obooooooooo 12370 20010 120-135

120

BLOW-UP TIME AND BLOW-UP SET OF THE SOLUTIONS FOR
SEMILINEAR HEAT EQUATIONS WITH LARGE DIFFUSION

LEBAY - SERERERAH FE ML (KAZUHIRO ISHIGE)

Graduate School of Mathematics
Nagoya University

1. Introduction. We consider the Cauchy-Neumann problem

(1.1) us = dAu + uP in Dx(0,T),
0

(1.2) —a;u(a:,t) =0 on 98D x(0,T),

(13) u(z,0) =¢(z)>0 on D,

whered > 0,p > 1,0 < T < 00, D is a cylindrical domain in R™ and v is the outer unit

normal vector to D. Throughout this paper we assume that
(1.4) D=D'x(0,L), ¢€CD), ¢#0, ¢(x)>0 in D,

where D’ is a smooth bounded domain in R*~! and L > 0. In this paper we study the
blow-up set of the solutions u4 for the Cauchy-Neumann problem (1.1)—(1.3) with large
diffusion d. Furthermore we give an estimate of the blow-up time of the solutions ug.

We denote by Ty the supremum of all o such that the solution ug of (1.1)~(1.3) exists
uniquely for all ¢t < 0. If Ty < 0o, we have

lim max uq(z,t) = oo.
t1Ta zeD

Then we say that ug blows up at the time Ty, and call Ty the blow-up time of the solution

u4. We define the blow-up set B4(y) of the solution ug by
Bg(p) = {z € D|there exist  — z and t; T Ty such that klim ud(zk, tk) = 00}.
—00
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F. B. Weissler [20] first proved that some solutions blow up only at a single point
for the case n = 1. A. Friedman and B. McLeod [8] proved similar results for more
general domains under the Dirichlet boundary condition or the Robin boundary condition.
Subsequently, the blow-up sets of the bloW-up solutions have been studied by various
peoples. Among others, for the case n = 1, X. Y. Chen and H. Matano [5] proved that
the blow-up solution blows up at most at finite points in D under the Dirichlet boundary
condition or the Neumann boundary condition. Furthermore, for the case n = 1, F. Merle
[11] proved that, for any given finite points z1,...,z; C D, there exists a solution whose
blow-up set is exactly {z1,...,zx}. For the case n > 2, J. J. L. Veldzquez [19] proved
that the (n — 1)-dimensional Hausdorff measure of the blow-up set of nontrivial blow-up
solution for the case D = R" is bounded in compacts sets of R". (For further results on
the blow-up set, see [2-4], [6], [7], [9], [12-17], and references given there.) However, for
the case n > 2, it seems to be difficult to study the arrangement of the blow-up set without
somewhat strong conditions on the initial data, even for the case that D is a cylindrical
domain. | -

Our main interest is to investigate the blow-up set Bj(p) of the solutions of the
Cauchy-Neumann problem (1.1)—(1.3) with large diffusion d. We prove that, for almost all
initial data ¢, the blow-up set By(y) consists of the points of the set D’ x {0,L} C dD
for sufficiently large d. Furthermore, as a by-product, we give an estimate of the blow-up
time for sufficiently large d.

Now we give our main result of this paper.

Theorem A. Consider the Cauchy-Neumann problem (1.1)—~(1.3) under the condition
(1.4). Assume that

(1.5) I(p) = / cpcos(za:n>d:c # 0.

D L
Then there ezists a positive constant dy such that, for any d > do, the blow-up set By(y)
of the solution ug of (1.1)—(1.3) satisfies that

(1.6) By(p) c D' x {0}  if I(p)>0
and that

(1.7) Bi(p)c D' x {L} if I(p)<0O.
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Here dg depends only onn, D, p, I(p), and ||¢|| Lo (D)-

We remark that the condition (1.5) holds for almost all initial data ¢ physically. We may
find the similar condition to (1.5) in the Rauch observation, which means that the hot
spots of the solutions of the heat equation under the zero Neumann boundary condition
move to the boundary, as t — oo (see [1], [10], and [18]).

