \infty)$ , $\lim_{\alpha\downarrow 0}z_{n}(\alpha)=+\infty$ and $\lim_{\alpha\uparrow\infty}z_{n}(\alpha)=0$ .

These (i) and (ii) imply that for any $R>0$ and $n\geq 1$ , (E) has aunique n-nodal
solution with $u(0)>0$ in case $p\in(0,1)$ and $p\in(1, (N+2)/(N-2))$ , respectively.
Recently, Kajikiya [12] has given anecessary and sufficient condition to $f$ for the
validity (i). Moreover, Yanagida [21] has shown (ii) in case $f(r, u)=K(r)|u|^{p-1}u$ ,
where $p>1$ and $K$ ( $\cdot$ ) is afunction satisfying asuitable condition.

So it would be natural to ask how $\{z_{n}(\alpha\}$ behaves for the case (f1). Under the
more general assumption (A), we obtain the following behavior for the first zero
$z_{1}(\alpha)$ of the solution $u(r, \alpha)$ of (E):

Proposition 1. There exists a positive number $\alpha^{*}$ such that $z_{1}$ (.) is strictly

monotone increasing in $(0, \alpha^{*})$ and strictly monotone decreasing in $(\alpha^{*}, \infty)$ . More-

over, $\lim_{\alpha\uparrow\infty}z_{1}(\alpha)=0$ and $\lim_{\alpha\downarrow 0}z_{1}(\alpha)=C/\sqrt{f’(+0)}$, where $C$ is a positive constant

independent of $f$ and $f’(+0):= \lim_{u\downarrow 0}f(u)/u$ .

It follows from Proposition 1that if $R\in(C/\sqrt{f’(+0)}, z_{1}(\alpha^{*}))$ , then $z_{1}(\alpha)=R$

has exactly two solutions $\alpha=\overline{\alpha}$ , $\underline{\alpha}(\overline{\alpha}>\underline{\alpha}))$
. so that (E) has exactly two positive

solutions $\overline{u}(r;R):=u(r, \overline{\alpha})$ and $\underline{u}(r;R):=u(r, \underline{\alpha})$ . To be precise, we obtain the
complete structure of the set

$S^{+}(R):=$ { $u\in C^{2}([0,$ $R])|u$ is apositive solution of (E)}.

Theorem 1. There exists a positive number $R^{*}$ such that

$S^{+}(R)=\{\begin{array}{l}\{\overline{u}(\cdot,\cdot R)\}ifR\in(0,C/\sqrt{f’(+0)}]\{\overline{u}(\cdot\cdot,R),\underline{u}(\cdot\cdot.R)\}ifR\in(C/\sqrt{f’(+0)},R^{*})\{u^{*}(\cdot\cdot,R)\}ifR=R^{*}\emptyset ifR\in(R^{*},\infty)\end{array}$ (1.4)

Moreover,

$\lim_{R\downarrow 0}||\overline{u}(\cdot ; R)||_{\infty}=\infty$
,

$R \downarrow C/\sqrt{f’(+0)}\lim||\underline{u}(\cdot ; R)||_{\infty}=0$

and if $R\in(C/\sqrt{f’(+0)}, R^{*})$ , then

$\mathrm{u}(\mathrm{r};R)>\underline{u}(r;R)$ for $r\in[0, R)$ . (1.4)
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This note consists of three sections. In Section $2_{)}$ we give the outline of proofs
of Proposition 1and Theorem 1and aresult for the structure of nodal solutions
of (E). In Section 3, we note the stability analysis for positive solutions of (E) in
the sense of the related parabolic equation.

2Outline of the Proof

2.1 Preliminaries
First we collect the fundamental properties of solutions of (1.2). See [14] for the
proof.

Lemma 2.1. Suppose that $(\mathrm{A}1)-(\mathrm{A}3)$ hold. Then the following properties are

satisfied.
(i) For any $\alpha\in \mathrm{R}$ , (1.2) has a unique solution $u(r, \alpha)$ . Moreover $u(r, \alpha)$ satisfies

$|u(r, \alpha)|\leq\alpha$ for $r\in[0, \infty)$ . (2.1)

(ii) For any $\alpha\neq 0$ , $u(r, \alpha)$ has infinitely many zeros

$0<z_{1}(\alpha)<z_{2}(\alpha)<\cdots<z_{n}(\alpha)<\cdots\uparrow \mathrm{o}\mathrm{o}$ as $n\uparrow\infty$ .

(iii) For any $\alpha\neq 0$ , $u_{\Gamma}(r, \alpha)$ has infinitely many zeros $\{t_{n}(\alpha)\}$ satisfies to(a) $=0$

and $t_{n}(\alpha)\in(z_{n}(\alpha), z_{n+1}(\alpha))$ .

