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1 Introduction

It is well known that the b-function of a regular prehomogeneous vector space satisfies
a certain functional equation. In this note, we shall explain the method of calculation
of b-functions by using the functional equations. Starting with the case of one variable,
we illustrate how we employ the functional equations to determine the explicit forms of
b-functions.

Let (G,p,V) be an irreducible regular prehomogeneous vector space and f an ir-
reducible relative invariant corresponding to a character ¢. Denote by (G, p¥,VV) the
dual prehomogeneous vector space and by fV an irreducible relative invariant on V'V
corresponding to the character ¢~!. Then the b-function bs(s) of f is defined as the
polynomial of s satisfying

¥ (grad,) f(z)" = bs(s)f(2)". (1.1)
M. Kashiwara (3] proved that the roots of bs(s) are negative rational numbers :
d
b(s) =bo [J(s+as), (a5 € Qx0). (1.2)
J=1

Moreover, by the regularity condition, bs(s) satisfies the following functional equation :

= (1%, (=5 =T _
br(s) = (~1)bs (s — = -1), (13)
where d = deg f, n = dim V. Then (1.2) and (1.3) imply a relation among o; as

n n
{al, ...,ad}= {E-f-l—al, ey —+1—ad}.
Now let us suppose that (s 4+ ) is a factor of bs(s). We then obtain another factor
(s+ 2+ 1— ) of bs(s) by the above relation. Though these two factors may coincide,
this simple observation is effective in the determination of bs(s).
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In early days of the theory of prehomogeneous vector spaces, they used this observa-
tion to determine some b-functions, combining with the singular-orbit-method developed
by M. Sato. However, if some factor (s + <) of bs(s) has the multiplicity e > 2, that
is, (s + )¢ divides bs(s), we can not determine such e by this method. This difficulty
was one of the motivations of microlocal calculus—so called SKKO algorithm (8], and
in fact, all the b-functions of irreducible prehomogeneous vector spaces were settled by
microlocal calculus !.

For a prehomogeneous vector spaces with several relative invariants, we can define
the b-functions of several variables. Also microlocal calculus is generalized to b-functions
of several variables, and S. Kasai calculate microlocal structures of some non-irreducible
prehomogeneous vector spaces. However, his results suggest that it is hard to apply
the microlocal method for b-functions of several variables (see [11] and its references).
Moreover, the author learned from A. Gyoja that K. Ukai could not determine some
b-functions when he had used microlocal calculus.

On the other hand, K. Ukai [15, 16] approaches to explicit calculation of b-functlons
from quite a different view point. The method in [15] can be outlined as follows:

+ |Functional equation| + |Expansion formula

First we calculate the contraction of the prehomogeneous vector space in question. It
is often easy to calculate the b-function after the contraction. Quoting the theorem
of A. Gyoja which asserts that the exponential b-function is preserved under the con-
traction, we obtain the exponential b-function of the original space. Thus the roots of
bs(s) are evaluated modulo Z. Moreover, the expansion formula of the relative invariant
involves some information (e.g. the product of the roots) about bs(s). Combining these
data, we can recover the original b-function bs(s) from the exponential b-function. This
is a framework of [15] 2.
In this note, we shall explain the method in [16], which is summarized as follows:

Functional equation| +

We recall the functional equation in § 2, and the localization of b-functions in § 3. In § 4,
we actually calculate the b-functions along our method for (GLy X GL2, A2® A1 +A1®A,),
and in § 5, we give a brief exposition on recent developments in explicit calculation of b-
functions. Our method is classical and limited. However, once we find that we can apply
this method for the prehomogeneous vector spaces in question, it works systematically
and powerfully.

1There are two exceptions, namely, type (8) and (11) in [9]. In these cases, we need more advanced
formulae in microlocal analysis.

