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AN ELEMENTARY CONSTRUCTION OF COMPLEX PATTERNS
IN ONE-DIMENSIONAL SINGULAR PERTURBATION PROBLEMS

BheHRFHTHE H9#1/k (Kazunaga Tanaka)

0. INTRODUCTION

This note is based on my joint works with M. del Pino and P. Felmer [DFT]
and we introduce an elementary method to construct solutions with complex
patterns for one-dimensional singular perturbation problems for nonlinear

Schrodinger equation:

—2ugx +V(x)u=[uP~lu in R,

u € H(R), (04)

where ¢ > 0 is a small parameter, p > 1 and V(x) is a continuous
positive function. We remark that our method is originally introduced for
inhomogeneous phase transition problems in [NT].

For the nonlinear Schrodinger equation (0.1) and its higher
dimensional version, the existence of single or multi-peaked solutions is
widely studied since the works of Floer-Weinstein and Oh; in [FW, 01, 02,
03] Floer-Weinstein and Oh constructed solutions which concentrate around
given set of non-degenerate critical points and their results has been
extended in a variety of situations; including relaxing non-degeneracy
assumption and more general nonlinearities. See [ABC, DF1i, DF2, GW, G,
L, R, W]. Among them, an interesting phenomenon was discovered by Kang
and Wei [KW]; they find the existence of positive solutions with any
prescribed number of peaks clustering around given local maximum point of
the potential (in any space dimensions). ,

In this note we revisit one-dimensional problem (0.1) and introduce
a new variational construction of multi-peaked solutions. We consider
not only positive solutions but also solutions that may change sign.

Our method allows us to glue clusters of any prescribed number of spikes
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associated to local maxima or minima. These clusters must be constituted
of peaks of the same sign around a local maximum point and of the
alternating sign around a local minimum point.

To state our result precisely, we introduce the following rescaled
problem: For a solution ue of (0.1) with a local maximum & — £, we set

ve(y) = ue(ey + &). Then ve(y) satisfies
—vyy + V(ey +&e)v = |v|p—1v in R
and ve(y) approaches to the unique solution w(€;y) of
—wyy + V(€)w = |w|P~ 1y, (0.2)
wy(0) =0, w(y)>0. (0.3)

Thus ue(x) ~ w(&;(x — &€)/¢) near & as € ~ 0. We need the following
definitions to state our existence result: We say that a solution ue(x)

of (0.1) has a cluster of spikes of type (m,+) with constant sign at £ if
there exists points p{ < p5 <--- <pj with p§ — £ as € — 0 so that for some

>0
n

sup |ue(x) — ) w(é(x—p§)/e)) >0 as e—o0.
|x—¢|<d i=1

Similarly we say that ue(x) has a cluster of spikes of (n,+) with
alternating sign at £ if there exist points p§ < p§ < --- < pj with p§ — ¢
as ¢ » 0 so that for some § >0

n
sup Jue(x) — Y (—1)' (g (x— p§)/e) = 0 as e—o0.
|x—¢|<d i=1
We say that ue(x) has a cluster of spikes of type (n,—) if —ue(x) has a
cluster of type (n,+) (with constant or alternating sign) at £.

THEOREM 0.1 ([DFT]). Let us comsider m critical points of V(x), x1 < --- <
xm such that for some h > 0, (x — x;)V/(x) # O whenever 0 < |x—x;j| < h.
Then for a given collection of pairs (nj,rj), i = 1,2,---,m withn; € N
and ry € {+,—} there exists ¢y > O such that for € € (0,¢9], (0.1) has a
solution ue(x) with a cluster of type (nj,rj) at xj with alternating sign

if x4 is a local minimum and with constant sign if xi is a local maximum.

We can extend the above result to the construction of solutions with
infinitely many clusters of spikes and we can show the presence of chaotic
patterns of clusters of spikes. See Theorem 1.2 in [DFT] for detail.
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Chaotic patterns with finite or infinitely many spikes in related
problems have been studied via variational techniques in Coti Zelati-
Rabinowitz [CZR], Séré [S], Allessio-Montecchiari [AM]. We also mention
the works by Kath [K] and Gedeon-Kokubu-Mischaikow-Oka [GKMO], where
slowly varying planar Hamiltonian systems are studied. In particular in
[GKMO] the existence of complex dynamical systems are constructed by means

of the Conley index theory.