As a by-product of arguments in the proof of Theorem A, we have an estimate of the

Blow—up time T4 for sufficiently large d.

Theorem B. Consider the Cauchy-Neumann problem (1.1)-(1.3) under the condition
(1.4). Then Ty < oo. Furthermore there exist constants C and do such that

1\*! logd 1
PRI £ 1y PEC R
(p—-1) > y =1/,

for all d > do. Here dy depends only onn, D, p, and ||¢||Le(p)-

(1.8)

The remainder of this paper is organized as follows. In Section 2, by the comparison
principle, we obtain a upper and a lower estimates of the solution ugq. Furthermore we
construct approximate solutions of (1.1)—(1.3), and give a C%(D)-norm estimate of the
solution and the approximate solutions. In Section 3 we give an estimate of minimum
value of the solution u4 at the blow-up time. In Section 4 we prove Theorem B by using
the results of Sections 2 and 3. In Section 5 we prove the monotonicity of the solution
uq in the direction z, at some time. Furthermore, we apply the arguments in [5] and [8]
together with the estimates in Sections 2 and 3 to our problem, and complete the proof of

Theorem A.

2. Preliminary Results. In this section, by the comparison principle, we obtain a upper
and a lower estimates of the solution u4. Furthermore we construct approximate solutions
of (1.1)-(1.3) by the Galerkin method, and give a C?(D)-norm estimate of the solution ugq
and the approximate solutions.

Let {(t : @) be a solution of
(2.1) ¢'=¢, ¢(0) =a>0.

Put
1\*!
S = (p - 1)(_) ’ S = Smaxzeﬁcp-

a
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Then ¢(- : @) exists on the interval [0,.S,) and lim;s, (¢ : o) = oo.
Proposition 2.1. Let ug be a solution of (1.1)—(1.3) under the condition (1.4). Then

(2.2) ug(z,t) < ((¢; mﬁaxcp), (z,t) € D x (0,5),
(2.3) Ty > S.

Furthermore there exists a nondecreasing function n € C((0, 00); (0,00)) such that

(2.4) wa(z,t) > n(dt),  (z,t) € D x (0, Ty).

Proof. We see (2.2) and (2.3) easily by the comparison principle. So it suffices to prove
(2.4). Put ”

(2.5) n(t) = minv(z,t), t>0.
z€D
where v is a solution of
vy = Av in D x (0,00),
0
Ev(w,t) =0 on 9D x (0,00),
v(z,0) = p(z) in D.

By the maximum principle, 7(t) is a nondecreasing, positive, continuous function on (0, 00),
and

uq(z,t) > v(z,dt) > n(dt), (z,t) € D x (0,Tg).
So the proof of Proposition 2.1 is complete. [l

Let g, %1,%2, ... be a complete orthonormal basis for L2(D) of Neumann eigenfunc-
tions with eigenvalues 0 = g < p; < pg < ---, where we repeat the eigenvalues if needed
to take account their multiplicity. We remark that 1o = 1/|D|'/2. For j € NU {0}, we
denote by P; the projection from L%(D) to the subspace of L?(D) spanned by {hiY_,
Then

(26) %Rﬂl/d = dAPjUd + P]’U,Z in Dx (O,Td),
(2.7) -(%Pjud =0 on D x(0,Ty),
(2.8) Pju4(z,0) = Pjp(zx) in D.

By the standard calculations, we have the following proposition.
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Proposition 2.2. Letd > 1 and 0 < de < 1. Let uq be a solution of (1.1)—(1.3) under the
condition (1.4). Then there exist positive constants Cq, Ca, and a such that
a+f§1§ta’§,_,,||ud(',t) — Pjua(-, t)llc2(p) < C1(de)™*(|lua(:, a) — Pjua(:,a)llL2(p)

+d7! llua(-, a)”L?(D) + d_l/z”us”L?(a,T;Lz(D)))

forall0 <a<a+Ce <T <Tjandj=0,1,.... Here C, depends only on D, n,

d(T —a), _min ug, and _max ug, and Cy depends only on D and n.
Dx|a,T) D x[a,T}

Furthermore we have the following proposition, which is a main one in this section.