For the case $f\in C^{1}(\mathrm{R})$ , let $U(r, \alpha)$ be the solution of the linearized equation
of (1.2) at $u(r, \alpha)$ :

$\{$

$(r^{N-1}U_{f})_{f}+r^{N-1}f’(u(r, \alpha))U=0$, $r>0$ ,
$U_{r}(0)=0U(0)=1$ .

(2.2)

Differentiating (1.2) with respect $\alpha$ , we see that the unique solution of (2.2) is
given by $U(r, \alpha)=u_{\alpha}(r, \alpha)$ . Even if $f$ is not differentiate at origin, owing to the
assumptions $(\mathrm{A}1)-(\mathrm{A}3)$ , we can obtain uniqueness and existence for weak solutions
of (2.2) in the following sense. See [14] for the proof.

Lemma 2.2. Suppose that $(\mathrm{A}1)-(.\mathrm{A}3)$ hold. Then (2.2) has a unique weak solution

$U(r, \alpha)$ for any a $\in \mathrm{R}$ in the sense of
$U( \cdot, \alpha)\in C^{2}([0, \infty))\backslash \bigcup_{n=1}^{\infty}\{z_{n}(\alpha)\})\cap C^{1}([0, \infty))$.
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Remark 2.1. When $f$ breaks the Lipschitz continuity at origin, $U_{rr}(r, \alpha)$ is singular

at $r=z_{n}(\alpha)$ if $U(z_{n}(\alpha), \alpha)\neq 0$. However, the Sturm comparison argument (See
$\mathrm{e}.\mathrm{g}.$ , [8, Chapter 8].) still can be applied for weak solutions in the sense of Lemma
2.2.

We observe that by (A3) there exists $c>a$ such that

$\frac{d}{ds}(\frac{f(s)}{s})\leq 0$ for $s\in(0, c)$ . (2.3)

Indeed, since $f’(s)\leq f(s)/s$ for $s\in(0, a]$ , then $\{\mathrm{f}\{\mathrm{s})/\mathrm{s})\mathrm{f}=(f’(s)s-f(s))/s^{2}\leq 0$

for $s\in(0, a]$ , which implies (2.3). We define

$b:= \sup${$c>0|c$ satisfies (2.3)}. (2.4)

2.2 Proof of Proposition 1
In this subsection, we will give the proof Proposition 1. To accomplish the proof,
we first prepare the following lemmas.

Lemma 2.3. Suppose that $(\mathrm{A}1)-(\mathrm{A}3)$ hold. Then the following (i) and (ii) are

satisfied.
(i) For each $n\in \mathrm{N}$ , $z_{n}’(\alpha)>0$ if a $\in(0, b)$ , where $b$ is the positive number defined
in (2.4).

(ii) $\lim_{\alpha\downarrow 0}z_{n}(\alpha)=\sqrt{\lambda_{n}/f’(+0)}$, where $f’(+0)$ $:= \lim_{uarrow 0}f.(u)/u$ and $\lambda_{r\iota}$ is the n-th

eigenvalue of

$\{$

$(r^{N-1}w_{r})_{r}+\lambda r^{N-1}w=0$ , $r\in(0,1)$ ,

$w_{r}(0)=w(1)=0$ .

Lemma 2.4. Suppose that $(\mathrm{A}1)-(\mathrm{A}3)$ and (A5) $h,old$ . Then $\lim_{\alphaarrow\infty}z_{n}(\alpha)=0$ for
each $n\in \mathrm{N}$ .

Though (i) of Lemma 2.3 follows from [12, Theorem 1], we will give the proof
for self-containedness and the later arguments. The proof of Lemma 2.4 can be
found in McLeod-Troy-Weissler[16]. Thus we omit the proof

87



Proof of Lemma 2.3. (i) By differentiating both sides of $u(z_{n}(\alpha), \alpha)=0$ , we have

$u_{r}(z_{n}(\alpha), \alpha)z_{n}’(\alpha)+U(z_{n}(\alpha), \alpha)=0$ .

Since $u_{r}(z_{n}(\alpha), \alpha)\neq 0$ , then

$z_{n}’( \alpha)=-\frac{U(z_{n}(\alpha),\alpha)}{u_{r}(z_{n}(\alpha),\alpha)}$. (2.5)

Therefore, to obtain $z_{n}’(\alpha)>0$ for $\alpha\in(0, b)$ , it is sufficient to show that

$z_{n}(\alpha)<Z_{n}(\alpha)<t_{n}(\alpha)$ for a $\in(0, b)$ , $n\in \mathrm{N}$ , (2.6)

where $Z_{n}(\alpha)$ is the $n$-th zero of $U(r, \alpha)$ . Indeed, in case $\alpha\in(0, b)$ , if $n$ is an odd

number, then $u_{r}(z_{n}(\alpha), \alpha)<0$ and $U(z_{n}(\alpha), \alpha)>0$ by (2.6). On the other hand,

if $n$ is an even number, then $u_{r}(z_{n}(\alpha), \alpha)>0$ and $U(z_{n}(\alpha),\alpha)<0$ by (2.6). Thus

for each $n\in \mathrm{N}$ , $z_{n}’(\alpha)>0$ .
We will show (2.6). First we prove that