REMARK 0.2. An existence result related to our Theorem 0.1 also can be
obtained for 1-dimensional inhomogeneous phase transition problem. A

typical example is the Allen-Cahn equation:

—2ugx +h(x)(1 —u2)u=0 1in (0,1),
U.x(O) = ux(l),

where h(x) is a continuous positive function on [0,1]. We can construct
solutions with clusters of tramnsition layers (instead of spikes). See
[NT] for a precise statement. In [NT], we also construct solutions with

boundary layers.

In the following sections, we give an explanation of our approach for
the construction of solutions with complex patterns. A main feature of
our approach is its elementary nature. It exhibits resemblance with the

broken geodesics method in Riemannian geometry.
1. BASIC SOLUTIONS AND VARIATIONAL FORMULATION

For a given numbers a < b, we consider the following boundary value

problems:
—e?uxx + V(x)u = [uP~1u in (a,b), (1.1)
ux(a) = ux(b) =0, (1.2)
—2uxx + V(x)u = [uP"lu in (—o0,a), (1.3)
u(—00) = ux(a) = 0, (1.4)
—e2uyx + V(x)u = [uP"lu in (b,00), (1.5)
ux(b) = u(o0) = 0. (1.6)

The following result concerns the existence and uniqueness of solutions

with spikes at the end points of the intervals of the above problems.
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PrROPOSITION 1.1. Let M > 0 and o = (sq1,s9) € {+,—}2 be given. Then there
exist positive numbers dg, €y and {y such that for any 0 < € < €p and any
a, b€ [-MM with b—;—é > {y, the problem (1.1)--(1.2) has a unique solution
ue(x) = ue,g(a, b;x) satisfying

lue(x) — s1w(a; (x — a)/€) = sqw(b; (x = b)/e)llL00[4,p] < do-

Similarly, for given M > 0, o € {+,—} there exist €y, 0o > O such that for
any a € [-M,M] and 0 < € < ¢y the problem (1.3)--(1.4) has a unique solution

ue(x) = ue,o(—00,2;x) satisfying

e (x) ~ ow(a; (x ~ 2)/€)llL00( _o,a) < %0-

A similar statement holds for (1.5)--(1.6). We denote the corresponding

solution by ue g (b, 00;X%).

As we mentioned in the Introduction, our approach is variational.
Solutions of (0.1) are characterized as critical points of the following
functional:

e 2,1 1
Ie(u) = —|ux|* + =G(x,u)dx: H'(R) —» R,
—00 2 €

where G(x,u) = %V(x)u2 - p—_}_f|u|P+1. And we try to find critical points

using basic soltuions.

Let us consider m critical points xqy < --- < xp of the potential
V(x), a number h > O and prescribed pairs (nj,rj) as in Theorem 0.1. Let
n= ?_—_1 n;. We introduce a functional f¢(t) of the n tuple t = (t1,---,tn)
(t1 < -+- < tn), whose critical points are corresponding to solutions with
spikes (positive maxima or negative minima) precisely at points tq,---,tn.

To define fe(t) precisely, we define vy = 0, vj = Ei;l ni, j =
2,3,---,m. To have a cluster of size nj at Xj, we impose that

xJ-—hSth_,_l <---<t,,j+nj <xj+h for each j. (1.7)
We also consider signs sy,s9,---,sn determined so that st+1 =rj and
nj—1 . . o
Syj+1 = "Syj42 = (-1)3 Suj+n; if xj is a local minimum of V(x),

Syj+1 =Syj42 =0 = Su5+n; if xj is a local maximum of V(x).
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Choosing M > 0 so that -M < x3 —h <:xp +h < M and we consider numbers Jg,

€op and {p as in Proposition 1.1. Additionally we assume

(tit1 —ti)/e= L. (1.8)
We define ue(t;x) by
ue,s4 (—00,t1;x) for x € (—oo,tq),
ue(t; x) = q Y, (sg,5141) (F1 Lit15%) for x € (t3,%541),
Ue s (tn, 005 X) for x € (tp, 00).

We can easily see that the function ue(t;x) is a solution of (0.1) if and
only if it is continuous. We have a characterization of such t by means

of the following ‘‘broken energy’’:

n

f(—:(t) = Jz::() Ié,(tj ,tJ+1)(u€(t’ X)),

b
where Ie,(a,b) (w) = [ §|ux|2 + %G(x, u)dx and tg = —00, tpiq = 00.