Proposition 2.3. Let ug be a solution of (1.1)—(1.3) under the condition (1.4). Let j €
NU {0} and 0 < p < pjs1. Then there exist positive constants dy and C = C(n, D) such
that, if d > dy,

_ 1 2
(2.12) llua(-,t) — Pjua(-,t)llo2(py < C(e aut d_1/7>’ g St<

|

Proof. Let d; be a constant such that d; > 1 and d; S > 4. Let d > d;. Taking sufficiently

small d; if necessarily, by Proposition 2.2, we have

(2.13)  |lua(-,7) — Pjua(:, 7)llc2(p)

<C (IIUd(',T) — Pjuq(:, 7)l| L2(D)
r=t/d T=(t—1)/d

47 gl 6= /)20y + 4 Nl e-vyaaaacon
for all 2 <t < dS/2. Here C} is a constant depending only on n, D,

'(2.14) uq(z, 1), max ugq(z, 7).

(z,r)€Dx[(t-1)/d,t/d] (z,7)EDX|(t-1)/d,t/d]

On the other hand, by Proposition 2.1, there exists a constant Cy such that
(2.15) (1) < n(t) < ua(z, t/d) < ((t/d;max ) < ((S/2;max ) < C;
D D

for all (z,t) € Dx[1,dS/2], where 7 is a function given in Proposition 2.1. By (2.13)—(2.15),

there exists a constant Cs depending only n and D, such that

(2.16) |lua(-, 7)—Pjuq(:, 7)llc2(D)

1
< Caluate 7~ Pyt Dl +o75)
T=t/d T=(t-1)/d



125

for all d > d;.
Put vq = u4 — Pjuq. By (2.6) and (2.15), for any 0 < § < 1, we have

10
251 /D |vag|2dz = /D{dAvd -vq + (uf — Pjub)vg}de

< / {—dujs1lval + o8 — Pyulllval}do
D
< —-du/ |’Ud|2d:1!+C4/ |ud|2pd:z:
D D

< ——du/ lvg|?dz +Cs, 0<t< §,
D 2

for some constants Cy and Cs. Therefore, there exists a constant Cg such that

(2.17) llwa(, 7) = Pua(-, )132(py = |lva (-, 7)1 32(py
r=(t—1)/d , T=(t-1)/d
< -Zu(t—l)“ ( 0 "2 + 05 < C, —2ut + l
se Vd\-, ) L2(D) dﬂ, >Ce| € d

for all 2 <t < dS/2. By (2.16) and (2.17), we obtain the inequality (2.12), and the proof

of Proposition 2.3 is complete. [

3. Minimum Value of the Solution at the Blow-Up Time. In this section we study
the behavior of the function uq — Pyug, and obtain an estimate of the minimum value of

the solution uq4 of (1.1)-(1.3) at the blow-up time T.

Proposition 3.1. Let uq be a solution of (1.1)—(1.3) under the condition (1.4). Then
there exist constants C and do such that, if d > dy,

(3.1) lim min ug(z, t) > Cd%/2P-1),
t1Ta D

In order to obtain Proposition 3.1, we prove the following lemma by using Proposition

2.1.

Lemma 3.2. Let uq be a solution of (1.1)—(1.3) under the condition (1.4). Then there

exist constants C and dy such that, if d > dy,

) 1
(3.2) lua(:,t) — Poud(t)l| Lo (py < C(e Wt W)’
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where p = p; /4.
Proof. By Proposition 2.1, there exist constants C; and d; such that, if d > d;,

_ 1 2 S
(33)  luas1) = Potia(8)llz(p) < Ca ( dut | m) 28

Let d; be a constant such that d2 > d; and d2S > 6. For d > d, put
t
va(z,t) = ua(z,t) - P — / (Poug(s))Pds, g(z,t) = (u(z,1))” — (Poua(t))?,
0
for (z,t) € D x (0,Ty). Furthermore we put

wa(Z,T) = vg (:c, 5) — (Pova) (5), g(7) = 9(" {;’) - (Pog)(g)

for (x,7) € D x (t —1,t) and 1 < t < dTy. Then wy satisfies

0 1. .
(3.4) E'-wd = Awg + Eg in D x(0,t), |
(3.5) %wd(:c, t)=0 on 8D x (0,t).