$U(r, \alpha)$ has at least one zero in $(t_{n-1}(\alpha), t_{n}(\alpha))$ (2.7)

for any $\alpha>0$ and $n\in \mathrm{N}$ . We set $v(r, \alpha):=u_{r}(r, \alpha)$ . Since $v(r, \alpha)$ satisfies

$(r^{N-1}v_{r})_{r}+r^{N-1}(f’(u(r, \alpha))-\frac{N-1}{r^{2}})v=0$ for $r>0$ , (2.8)

then (2.7) is verified for any $\alpha>0$ and $n\geq 2$ by applying Sturm’s comparison

theorem to (2.2) and (2.8). To show (2.7) for $n=1$ , it is sufficient to show

$\mathrm{h}.\mathrm{m}\frac{r^{N-1}v_{r}(r)}{v(r)}\geq\lim_{rr\downarrow 0\downarrow 0}\frac{r^{N-1}U,(r)}{U(\prime r)}$ . (2.9)

Since $u_{rr}(0, \alpha)=v_{r}(0, \alpha)=-f(\alpha)/N<0$ , then

$\mathrm{h}.\mathrm{m}\frac{r^{N-1}v_{r}(r)}{v(r)}=\lim_{rr\downarrow 0\downarrow 0}\frac{r^{N-2}u_{rr}(r)}{u_{f}(r)/r}=\mathrm{h}.\mathrm{m}r^{N-2}\frac{u_{\mathrm{r}r}(0)}{u_{\mathrm{r}r}(0)}=0r\downarrow 0^{\cdot}$

On the other hand, since $U(0)=1$ and $U_{r}(0)=0$ , then $\lim_{r\downarrow 0}r^{N-1}U_{r}(r)/U(r)=0$ .

Thus (2.9) is shown. Next we show that

$u(r, \alpha)$ has at least one zero in $(Z_{n-1}(\alpha), Z_{n}(\alpha))$ , where $Z_{0}(\alpha):=0$ (2.10
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for any $\alpha\in(0, b)$ and $n\in \mathrm{N}$ . It follows from (2.1) and (2.4) that

$\frac{f(u(r,\alpha))}{u(r,\alpha)}\geq f’(u(r, \alpha))$ for $r>0$ , $\alpha\in(0, b)$ .

Moreover,

lirrr $\frac{r^{N-1}u_{r}(r,\alpha)}{u(r,\alpha)}=\lim_{r\downarrow 0}\frac{r^{N-1}U_{r}(r,\alpha)}{U(r,\alpha)}=0$ .

Thus by applying Sturm’s comparison theorem to (1.2) and (2.2), we obtain (2.10).

Hence (2.6) follows from (2.7) and (2.10).

(ii) First we treat the case $f\in C^{1}(\mathrm{R})$ . Set $y(r, \alpha):=\alpha^{-1}u(r, \alpha)$ , then by (2.1),

$\sup_{r>0}y(r, \alpha)=y(0, \alpha)=1$ . (2.11)

Moreover, $y(r, \alpha)$ satisfies

$\{$

$(r^{N-1}y_{r})_{r}+r^{N-1} \frac{f(u(r,\alpha))}{u(r,\alpha)}y=0$ , $r>0$ ,

$y_{r}(0, \alpha)=0$ , $y(0, \alpha)=1$ ;
(2.12)

so that

$y(r, \alpha)=1-\frac{1}{N-2}\int_{0}^{r}s\{1-(\frac{s}{r})^{N-2}\}\frac{f(u(s,\alpha))}{u(s,\alpha)}y(s, \alpha)ds$ (2.13)

for $r>0$ . Since

$\lim_{\alphaarrow 0}\frac{f(u(r,\alpha))}{u(r,\alpha)}=f’(0)$ uniformly for $r\in \mathrm{R}$ ,

then by (2.11) and (2.12), for any fixed $M>\mathrm{O}y(r, \alpha)$ is uniformly bounded in
$C^{1}([0, M])$ with respect to $\alpha>0$ . Thus letting $\alphaarrow 0$ in (2.13), we see that there

exists $y^{\infty}\in C^{2}([0, \infty))$ such that $\lim_{\alphaarrow 0}y(\cdot, \alpha)=y^{\infty}$ in $C([0, M])$ and $y^{\infty}$ satisfies

$\{$

$(r^{N-1}y_{r}^{\infty})_{r}+r^{N-1}f’(0)y^{\infty}=0$ , $r>0$ ,

$y_{r}^{\infty}(0)=0$ , $y^{\infty}(0)=1$ .

Therefore, if we denote $l_{n}$ by the $n$-th zero point of $y^{\infty}$ , then $\lim_{\alphaarrow 0}z_{n}(\alpha)=l_{n}$ .