PROPOSITION 1.2. Assume that € € (0,¢g) and t1 < --- < tp satisfy (1.7)
and (1.8). Then fe(t) is of class C! within this range and ue(t;x) is a
solution of (0.1) if and only if Vfe(t) =0. |

Thus to prove our Theorem 0.1, we will find a critical point of the

function fe(t) on the set A®=A§ x.--x Af, where
€ _ “ .. . . — .. .
AJ _{(tI/j+1? 7t1/,j+nj)7 XJ hStyJ+1 < <tyj+nj SXJ +h,

t,,. 44 —t;,. 14
z/J+1+1 I/J+1

>{y for all i= 1,2,-~,nj}.
€

More precisely, we will show

deg(Vife, A, 0) # 0. (1.9)

2. EsTiMATEs ofF Vi
To show (1.9), we simplify notation and write 73 = tyj+i, s = Sl/j+i
(1=0,1,2,---,nj+1), 03 = (si,si+1) and introduce

B

g(r1, -, my) = ) meoy (74,7i41) 1 Aj - R, (2.1)
i=1
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mC,O’(aa b) = Ie,(a,b) (uE,U(aa b; X)),
6 —_ L) . 2 : ... -
A§={(r1,",my) xj—h<7m <<y <xj+h,
Ti41

_T-
—6———1— >fo for all i=1,2,---,n5}.

We regard that points 79 = tyj , Tnj+1 = th+1 are fixed.

We observe that 79 = —oo if j = 1 or ij—l — 79| < h otherwise.
Similarly Tnj+1 =00 if j =m or |Xj+1 —Tnj+1| < h otherwise. Thus 79,
Tnj+1 are relatively far away from 73’s if h is chosen sufficiently small.

PROPOSITION 2.1. There exists numbers K > 0, €y > 0 such that for all j,
e € (0,e9), o, Tnj+1

|Vgéj ()| >k for all T€ aAg

and

deg(VgZ, A, 0) # 0.

From the above Proposition 2.1, we can deduce our Theorem 0.1.

PROOF OF THEOREM 0.1. From the definition of f¢ and those of the gg’s, a
direct computation shows that

V,jte(t) =V, 8 () +o(1),

where tJ = (t,,j+1,---,tyj+nj) and o(1) —» 0 as € — O uniformly on t € A€.
Thus by Proposition 2.1 we have

m -
deg(Vte, A,0) = ] deg(V, je2,A5,0) #0.
j=1

Thus we get (1.9) and f¢(t) has a critical point in AS€. |

3. Vge ON 8A§

In this section, we study the behavior of Vgg on BAg. In what follows
we fix 7o € [—00,xj — 2h], Tnj+1 € [xj +2h,00]. By the definition of Ag , we

have

+1-Ti
€

Tz
OAS = {r; 7y =x; —h}U{r; 7q.4+1 = x5 +h} U {7; = ={o for some i}.
j 1 J nj+1 J 0
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We will give estimates of Vg;;j on each of the above 3 sets and show that

(i) Vgl and V&, are homotopic in Ag if x5 is a local maximum of V(x),

(3.1)
(ii) Vg‘;j and —V®¢ are homotopic in Ag if x5 is a local minimum of
V(x), (3.2)
where
n; -1 :
1 1 ey — T
De(r) = 2(ry ~ 252 + Hrmy — x5 X_: C%)
That is _
6Vgd (1, mj) £ (1~ O)VPe(rq,--,m;) #0 (3.3)

for all 6 €[0,1] and (7, ©7nj )eaA6
From (3.3) it follows that

deg(Vgéj , AE,O) = deg(OVgg + (1 - 0)Voe, AE,O) = +1.

We recall (2.1) and we give just estimates for meg(a,b) which are

essential to derive (3.1) and (3.2). We need the following notation:

1O = [ 3loy(& 91 + el v) oy

where w(£;y) is the unique solution of (0.2)--(0.3). We can easily see

that
_pt3 _

H(E) = Cov(¢) 2(P—1),

where Cp > 0 is independent of { € R.
To deal with Vgl on {r;my = x5 —h} U {r; Tnj+1 = Xj +h}, we need the
following estimates of me¢ o(a,b) which treat the case where the distance

between a, b are relatively large.

LeMMA 3.1. For any § > O there exists €1 = €1(8) € (0,¢g] and L = L(d) > £
such that

(i) If e € (0,¢1] and a, b€ [-M,M] satisfy (b—a)/e > 3L|loge|, then

0
lgme,g(a, b) —H (a)| < 6,

0
Ob

—me o (a,b) — H’(b)\ <4
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(ii) If €€ (0,€q1] and a, b € [-M,M] satisfy (b—a)/e > £y, then
0 0 / /

— < o.