2For the definitions of contractions and exponentlal b-functions, refer to [1, 13]. I learned the work
of [15] in the excellent lecture of Professor Fumihiro Sato [10]. Although my talk in the conference was
about the result on calculation based on the method in [15], I would like to explain more recent results.
See [10, 11] for the subject on which I gave the talk.



180

2 a-Functions and b-functions

In this section, we give the definitions of a-functions and b-functions and some properties
of them. For the detail, see [6, 7] and [1] in this volume.

Let G be a connected reductive algebraic group defined over C, and p : G — GL(V)
a rational representation of G on a finite dimensional vector space V. Assume that
(G, p,V) is a prehomogeneous vector space and let fi, ..., f; be its fundamental relative
invariants. Let fY,..., fY be the irreducible relative invariants of the dual prehomoge-
neous vector space (G, p¥,VV) such that the characters of f; and f) are the inverse of
each other. We put f := (f,..., fi), f¥ = (fY,-.., fY) and V3, := {v € V; fi(v) # 0},
Vi = l 1 V¥, For a multi-variable s = (sy,...,3s;), we consider formally the powers
[t and f,V" their products f¢ := ]-[,_1 ‘and f¥¢ .= I'[,_ f AR
Lemma 2.1. For any l-tuple m = (my,...,m;) € Z., of non-negative integers, we
have

f2(v)f'™(grad log f4(v)) = ap(s)

for all v € V; with some non-zero homogeneous polynomial ay,(s) which is independent
of v.

We call an(s) the a-function of f. When m = ¢; := (0,...,0,1,0,...,0), where 1
appears at ith place we write a;(s) instead of a,,(s) for an abbrev1at10n We can easily
see that ay(s) = H,_l a;(8)™ by definition. We have the following lemma about the
structure of the a-function an(s).

Lemma 2.2. The a-function a,,(8) is expressed as the product of some linear forms :
N s
9 = 42 [ (e ey
j=1

Here AZ = H, 1 A with A; € C*, N € Z5, p; € Z,, while each v;(s) is a Z-linear
function 2,_1 ¥i;8; with ;5 € Z>9, GCD(11j, . ..,m;) = 1.

Now we give the definition of the b-functions of several variables.

Lemma 2.3. For any [-tuple m = (my,...,m;) € leo of non-negative integers, we
have the functional equation

£ (grad) £+ = by (s)f*

with some non-zero polynomial by,(s) of s.
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We call the polynomial by (s) the b-function of f. We write bi(s) instead of b, (s)
for an abbreviation. Let an,(8) be the a-function as in Lemma 2.2. Then the following
lemmas tell us the structures of b;(s) and by(s) to some extent.

Lemma 2.4. The b-function b;(s) is expressed as

N vi(e:)=1 pj

bi(s) = A‘:H H H('YJ s) +ajr +v).

=1 v=0 r=1
with some a;, € Qso.
Lemma 2.5. The b-function by,(s) is expressed as

N v(@m-1 p;

bm(s) = AmH H H('YJ(S + ajr +v).

j=1 v=0 r=1
with the same a;, € Q5¢ as in Lemma 2.4.

Hence the calculation of by (s) is reduced to that of each b;(s) for i = 1,...,1. If
we know the a-function a,,(s), the remaining task is to determine the positive rational
numbers a;, in Lemma 2.4. The following three tools are effective for the determination
of Qjp.

(1) The results on the b-functions of irreducible prehomogeneous vector spaces.
(2) Functional equations satisfied by b-functions.
(3) Localization of b-functions.

Now we explain (1). By the definition of b;(s), we have that

£ (grad)fo+e = b;(s) f

Putting s = s¢; into the above, we have that

£y (grad) 7+ = bi(sed) £

and thus (if we ignore the scalar multiples)

bi(sei) = by,(s) (2.1)

where by, (s) is the b-function of f; in the sense of (1.1). Hence the candidates for o,
are limited provided that the explicit form of by,(s) is known.