Moreover, it is easily verified that $l_{n}=\sqrt{\lambda_{n}}/f’(0)$ .
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Next we show $\lim_{\alphaarrow 0}z_{n}(\alpha)=0$ for the case $f$ is not differentiate at origin.

Let $\{\alpha_{j}\}$ be any positive sequence satisfying $\lim_{jarrow\infty}\alpha_{j}=0$ . By $(\mathrm{A}1)-(\mathrm{A}3)$ , there

exists apositive sequence $\{m_{j}\}$ such that $f(u)/u\geq m_{j}$ for any $u\in(0, \alpha_{j})$ and

$\lim_{jarrow\infty}m_{j}=\infty$ . We denote $l_{n}(m_{j})$ by the $n$-th zero of the solution $w^{j}(t’)$ of the

equation

$\{$

$(r^{N-1}w_{r})_{r}+r^{N-1}m_{j}w=0$ , $r>0$ ,

$w_{r}(0)=0w(0)=1$ .
(2.14)

Thus by applying Sturm’s comparison theorem to (1.2) and (2.14), we can see

$\mathrm{z}\mathrm{n}(\mathrm{a}\mathrm{j})<ln\{mj$ ) for $j\in \mathrm{N}$ . (2. 15)

Since $\lim_{jarrow\infty}l_{n}(m_{j})=0$ for each $n\in \mathrm{N}$ , then by letting $jarrow\infty$ in (2.15) we can

obtain $\lim_{jarrow\infty}z_{n}(\alpha_{j})=0$. Thus the proof of Lemma 2.3 is complete. $\square$

We set
$K:=\{\alpha\in(b, \infty)|z_{1}’(\alpha)=0\}$ . (2.16)

It follows from Lemmas 2.3 and 2.4 that $K$ is not empty. To accomplish the proof
of Proposition 1, it suffices to prove uniqueness for elements of the set $K$ . We will
prove the following lemma needed later.

Lemma 2.5. Suppose that $(\mathrm{A}1)-(\mathrm{A}4)$ hold, then $z_{1}(\alpha^{*})=Z_{1}(\alpha^{*})$ for any $\alpha^{*}\in K$ .

Proof. It follows from (2.5) that for any $\alpha^{*}\in K$ , $z_{1}(\alpha^{*})=Z_{n}(\alpha^{*})$ for some $n\in \mathrm{N}$ .

On the other hand, by (2.6), $z_{1}(\alpha)<Z_{1}(\alpha)$ for a $\in(0, b)$ . Thus by continuities of

$z_{n}$ and $Z_{n}$ with respect to $\alpha$ , it suffices to show that there does not exist $\alpha^{*}\in K$

such that $z_{1}(\alpha^{*})=Z_{2}(\alpha^{*})$ .
We will accomplish the proof by acontradiction argument. Suppose that there

exists $\hat{\alpha}\in K$ such that $z_{1}(\hat{\alpha})=Z_{2}(\hat{\alpha})$ . For $v\in C^{2}([0, z_{1}(\hat{\alpha})])$ , we define

$Lu:=(r^{N-1}v_{r})_{r}+r^{N-1}f’(u(r,\hat{\alpha}))v$ .

Moreover set

$w(r;\beta, m):=(N-2)r^{\beta}u(r,\hat{\alpha})+mr^{\beta+1}u_{r}(r,\hat{\alpha}))$
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then direct calculation implies

$L[w(\cdot ; \beta, m)](r):=$

$r^{N+\beta-1}[(N-2)f’(u(r,\hat{\alpha}))u(r,\hat{\alpha})-\{(N-2)+2m(\beta+1)\}f(u(r,\hat{\alpha}))]$

(2.17)
$+\beta(N-2)(N+\beta-2)r^{N+\beta-3}u(r,\hat{\alpha})$

$+\beta\{2(N-2)+m(\beta+N)\}r^{N+\beta-2}u_{r}(r,\hat{\alpha})$ .

First we set

$w(r, m):=w(r;0, m)=(N-2)u,(r,\hat{\alpha})+mru_{r}(r,\hat{\alpha})$ . (2.18)

It clearly follows that $w(\cdot, m)$ is monotone decreasing for $m\in[0, \infty)$ ;that is

$\mathrm{w}(\mathrm{r}, m_{2})\leq \mathrm{w}(\mathrm{r}, m_{1})$ for $r\in[0, z_{1}(\hat{\alpha})]$ and $m_{2}\geq m_{1}\geq 0$ . (2.19)

Step 1. For sufficiently large $m$ , $w(r, m)$ has a unique zero in $[0, z_{1}(\hat{\alpha})]$ .