By L*-estimates of the solutions of the parabolic equations, (2.15), (3.4), and (3.5), there

exist constants C3 and C3 such that

(3.6) llwa(,t)l|le(py < Calllwa(-st — 1)l|L2(py + |l Loo(Dx(t-1,2)))
< Ca(Jlwa(st = VliL2(py + 2d7|gll oo (D x ((t=1)/d,t/d)))

< Cs(llwa(yt ~ 1)llz2(py + d™*||lua = Pauall oo (D ((t-1)/d,t/a)))
for all 1 < t < dS/2. Therefore, by (3.3) and (3.6), there exists a constant Cy such that

(3.7 lwa (-, 7)—Poug(T)|| L= (D) = ||lva(:,7) — Povd(T)||L§°(D)

1‘=t/d T=t/d
< Cs(|lwa(-,t = 1)ll22(py + d™||ug — Poual| Lo (D ((6=1)/d,¢/d)))

1 _ 1
< C4<||wd(.,t — 1)”L7(D) + -(-i-e Bt 4 d_:’/?)’

forall3$t§§.
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On the other hand, by (3.4) and (3.5), there exists a constant Cs such that
10 9 1~
(3.7) —— [ |wg|*dz = [ {Awq-wg+ d™ " Gwa}de
20T D D
< [ (cmbual + dglhwal}dz
D

< —Jul/ |wg|?dz + C’5d_2/ lg(z, 7/d)|?dz,
D D
forall0 < 7 <tand 1< t< dS/2, where § =1/2. By (2.8), (3.7), and (3.8), there exists
a constant Cg such that
(3.9) Nwal,t = DlIZ2(p)

— 261 (t—1) 2C5 o—26p1(t-1) g
< e B0l 0)fa gy + e ) [ e
& 0 D

2
dzxds

S
g 17 l
< 2066 20p1(t-1)

2 t—1
Bl [ [“ome [ |ia(e) - (2
0 2 D

for all 3 <t < dS/2. By (2.15), there exist constants C7 and Cg such that

(3.10) o~20m1(t-1) / 26018 / ud( > (Poua)? (§> 2

2
< 076—26u1(t—1)/ e26u13d8 < 088—26u1t.
0

2
dzds

dxds

By (2.15) and (3.3), there exist constants Cy and Cjg such that

t—1 2
(3.11) 6_25“1“_1)/ 625‘“8/ ub x,i — (Poug)? i
2 D d d/|
t—1 2
3096_25“1“’1)/ 625“18/ ud( ) (Poud)( )
2 D 'd

t—1
<2C’96”26“1(t_1)/ e20ms (e_‘“s/2 + —) ds < Cho (6_”1t/2 + é)
< P <
2

dxds

dxds

Putting p = p1/2, by (3.9)—(3.11), there exists a constant C;; such that

_ 1
(3.12) lwa(-st = 1)122(py < Cna (e 2ut 4 E§>

for all 3 <t < dS/2. Therefore, by (3.7) and (3.12), there exists a constant Cy2 such that

1
< 012( THE 4 —>
=t/d d3/2

lua(, 7) — Poud(:, T)llLw(D)
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for all 3 <t < dS/2, and the proof of Lemma 3.2 is complete. O

Proof of Proposition 3.1. Let {(t : a) be a solution of the ordinary differential equation
(2.1), that is,

' -1/(p—1)
(3.13) ¢(t:a)= [aP”l -(p- l)t] ‘
By Lemma 3.2, there exist constant C; and d; such that, if d > d;,
1 1
(3.14) llua(-,t) — Poua(t)||L=(p) LS Clm, p=m
t=—§—:

This inequality together with the comparison principle implies that

2logd 2logd 1
(315) C(t— [Ld .Poud< [.Ld )_Cl_d3/2)
2logd 2logd 1
S’U-d(x,t)SC(t— d -Poud( d >+CldT/2-)

forallz € D, t > 3—%‘;"%", and d > d;. By (3.15), we have

2logd 1 2logd 1 ]
> —_— .
oz 20804 s e (T5°) + i

On the other hand, by (2.6) and (2.15), there exists a constant C, such that

(3.16) |Poug(t) —p| = i/ uldr < Cot, 0<t< §, P #0.
|D| Jp 2

Therefore, by (3.13), (3.14), and (3.16), there exist constants C3 and d3 > d; such that, if
d 2 d2s

lim minu,(z, t
t1Ta zeD a(e,t)

1 . [2logd 1 17 2logd 1
>y |pe(5) ogm] Ana(55) - i)

{2logd 1 )~ 2log d 1 )P -Ve-1
[{rou(55) e} {me(E) romm) ]

and the proof of Proposition 3.1 is complete. [
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4. Proof of Theorem B.

Proof of Theorem B. We first prove Tq < oo. By Proposition 2.1, for any T € (0, S), we
have »

uq(z,t) > n(dT) > 0, (z,t) € D x (T, Ty).

This inequality together with the comparison principle implies that
uq(z,t) > ((t;n(dT)), (z,t) € D x (T, Ty).

Therefore we have

o0
d
Ty < T+/ i < 00.
n(dr) SP

Next we prove (1.8). By (3.2) and (3.16), there exist constants C; and d; such that
(42)  lua(,t) = Pllzoe(py < llua(t) = Poua(t)lLoe(py + [|Poua(t) — Bllzo=(p)
1
—dpt
SC’1<e o +Es/—2+t>,

for all % <t< % and d > d;. By (4.2), there exist constants C; and dy > d; such that
2logd
ud(” us ) ¥

On the other hand, by the comparison principle and (4.3), we have

logd 1

< C; M=k

(4.3) | l

Le(D)

for all d > d,.

— logd 2logd _ logd
. — Y — < < — .
(4.4) C(t d ;90— Co p) )_ud(x,t)_C<t d ;@ + Co 3 )

for all (z,t) € D x (2logd/ud, Ty). By (4.4), we have

logd o ds logd * ds
— + — STy < + e
ud P+Cploed SP ud P—Cylogd SP

Therefore there exists a constant Cs such that

*© ds
o [T
7

for all d > dy, and the proof of Theorem B is complete. [

< logd _I_/W"C’l_oﬁLg ds logd
— pd P—Cplegd SP T d

As a corollary of Theorem B, we have
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Corollary 4.1. Let f(u) = e* or (u+M)P, A > 0. Consider the Cauchy-Neumann problem
(1.1)—(1.3) with the nonlinear term uP replaced by f(u). Assume the condition (1.4). Then
T4 < 0o. Furthermore there exist constants C and do such that

Td_/;%

Remark. We remark that the results of Theorem B and Corollary 4.1 holds with the domain

logd

< ==
_Cd

for all d > dp.

D replaced by bounded smooth domains in R"™.

5. Proof of Theorem A. In this section we prove Theorem A. For this aim, we first

prove that the solution ug4(z,t) is monotone in the direction =, at some time ¢t = T..

Proposition 5.1. Let ug be a solution of (1.1)~(1.3) under the condition (1.4). Assume
I(p) > 0(< 0). Then there exist positive constants T and do such that, for all d > do,

0 T
(5.1) %;ud (z, E) <0(>0), z € D.

Proof. Let {%1,;}32 and {¢2,;}32, be complete orthonormal systems of Neumann eigen-
functions for the domain D’ and the interval (0, 1), respectively. Let ux ; be the eigenvalue
corresponding to v, ; such that 0 = px0 < pr,1 < pez <o+ < g,y < - o0y kK =1,2. In this
notation we repeat the eigenvalues if needed to take account their multiplicity. Then, by
[1], the family of functions {41,:%32,;}5-0 is a complete orthonormal system of Neumann

eigenfunctions for D, and the eigenvalue of vy ;9 j is p1,; + p2,;. Furthermore we have