Next we shall state functional equations satisfied by b-functions. When (G, p, V) is
a regular prehomogeneous vector space, a certain functional equation holds.
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Lemma 2.6. If (G, p, V) is a regular prehomogeneous vector space, there exists a rela-
tive invariant whose character is det p(g)2. Here we denote by det p(g) the determinant
of p(g) in V. We define 2k € Z' by the condition

F™(p(g)v) = det p(g)* ().

Theorem 2.7. Let the b-function by (s) be as in Lemma 2.5. We define a function
By;(u) of u by

Bo; (u) = ﬂ(u +ajs)

r=1

and let £ be in Lemma 2.6. Then for each j = 1,..., N, the following functional
equation holds:

By (u) = (=1) By (—u — 75(8) — 1).

3 Localization of b-functions
ANow we consider the following situation.
Assumption 3.1. (1) Let (G, p, V) be a reductive prehomogeneous vector space.
(2) The representation p : G — GL(V) is of the form
| p=0®d1, V=EQF,

where E, F' are some G-invariant subspaces of V and 0 : G — GL(E), 7 : G —
GL(F) are the subrepresentations of p. That is, we consider a non-irreducible
prehomogeneous vector space.

(3) There exists a relative invariant polynomial f on V corresponding to a character
¢:Forallge Gand (z,y) €V =E®F, we have

fla(9)z, 7(9)y) = ¢(9)f (=, ). (3.1)
For simplicity, we assume that f contains both of the variables z of E and y of F.

Let vy = (20, %0) € V be a generic point of (G, p, V). Then z is a generic point of
(G, 0, E). Furthermore, we put the following assumption.

Assumption 3.2. The generic isotropy subgroup G, of (G, 0, E) at z; is reductive.
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By the assumption above, (G4, 7, F') is a reductive prehomogeneous vector space.
We see that fr(y) = f(Zo,y) is a relative invariant of (G, 7, F). We thus obtain the
b-function by, (s) of fr in the sense of (1.1). Then the following theorem holds (cf.
12, 16]). - -

Theorem 3.3. Let by, (s) the b-function of fr and bs(s) the b-function of f. Then
bse(s) divides bg(s). : A

Althbugh it seems that Assumptions 3.1, 3.2 can be replaced by some weaker con-
dition, we can apply the above theorem for a sufficiently large class of prehomogeneous
vector spaces. The author hopes to discuss the generalized theorem elsewhere.

4 An example of calculation

As an example, we shall calculate the b-functions of the following regular 2-simple
prehomogeneous vector space (cf. [4]).

(G, P, V) = (GL4 X GLZ, A2 ® A1 + Al ® Al, Alt?z @M4,2).
Here Alty = {X € My; *X = —X} and the representation p is defined by
p(g).’l? = ((AXltA, AX2tA)tB; AYtB)

for g = (A,B) € G and z = (X;,X,;Y) € V. This prehomogeneous vector space
has two fundamental relative invariants fi, fo and their explicit constructions are given
in [5]. Now we recall the construction of fi. For X,Y € Alty, we put B(X,Y) =
Pf(X +Y) — Pf(X) — Pf(Y) and define the matrix ®(X;, X;) by

B(X1, X2) B(X1, X2
@(Xl,Xz) = (ﬂEX2,X1§ ﬁgXZ,ng) € Symz.

We can easily check that
® ((AX1*A, AX,PA)'B) = (det A) - B®(X;, X2)'B.
So, if we define the polynomial function f; on V by
f( X1, X5, Y) = det B(X1, X3),

then f; is a relative invariant corresponding to the character ¢; = (det A)?(det B)?.
Since the construction of f; is much more complicated, we do not reproduce it here.
However, we quote two useful pieces of information from [5].

(1) deg fa = 8. (More precisely, deg(x, x,) fo = 4, degy fo = 4.)
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(2) The character @, corresponding to f; is given by ¢, = (det A)3 (det B)*.