Since $w(0, m)=(N-2)\hat{\alpha}>0$ and $w(z_{1}(\hat{\alpha}), \cdot m)$ $=\cdot mz_{1}(\hat{\alpha})u_{r}(z_{1}(\hat{\alpha}),\hat{\alpha})<0$ , then

$w(’, m)$ has at least one zero in $(0, z_{1}(\hat{\alpha}))$ for each $m>0$ . Twice differentiation

of (2.18) with respect to $r$ yields

$w_{rr}(r, m)=-mf(u(r,\hat{\alpha}))-mrf’(u(r,\hat{\alpha}))u_{r}(r,\hat{\alpha})-(m-1)(N-2)u_{rr}(r,\hat{\alpha})$ . (2.20)

It follows from (2.20) and $u_{rr}(0,\hat{\alpha})=-f(\hat{\alpha})/N$ that

$w_{rr}(0, m)= \{-\frac{2}{N}(m-1)-1\}f(\hat{\alpha})<0$ . (2.21)

for $m\geq 1$ and

$\frac{d}{dm}w_{rr}(r, m)=-f(u(r,\hat{\alpha}))-rf(u(r,\hat{\alpha}))u_{r}(r,\hat{\alpha})-(N-2)u_{rr}(r,\hat{\alpha})$ . (2.22)

Therefore, we can see by (2.21) and (2.22) that

$w(r, m)<0$ for $m\geq 1$ and $r\in[0, \delta]$ (2.23)

with some $\delta>0$ independent of $m$ . By observing (2.18), we can take sufficiently

large $M$ such that $w(r, m)<0$ for $r\in[\delta, z_{1}(\hat{\alpha})]$ and $m\geq M$ . On the other hand
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it follows ffom (2.23) that $w(r, m)$ does not have two zeros in $[0, \delta]$ for any $m\geq 1$ .

Therefore, $w(r, m)$ has aunique zero $r_{0}(m)\in[0, z_{1}(\hat{\alpha})]$ for each $m\geq M$ .

Step 2. $r_{0}(m)<Z_{1}(\hat{\alpha})$ for any $m\geq M$ .

It follows from (2.17) that

$L[w(\cdot, m)](r)=r^{N+1}[(N-2)f’(u(r,\hat{\alpha}))u(r,\hat{\alpha})-\{N+2(m-1)\}f(u(r, \mathrm{a}))]$ .

Therefore, by (A4), $L[w(\cdot, m)](r)<0$ for $r\in[0, z_{1}(\hat{\alpha})]$ and $m\geq 2$ . On the other

hand, $L[U(\cdot,\hat{\alpha})]=0$ . Suppose that $r_{0}(m^{*})\geq Z_{1}(\hat{\alpha})$ with some $m^{*}\geq M$ . Thus

by integrating

$L[U$ ( $\cdot$ , $\hat{\alpha}$) $]w(r, m^{*})-L[w(\cdot,m^{*})]U(r,\hat{\alpha})>0$

over $(0, Z_{1}(\hat{\alpha}))$ , we have $Z_{1}(\alpha^{*})^{N-1}U_{r}(Z_{1}(\hat{\alpha}),\hat{\alpha})w(Z_{1}(\hat{\alpha}), m^{*})>0$. Since the left

hand side of the above inequality is clearly negative, then we get acontradiction.

Step 3. Next we set $w_{2}(r, m):=w(r;1-N, m)=r^{1-N}w(r, m)$ , then

$w_{2}(r,m)<0$ for $r\in(r_{0}(m), z_{1}(\hat{\alpha})]$ (2.24)

It follows from (2.17) that

$L[w_{2}(\cdot, m)](r)=$

$r[(N-2)f’(u(r,\hat{\alpha}))u(r,\hat{\alpha})+(2m-1)(N-2)f(u(r,\hat{\alpha}))]$

$+(N-1)(N-2)r^{-2}u(r,\hat{\alpha})-2(N-1)\{2(N-2)+m\}r^{-1}u_{r}(r,\hat{\alpha})$ .

Therefore, we obtain

$L[w_{2}$ ( $\cdot$ , $m$)$](r)>0$ for $r\in(r_{0}(m), z_{1}(\hat{\alpha}))$ (2.25)

if $m$ is sufficiently large. By virtue of (2.24) and (2.25), in the same way to

Step 2, we see that $U(r,\hat{\alpha})$ has at most one zero in $(r_{0}(m), z_{1}(\hat{\alpha})]$ . Therefore,

together with Step 2, we must deduce that $Z_{1}(\hat{\alpha})=Z_{2}(\hat{\alpha})$ . This clearly leads to a

contradiction. Thus the proof of Lemma 2.5 is complete. $\square$
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Proof of Proposition 1. To accomplish the proof of Proposition 1, it suffices to

show that
$z_{1}’(\alpha^{*})<0$ for any $\alpha^{*}\in K$ , (2.26)

where $K$ is the set defined in (2.16). Twice differentiation with respect to aof
$u(z_{1}(\alpha), \alpha)=0$ yields

$u_{rr}(z_{1}(\alpha), \alpha)z_{1}’(\alpha)^{2}+u_{r}(z_{1}(\alpha), \alpha)z_{1}’(\alpha)$

$+2U_{r}(z_{1}(\alpha), \alpha)z_{1}’(\alpha)+U_{\alpha}(z_{1}(\alpha), \alpha)=0$.