1 1 2 Jm .
1/)1,0 = W} ¢2,0 = Fﬁ) ¢2,j(wn) = \/;COS(TID'"), J= 1’2a RN

Let jo € N such that p;, = pa0 = (7/L)%. Then p; < (x/L)? for j =0,1,...,jo — 1 and
p; > (m/L)? for j = jo +1,.... Furthermore we have

ak (u'd "t)a’(/) ) d) , 2 6"
(5.2) 5k Pioua(®:t) = ( | D1,|°1 < 1)) sgvaa(en), k=12

Put u = ((m/L)? + pjo+1)/2. By Proposition 2.3, there exists a constant C; such that the

solution ug4 satisfies

1

| | ds
(63 luaC7) = Proal Dllcaco) a7 ) 2St<F

< Ch (6—’“
T=t/d
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On the other hand, the function a(t) = (u4(-,t), ¥1,0%2,1)L2(D) satisfies
d 7\ 2 ,
—a(t)=—d| =) a®t)+ | (ua(z,t))’1,0%2,1dz, 0<t< Ty
dt L D
By (2.15), there exists a constant Cs such that
t m)2 . o2, [ d(x)?
60) fof )~ a0 =@ [T [ A uatar o novadads
o Jp

t/d 1/2 2
< e—(%)zt/ ed(%)2s(/ lud(a:,s)|2”dx) ds < C2L2 .
0 D dm

for all 0 < t < dS/2. By (5.2)—(5.4) and a(0) > 0, we have

0 t t 1 0 _ 1
(5:5) g5, ud (w E) = a(E) D77 Ba, V21 (®) O (e o d1/2>
: \/57(‘ — 2 02 . _
< ———53/2|—D'|T/E (e ta(0) - W) Sln('ir.'z,?) +C (6 oy —dIT)

forall z € D and 2 < t < dS/2. By (5.5), a(0) > 0, and p > (m/L)?, there exists a constant

T} such that, for any T' > Ty, there exists a constant dr,; such that, for all d > dr 1,

) T , , , 1
. _— oy = ny 1 —Tn 2.
(5.6) . Ud (x, d) <0, t=(z',z,) € D with min{z,,1-2z,} 3

Furthermore, by (5.2)—-(5.4),

02 t 2 [t _ 1
ERICHE () o+ 6 (e )
V2n? 2t Cs ot 1
_<_ —35/—2]3;—'(6 1r a(O) - Eﬁ) COS(ﬂ'.’I)n) + Cl (6 w + EI—/_Z_>

for all z = (¢/,2,) € D with 0 < z,, < 1/4 and T < t < dS/2. Similarly in (5.6), there
exists a constant T, such that, for any T > Ty, there exists a constant dr such that, for
all d 2 dT,2, k
52
o2

n

. ,
(5.7) Ud(x, E) <0, z=(,zn)eD with 0<z, < 1

4

Similarly, there exists a constant T3 such that, for any T' > T3, there exists a constant dr 3

such that, for all d > dr 3,

(5.8) P (L) >0 (@2, €D with S <z, <1
. ax%ud ,d 3 T =T ,Tn wi 4 = n ’



132

for all 0 < A < A4. By (5.6)—(5.8), there exist constants 7" and d; such that

0 T
_— D
5z, ud< d) <0, T €
for all d > d;, and the proof of Proposition 5.1 is complete. [

We are ready to complete the proof of Theorem A. We prove Theorem A by applying
the arguments of [5] and [8] together with Propositions 3.1 and 5.1.

Proof of Theorem A. We first assume I(p) > 0, and prove (1.6). By Proposition 5.1, there

exist constants T' and d; such that, v = duy/0z, satisfies

vy = dAv + pub~ly in D x (T/d,Ty),
v(z,t) =0 on I'y x (T/d,Ty),
%v(m,t) =0 on I x (T/d,Ty),
v(z,T/d) <0 in D, .

for all d > d;, where I'y = D’ x {0,L} and 'y = 8D’ x (0, L). By the maximum principle,
0 .
(5.9) 8Tud(ac,t) =v(r,t) <0 in Dx(0,T) and T3 x (0,7).