Actually, we do not need to know the explicit construction of f, if we know (1) and
(2). Note that information about degrees and characters can be obtained from not
only explicit construction of the relative invariant, but also the other methods such as
calculation on isotropy subgroups.

In addition to, the coefficient A™ of the b-function by, (s) becomes meaningless, unless
the relative invariants are normalized carefully. Henceforth, we shall ignore the scalar
multiple A2 in the calculation of a-functions and b-functions. Now let

0 1|00 00’00 1{0
-1 0/0 0 00/0 O 01
X0 = 0 0/0 0 |’ X20 = 00lo0 1]’ Y= 110
0 0|0 o 0 0|-1 0 o1

Then vy = (X1,0, X2,0; Yo) is a generic point of (G, p, V). For this vy, we shall calculate
the values gradlog fi(vo) and gradlog f2(vo). By the relative invariance of fi, f;, we
have that

(gradlog fi(vo), dp(A, Bjug) = d¢1(A, B) (= 2trA+2trB).
(gradlog fa(vo),dp(A, B)vg) = d¢2(A,B)(=3trA+4trB).
for (A, B) € Lie(G) = gl, ® gl,. However, since {dp(4, B)v; (A, B) € Lie(G)} = V

by the prehomogenuity, the above relations determine the values grad log f;(v) and
grad log f2(vo) uniquely, and the results are the following:

((0 2[00 00/0 0 0o
—2 0f0 0 00/0 0 00
gradlog fy(w) = 0 ojoo|'{D0flo 2| |0f0]]
\\ 0 oloo \ 0 0|—20 0fo
([ © |o—1\ 0 0‘0 —1 1|0
-2 0 0 0]1 0 01
gradlog fo(v) = 0 00 |'|0 1[0 2 |'|T]o
\\10,00) 1ol—2o 01

We put z, = (X1,5, X2, ; Y,) := gradlog f4(vo) = s; gradlog f1(vo) + s2 grad log f2(vo),
and calculate f;(z,). It follows that

o (A Xe) B(Xiw Xa)
h) = d"t( B(Xam X1 ﬂ(xi,,,xz,,))

= —1631(s1 + 52)%(s1 + 2s2)
and thus the a-function a,(s) is given by

a1(§) = 8 (81 + 82)2(81 + 282)
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if we ignore the scalar multiple. By Lemma 2.2, we see that the only s1, s2, $1 + 32 and
81 + 2s2 can appear as the factors of the a-function a,,(s). Moreover, the multiplicity
p; in the lemma are determined except for u, :

71(8) = s1, p1 =1,
Y2(8) = s2, p2 =7,
Y3(8) = 81+ 82, p3 =2,
714(8) = 81 + 22, s = 1.

Again by Lemma 2.2, we have that
az(8) = sh?(s1 + 82)%(s1 + 2s2)2.
However, o must be equal to 4 because of degaz(s) = deg fo = 8. Hence we obtain

a1(8) = si(s1+ 82)%(s1+ 2s2),
ax(s) = s3(s1+ s2)%(s1+ 2s2)%

Using the structure theorem of b-functions (Lemma 2.4), we see that

bi(s) = (s1+ai)(s1+s2+as1)(s1+s2+ asz)(si + 252+ aq31),
ba(s) = (s2+az1)(s2+ az2)(s2+ az3)(s2+ ag4)(s1+ 52+ a31)
(81 + S2 + a372)(81 + 232 + a4,1)(31 + 282 + a4,1 + 1)

with some o, € Qso.
Since f is a relative invariant of the irreducible regular prehomogeneous vector space
(SL4 X GLz, A2 ® Al) & (SOG X GL2, Al (039] A]), the b-function bfl (S) of fl is given by

br,(s) =(s+1) (s+g) (s+3) (s—l—%).