’<3a + ab) me o(a,b) — (H (a) +H (b))| <8

Using Lemmas 3.1 and 3.2, we can show Vgg () #0 on {r; 74 = Xj —h} U
{m; Tnj+1 = X +h}. More precisely, if 7 € {r;7y = xj —h}, we can find
k€ {1,2,---,n} such that

. 1
xj—h=7'1<---<7'kSXj—§h,

TkLE—Tk— > 3L|1loge|.

Then we have

k k . . .
0 j / <0 if xj is a local minimum,
Z ot ge (71, "’Tnj) ~2 Z H(Ti) ) >0 if xj is a local maximum. (3.4)
i=1 i=1

A similar estimate holds also on {7; Tnj+1 = X +h}.

3 Ts —_T3
To estimate VgéJ on {; —1-'—{'—%—-—1 = {o for some i}, we need to estimate

me o(a,b) for relatively small [b—al.
First we consider the following homogenuous problem:
/ .
—Wyy +G (a’w(}')) =0 in '(Oa e)a (3'5)
wy(0) = wy(£) = 0. : (3.6)

LEMMA 3.2. There exist {5 > 0 and 69 > O such that if { > {3 and 0 =
(s1,s9) € {+,—}2, then (3.5)--(3.6) has a unique solution satisfying

lw(y) = s1w(asy) — sow(a; £ = y)liLoo(o,e) < do-

In what follows, we denote the unique solution by wg(a,?;y). The

following fact will be observed easily:

For any a€ R, £> £y and o € {+,—}2

2
Eo(a0)= 5 [ Swo(a, )| - olawo(atiy)
is independent of y. Moreover
(i) if 0 =(+,+) or (—,—), then Egs(a,{) <O. 3.7
(ii) if o =(+,—) or (-,+), then Ey(a,£) > 0. (3.8)

Our basic solution ueg(a,b;x) can be approximated by wg(a, b—;"‘l;y).
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LEMMA 3.3. For any {>{qg and 6 >0, there exists €1 =€1({,d) > 0 independent
of a, b€ [-MM such that for €€ (0,¢1], (b—a)/e€ [{p,£] and o € {+,-}2

b—a_

llue,o(a, bsa+ ey) — wo(a, —e_’Y)”Cz(O,(b—a)/e) <é.

From the above Lemma we have

LEMMA 3.4. (i) For any { > {3 there exist p(f) > 0 and e3({) > O such that
for (b—a)/e € [{y,?] and € € (0, €9] '

0 < —p(0) if o= (+,+) or (—,—)
P b — ) ) ’ .
S ORI/ v 1l ey R 89
>p(f) if o=(++) or (-, —),
eabm(:.)U(a- ){S_p(e) lfU:(+,_) or (_*_,__). ( )
(ii) For any § > O there exists {(0) > {g and eg > 0 such that for
(b—a)/e > £(5) and € € (0, €]
egm (a,b)} < and e am (a,b)| <4 (3.11)
5at60 (3 b)) = spreol@b)so 1
We give just an idea of the proof of Lemma 3.3. (i) A direct
computation gives us for D_—ej € [£g,¢] and € € (0, ¢€q)]
fé‘;me,a(a, b) = —G(a, ue,o(a, b a))
b —
: ~ —G(a,wo (3, ——;0))
€
b—a
=E , .
o(a c )
Thus (3.9) follows from (3.7)--(3.8). We can show (3.10) in a similar
way. Observing that w(a;y) satisfies ‘ '
1 2 ) =
Sloy(@ ) — 6(a;w(asy)) = 0.
We can deduce (ii) from Proposition 1.1.
Let 7 = (T]_,"',Tnj) satisfies (7441 — 7i)/e = £o. Then we can find

k € {2,3,---,n} such that

— 'k— T -7
7k_fk__1 ts small relatively ‘k+1~” 'k
€ €
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so that Lemma 3.4 implies

0 5]
k-1 (k=170 | > | 5 =Be,0c (T T 1)) -
Therefore
0 j _ 0 0
oy B¢ (T1,-+,74) = 8—Tk'm6,0k—1(7k—1,7k) + ﬁmf,ak(fkﬂkﬂ)
— >0 if (Sla"'asn)=(+,+"") or (_7'_1"'): (312)
<0 if (sq,'--,sn)=(+,—, ) or (—,+, ). '

The estimates (3.4) and (3.12) are enough to show (3.1) and (3.2).
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