Assume that a = (a’,a,) € By(p) N (D’ x (0,1)). Let T, be a constant to be chosen later
such that T'/d < T, < Ty. Put Q = D’ x (b,¢) x (Ty,Ty), where b, ¢ € (0, L) such that
b<an<candc—-b>L/2. Put

0 . [(7(s
s = omale ) + o) a0, C(o) = sin( T )
where 1 < ¢ < p and € > 0 is a positive constant to be chosen later. Then we have
(5.10) Ji —dAJ —r(z,t)J = —eCK(z,t) — eq(q — 1)ud " ?|Vuy|? < —eCK(z, ) in @
where

(5.11) r(z,t) = ~2dge¢’ud " +pufi ', K(z,t) = (p—q)uf ™ +d( 7 ¢"ul~2dge¢ u? 1,

2 2
1,0 _ _[(_T _ 2_7"
ce==() 2-(%)-

On the other hand,
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By Propositions 2.1 and 3.1, there exist constants 77 € (T'/d,Ty) and d2 > d; such that

2

(5.12) P - ? (ug(z,t))Pra1 > d(%“) (ua(z,t))?,  (z,t) € D x (T1,Ty)
for all d > dy. Furthermore we take a sufficiently small € so that
(5.13) I%(ud(w, £))Pre-1 > 2dge|¢’[u?"!  (z,t) € D x (T1, Ty).
Taking T, =T and d > ds, by (5.10)—(5.13), we have

Jy < dAJT +r(z,t)J in Q,

J(z,t) <0 on D’ x{b,c} x (T.,Tq),

2J(z,t) =0 on 8D’ x (b,c) x (T, Ty).

By (5.9), taking a sufficiently small € if necessary, we have J(z,T.) < 0,z € D’ x (b,c).

By the maximum principle, we have
(5.14) J(z,t) <0  for (z,t) € D' x (b,c) x (T, Ty).
By a = (a’,an) € B(yp) and a, € (b,c), there exist a sequence {(a},akn,tx)}3>, and a
positive constant § such that '
k&ngo(a;,akn,tk) = (a’,an, Ty), kli_’lgou(ajc,akn,tk) = 00,
{(ak, akn +8)}2, C D’ x (b, c).
By (5.9),

lim ud(a‘;ca Akn + 5’ tk) = 00,
k—o0

ud(a;c’akn+67tk) ds akn+6 ‘
/ —_—< ——e/ ¢(s)ds.
u

q
d(akyakn)tk) s Gk pn

and by (5.14),

By q > 1, we take the limit as k — oo to have

an+06
0< ——e/ ¢(s)ds < 0.
an

This contradiction shows a ¢ B(yp). Therefore we have (D’ x (0,1)) N B(p) = @ for all
d > dp. Furthermore, if a € (D’ x {L})NB(y), by (5.5), (D’ x (0,1))NB(p) # 0. Therefore
we have (D’ x {L}) N B(yp) = 0 for all d > d3, and the proof of (1.6) is complete. By the
similar argument as in the proof of (1.6), we have (1.7), and the proof of Theorein Ais

complete. [J

By Theorem A, we have the following results.
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Corollary 5.2. Let n > 1. Consider the Cauchy-Neumann problem (1.1)—(1.3), where

D=JJ(©,L:), Li>0 i=0,1,...,n.
i=1

Let ¢ be a nonnegative continuous function on D such that

/ <pcos<1x,~)dx>0, 1=1,2,...,n.
D L;

Then there exists a positive constant dy such that, for any d > do, Bg(p) consists of a
single point such that

Ba(v) ={(0,...,0)} c 4D.

Remark. Applying the results of [5] together with Proposition 5.1, we may prove Corollary

5.2 for the case n = 1 without Proposition 3.1.

Corollary 5.3. Theorems A, 5.1 and Corollary 5.2 hold with the nonlinear term uP re-
placed by e* and (u + A\)P (A > 0), respectively.
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