See [8, §9]. Combining this with (2.1), we have that

3 5
{a11,031,032,041} = {1, 2 3, 5} - (41)

Now we shall appeal to the functional equations. We easily see that £ = (1,2). So
Theorem 2.7 implies the relations among {o;,} as

{o1a} = 22—} =1
{01, azz, a3, 24} {3—az1,3 -2, 3—ag3, 3—ag4}.
{asy, az2} = {4—asy, 4—aaz}.
{as1} = {6—0a41} ..a1=3
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Together with (4.1), we get

3 5
{03,1,03,2} = {5, ‘2'}

So far, we have observed that

3 5
bi(s) = (s1+1) (sl + 82+ 5) (sl + 89+ 5) (81 + 282+ 3),

ba(s) = (s2+ an,1)(82+ a22)(S2+ 23)(s2 + a24) (31 + 82+ g)

5
<31 + 89 + 5) (31 + 28, + 3)(31 + 285 + 4)

Thus it remains to determine as,..

We shall make use of localization of b-functions here (see § 3) . In particular, we shall
apply Theorem 3.3 to the case E = Alt?, F = My ,. If we put 2o = (X1,0, X20) € Alt$?
then

apny a2
a1 Qa22

Bzo =

—Qaj; — Q22 0
azg azy |’ 0 —a33 — G4y ’

Q43 Qg4

and thus we have
(Gzo, M4,2) = (GLg X GLz, M2 5% Mz)

More precisely, the latter prehomogeneous vector space is given as follows: For (s,t) €
GL,; x GL,, the action is given by

det s 1 det s~!
Mg@Mza(u,v)r—»(su( dett‘l)’tv( dett‘1)>'

This prehomogeneous vector space has two fundamental relative invariants det u, detv
and the relative invariant f2(X1,0, X20,Y) (thatis, fr(y)in§ 3)on F = My, ~ My ® M,
corresponds to (detu detv) up to constant. To verify this fact, one does not need to
do the actual calculation of the polynomial f,(X,0,X20,Y). Instead, it is sufficient to
compare their characters. As a consequence of Theorem 3.3, it follows that

the b-function by, (s) of f; is devided by (s + 1)%(s + 2)?,
and hence we obtain

{az1, 022, a23, a24} = {1,1,2,2}.
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Finally we observe that the b-function by(s) is given by

bm(s) = {’"ﬁ (s1+1+ 1/)} {mﬁ (s24+14+v)%(sa+2+ ,,)2}

v=0 v=0

mi+ma—1 3 5
{ H (sl+32'+—+1/> (31+32+—+1/)}
s 2 2 »

m1+2ma—1
{ H (31+232+3+u)}..

v=0

X

X

5 Recent results on b-functions

Recently a large number of b-functions of prehomogeneous vector spaces was settled.
Ukai [16] determines the b-functions of prehomogeneous vector spaces of Dynkin-Kostant
type for exceptional groups, by using the method in § 4. A. Gyoja and Y. Kaneko
determine such b-functions for classical groups, by using the castling transform (see [2]).
See [1] in this volume for the prehomogeneous vector spaces of Dynkin-Kostant type.

Here we shall mention about the recent results on the b-functions of non-irreducible
prehomogeneous vector spaces which are classified mainly by T. Kimura. A prehomo-
geneous vector space (G, p,V) is called simple if G is a simple algebraic group with
scalar multiplications. Non-irreducible regular simple prehomogeneous vector spaces
are classified by T. Kimura, and their b-functions are studied mainly by S. Kasai with
use of microlocal analysis. However, the b-functions of the following two spaces had
been open. : ‘

o (GL(1)? x Sp(3), As ® Ay, V(14) ® V (6)).

o (GL(1)*x SL(2n+1), Aa®@ A ® A DA, V(n(2n+1) O V(2n+1) &
V(2n+1) @ V(2n+1)).

In [11], these remaining b-functions were determined by using the method in § 4.