Letting $\alpha=\alpha^{*}$ in the above equation, we have

$z_{1}’( \alpha^{*})=-\frac{U_{\alpha}(z_{1}(\alpha^{*}),\alpha^{*})}{u_{r}(z_{1}(\alpha^{*}),\alpha^{*})}$ .

Then, it suffices to verify that

$U_{\alpha}(z_{1}(\alpha^{*}), \alpha^{*})=u_{\alpha\alpha}(z_{1}(\alpha^{*}), \alpha^{*})<0$ , (2.27)

since $u_{r}(z_{1}(\alpha^{*}),, \alpha^{*})<0$ . We put $V(r, \alpha):=U_{\alpha}(r, \alpha)$ . Thus by differentiating with

respect to $\alpha$ of (2.2), we see that $V(r, \alpha)$ satisfies

$\{$

$(r^{N-1}V_{r})_{r}+r^{N-1}f’(u(r, \alpha))V=-r^{N-1}f’(u(r, \alpha))U^{2}$, $r>0$ ,

$V(0, \alpha)=V_{r}(0, \alpha)=0$ .
(2.28)

Then, it follows from (2.2) and (2.28) that

$(r^{N-1}U_{r})_{r}V-(r^{N-1}V_{r})_{r}U=r^{N-1}f’(u(r, \alpha))U^{3}$ . (2.29)

Integration with respect to $r$ over $(0, z_{1}(\alpha^{*}))$ of (2.29) with $\alpha=\alpha^{*}$ yields

$[r^{N-1}(U_{r}(r, \alpha^{*})V(r, \alpha^{*})-V_{r}(r, \alpha^{*})U(r, \alpha^{*}))]_{r=0}^{r=z_{1}(\alpha^{*})}$

$= \int_{0}^{z_{1}(\alpha^{*})}r^{N-1}f’(u(r, \alpha^{*}))U(r, \alpha^{*})^{3}dr$ .

Observing that $z_{1}(\alpha^{*})=Z_{1}(\alpha^{*})$ by Lemma 2.5, we $\mathrm{s}\mathrm{e}$

$V(z_{1}(\alpha^{*}), \alpha^{*})$

$= \frac{1}{z_{1}(\alpha^{*})^{N-1}U_{r}(z_{1}(\alpha^{*}),\alpha^{*})}\int_{0}^{z_{1}(\alpha^{*})}r^{N-1}f’(u(r, \alpha^{*}))U(r, \alpha^{*})^{3}dr$.
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Since $U_{r}(z_{1}(\alpha^{*}), \alpha^{*})=U_{r}(Z_{1}(\alpha^{*}), \alpha^{*})<0$ , to obtain (2.27), it is sufficient to show

that
$\int_{0}^{z_{1}(\alpha^{*})}r^{N-1}f’$ ($u$ ( $r$ , ce’)) $U(r, \alpha^{*})^{3}dr>0$ . (2.30)

In the following argument, we make use of Ouyang-Shi’s technique [17]. We note

that $u(r, \alpha^{*})$ is monotone decreasing for $r\in(0, z_{1}(\alpha^{*}))$ by (iii) of Lemma 2.1.
Therefore, by (A3), there exists aunique $r_{0}\in(0, z_{1}(\alpha^{*}))$ such that $\mathrm{f}"\{\mathrm{u}\{\mathrm{r})\alpha^{*}))\geq$

$0$ for $r\in(0, r_{0})$ and $f’(u(r, \alpha^{*}))\leq 0$ for $r\in(0, z_{1}(\alpha^{*}))$ . We will show that there

exists $k>0$ such that

$\{$

$kU(r, \alpha^{*})\geq-u_{r}(r, \alpha^{*})$ for $r\in(0, r_{0})$ and

$kU(r, \alpha^{*})\leq-u_{f}(r, \alpha^{*})$ for $r\in(r_{0}, z_{1}(\alpha^{*}))$ .
(2.31)

We put $w(r):=U(r, \alpha^{*})+u_{r}(r, \alpha^{*})$ . Since $w(0)=1$ and $w(z_{1}(\alpha^{*}))<0$ , then
$w(\cdot)$ has at least one zero in $(0, z_{1}(\alpha^{*}))$ . We will show uniqueness of zeros of $w$ .