A prehomogeneous vector space (G, p, V) is called 2-simple if G is the product of
some two simple algebraic groups with scalar multiplications. Also 2-simple prehomo-
geneous vector spaces are classified (cf. [4]). Moreover, T. Kogiso et al. give the explicit
construction of the relative invariants of 2-simple prehomogeneous vector spaces of type
I (cf. [5]). Here the adjective “type I” means that it contains at least one non-trivial
prehomogeneous vector space in the irreducible components. Making use of the results
above, S. Wakatsuki [14] and the present author [12] have been trying to calculate the
b-functions of regular 2-simple prehomogeneous vector spaces of type I. We note that
some of them were settled already by Ukai [16]. Combining with his results, we have
determined the b-functions of the prehomogeneous vector spaces which are listed in [4,
pp-395-398] except for the following five cases :
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° (GL:I X SLg x SLa, Ao ® Ay + (AI + A;) ® 1)
° (GL? X SLs X SLg, Ao @A +1® AI) (k = 8, 9).
L] (GL% X sz'nm X SLk, N® Al +1Q® A;) (k = 14, 15)

Here we denote by A’ a half-spin representation of Spin;g.

We conclude this note by giving the table of the b-function of some regular 2-simple
prehomogeneous vector spaces of type I. These are due to the present author 3. In the
table, ! denotes the number of fundamental relative invariants and d; denotes the degree
of the relative invariant f;. Here the numbering of the relative invariants follows [5].

The b-function of the relative invariant f = fi™ --- fi’™* (my,...,my € Zyo) is given by
N 7(m-1 p;
@ =11 TI TICu(® +aj+v).
j=1 v=0 r=1

The details of the results here are in the forthcoming paper [12].
(1) (GL? x SLyx SLy, A2® A1+ A1 ® Ay).

(2) (GL3x SLyx SLy, A2® A1+ (A1 +A)®1).
(8) (GL} x SLyx SL3, A2® A1+ A1 ®1+18®A).
(4) (GL3 x SLyx SLy, Aa® A1+ A1 ®1+1®A}).
(5) (GL3 x SLs x SLy, A2® A1 + A} @1+ A, ®1).
(6) (GL? x SLs x SL3, A2®@ A1 +1®Ay).

(7) (GL? x Spinyo x SL3, A’ ®1+1®A,).

(8) (GL? x Spinyo x SL3, A'®1+1QA}).

(9) (GL? x Spinjo x SL3, x® A1+ A'®1).

(10) (GL2? x Spinig x SLy, x @ A1 + A’ ®1).

Here we denote by A’ a half-spin representation of Spin;o and by x the vector represen-
tation.

3] hope that these are new results. I would be grateful if you let me know something about the
researches which I am missing.
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d,' V5 Qjr
81 1
4 32 1x2 2x2
1 )
(1) 8 51+ 52 33
s1 + 232 3
81 1
4 8 172, 2%2
(2) 3 5
8 81+ 82 53
81 + 235 3
81 1
6 22 ::II:7 2
(3) 5 3 y 2
81 + 89 2
6 3
81+ 83 o1 2
81+ 82 + 83 %, 3
$1 1, %
So 1
8 83 1, 2
(4) 4 81+ 83 2, %
8 S2 + 83 2
281 + s3 3
81+ 82 + 83 %, 3
S1 1
6 Z2 1><2,12x2
5 11 s
( ) 9 81 + 82 %, %
81 + 239 3
2s; + 3s5 + 3 5
$1 1
S2 1, 3
15 2
(6) S1 + 82 §X2, 2%2
12 2 ¢
281 + 82 2, )
3s; + 285 3,4
: 3 7
S 11 2 2, 2
12 1, 5
6 81 + 82 2,4
381 + 82 5,8
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di Vi Ojir
81 1, 3
12 S2 1,3
(8) 10 81 + 82 %a 2, %’ 4
381 + 282 5,8
81 1
6 17 é’ 17 4
9) 52 S22
10 81+ 82 52,4, 3
81 + 289 5
$1 1
8 82 1, 2, 3, 4
10
(10) 12 sts 525542
S$1 + 282 5
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