By (2.2) and (2.8), $w$ satisfies

$(r^{N-1}w_{r})_{r}+r^{N-1}f’(u(r, \alpha^{*}))w=(N-1)r^{N-3}u_{r}(r, \alpha^{*})<0$ (2.32)

for $r\in(0, z_{1}(\alpha^{*}))$ . It follows from (2.2) and (2.32) that

$(r^{N-1}U_{r}(r, \alpha^{*}))_{r}w-(r^{N-1}w_{r})_{r}U(r, \alpha^{*})=-(N-1)\prime r^{N-3}U(r, \alpha^{*})u_{r}(r, \alpha^{*})>0$ .

for $r\in(0, z_{1}(\alpha^{*}))$ . Suppose that $w$ has two zeros $0<\tau_{1}<\tau_{2}<z_{1}(\alpha^{*})$ . Then by

integrating the above equation over $(\tau_{1}, \tau_{2})$ , we have

$\tau_{1}^{N-1}w_{r}(\tau_{1})U(\tau_{1}, \alpha^{*})-\tau_{2}^{N-1}w_{r}(\tau_{2})U(\tau_{2}, \alpha^{*})$

$=-(N-1) \int_{\tau_{1}}^{\tau^{2}}r^{N-3}U(r, \alpha^{*})u_{r}(r, \alpha^{*})dr>0$.

On the other hand, clearly,

$\tau_{1}^{N-1}w_{r}(\tau_{1})U(\tau_{1}, \alpha^{*})-\tau_{2}^{N-1}w_{r}(\tau_{2})U(\tau_{2}, \alpha^{*})<0$ .

Thus we meet acontradiction. Therefore, there exists aunique $\tau_{0}\in(0, z_{1}(\alpha^{*}))$

such that $U(r, \alpha^{*})\geq-u_{f}(r, \alpha^{*})$ for $r\in(0, \tau_{0})$ and $U(r, \alpha^{*})\leq$ $\mathrm{u}(\mathrm{r}, \alpha^{*})$ for
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$r\in(\tau_{0}, z_{1}(\alpha^{*}))$ . Thus by choosing asuitable $k>0$ , we can show (2.31). By

Ouyang-Shi’s lemma [17, Lemma 2.4], we see that

$\int_{0}^{z_{1}(\alpha^{*})}r^{N-1}f’(u(r, \alpha^{*}))u_{r}(r, \alpha^{*})^{2}U(r, \alpha^{*})dr=0$ . (2.33)

It follows from (2.31) and (2.33) that

$0= \int_{0}^{r_{0}}r^{N-1}f’(u(r, \alpha^{*}))u_{r}(r, \alpha^{*})^{2}U(r, \alpha^{*})dr$

$+ \int_{r0}^{z_{1}(\alpha^{*})}r^{N-1}f’(u(r, \alpha^{*}))u_{r}(r, \alpha^{*})^{2}U(r, \alpha^{*})dr$

$<k^{2} \int_{0}^{z_{1}(\alpha^{*})}r^{N-1}f’(u(r, \alpha^{*}))U(r, \alpha^{*})^{3}dr$ .

Then, (2.30) holds true. The proof of Proposition 1is complete. $\square$

By virtue of Proposition 1, one can immediately obtain the structure (1.4) for
the positive solution set of (E) in Theorem 1. To accomplish the comparison (1.5),
the comparison theorem for sublinear elliptic equations by Ambrosetti-Br\’ezis-
Cerami [3] will be very useful. See [14] for the proof.

Next we note the structure to $n$-nodal solutions of (E). Here, $n$-nodal solution
means asolution which has exactly $n$ zeros in $[0, R]$ . For each $n\in \mathrm{N}$ , we set

$S_{n}^{+}(R):=$ { $u\in C^{2}([0,$ $R])|u$ is a $n$-nodal solution of (E) and $u(0)>0$}.
It follows from Lemmas 2.3 and 2.4 that for each $n\geq 2$ , $z_{n}(\cdot)$ is bounded and
has at least one critical point. Thus in asimilar way to the proof of Theorem 1,
we obtain the following result for $S_{n}^{+}(R)$ :

Theorem 2. There exists a positive sequence $\{R_{n}\}_{r\iota\geq 2}\uparrow \mathrm{o}\mathrm{o}$ such that

$S_{n}^{+}(R)\supseteq\{$

$\{\overline{u}_{n}(\cdot ; R)\}$ if $R\in(0, \sqrt{\lambda_{n}}/f’(+0)]$ ,

$\{\overline{u}_{n}(\cdot ; R),\underline{u}_{n}(\cdot ; R)\}$ if $R\in(\sqrt{\lambda_{r\iota}}/f’(+0), R_{r\iota})$ ,

$\{u_{n}^{*}(\cdot ; R_{n})\}$ if $R=R_{r\iota}$

and $S_{n}^{+}(R)$ is empty if $R\in(R_{n}, \infty)$ . Moreover, $\overline{u}_{n}(r\cdot\dot, R)$ and $\underline{u}_{r1}(r;R)$ satisfy

$\lim_{R\downarrow 0}||\overline{u}_{n}(\cdot ; R)||_{\infty}=\mathrm{o}\mathrm{o}$
and

$R \downarrow\sqrt{\lambda_{n}/f(+0)}\lim,||\underline{u}_{n}(\cdot ; R)||_{\infty}=0$
.

Moreover, if $R\in(0, R_{n}),then\backslash$

$||\overline{u}_{n}(\cdot ; R)||_{\infty}<||\overline{u}_{n+1}(\cdot ; R)||_{\infty}<\cdots<||\overline{u}_{n+k}(\cdot ; R)||_{\infty}<\cdots\uparrow \mathrm{o}\mathrm{o}$ as $k\uparrow\infty$ .
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3Non-stationary Problem
In this section, we treat time-depending behaviors of solutions of the related
parabolic equation:

(P) $\{\begin{array}{l}u_{t}=\Delta u+f(u)u(x,t)=0u(x,0)=u_{0}(x)\end{array}$ $x\in B_{R}(x,t)\in\partial B_{R}\cross(0, \infty)(x,t)\in B_{R}\cross.(0,\infty),$ ,

from the view-point of the stability analysis for positive stationary solutions ob-
tained in Theorem 1. For the case $f\in C^{1}(\mathrm{R})$ , the stability analysis can be
treated from the dynamical system theory point of view ([10]). However, we re-
mark that the condition (A) allows the case $f$ breaks the Lipschitz continuity
at origin. In such acase, anon-uniqueness result for solutions of (P) is known:
Fujita-Watanabe [11] showed that for $u_{0}\equiv 0$ , (P) has alocal positive solution in
addition to the zero solution. In this sense, we will concentrate on the case $f$ is
not differentiate at origin. By the standard argument, we can get the existence
for asolution of (P) in the following sense (see e.g., Pazy [20]).

Lemma 3.1. For any $u_{0}\in L^{\infty}$ , (P) has at least one solution

$u\in C([0,T_{m});L^{2})\cap C^{1}((0, T_{m});L^{2})\cap C((0,T_{m});H^{2}\cap H_{0}^{1})\cap L^{\infty}(B_{R}\mathrm{x} (0, T))$

for any $T<T_{m}$ , where $T_{m}$ is a maximal $e\dot{m}$tence time of $u;T_{m}:= \sup\{T>$

$0|||u(t)||_{\infty}<+\infty\}$ .

Moreover, Cazenave-Dickstein-Escobedo [7] have recently established the com-
parison theorem for nonnegative solutions of (P):

Lemma 3.2 ([7]). Suppose that $u$ is a nonnegative super-solution for (P) in
$B_{R}\cross(0, T)$ and that $v$ is a nonnegative sub-solution for (P) in $B_{R}\cross(0, T)$ . If
$u(x, 0)\not\equiv 0$ and $u(x, \mathrm{O})\geq v(x, 0)$ for all $x\in B_{R}$ , then $u(x, t)\geq v(x, t)$ for all
$(x, t)\in B_{R}\cross(0,T)$ .

It follows from Lemmas 3.1 and 3.2 that if $v_{\mathrm{O}}\geq 0$ in $B_{R}$ and $u_{0}\not\equiv 0$ , then
(P) has aunique nonnegative solution. By applying Theorem 3.2, we obtain the
following theorem for time-depending behaviors of solutions of (P). See [15] for
the proof
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Theorem 3. Suppose that $u_{0}\in L^{\infty}$ satisfies $u_{0}\geq 0$ in $B_{R}$ and $u_{0}\not\equiv 0$ . Then, the

nonnegative solution $u(x, t;u_{0})$ of (P) satisfies the following properties.

(i) If $R\in(0, R^{*}]$ and $u_{0}\leq k\overline{u}(R)$ in $B_{R}$ with some $k\in(0, 1)\rangle$ then $u(x, t;u_{0})\leq$

$\overline{u}(x_{1}.R)$ for $(x, t)\in B_{R}\cross(0, \infty)$ and $\lim_{tarrow\infty}||u(t,\cdot u_{0})-\underline{u}(R)$ $||_{C^{1}}=0$ .

(ii) If $R\in(0, R^{*}]$ and $u_{0}\geq k\overline{u}(R)$ in $B_{R}$ with some $k\in(1, \infty)$ , then $u(x, t;u_{0})$

blows up in a finite time; so that there exists $T_{m}>0$ such that $\lim||u(t;u_{0})||_{\infty}=$
$t\uparrow T_{m}$

$\infty$ , and satisfies $u(x, t;u_{0})\geq\overline{u}(x;R)$ for $(x, t)\in B_{R}\cross(0, T_{m})$ .

(iii) If $R\in(R^{*}, \infty)$ , then $u(x,t;u_{0})$ blows up in a finite time.

In the sense of the above theorem, we can say the maximal stationary solution
$\overline{u}(\cdot ; R)$ gives aseparatrix between blowing up and global existence for nonnegative
solutions of (P). On the other hand, the minimal stationary solution $\underline{u}(\cdot ; R)$ is
attractive and asymptotically stable. Needless to say, these assertions also hold
true for the smooth nonlinear case.
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