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ISOTROPY REPRESENTATIONS
ATTACHED TO THE ASSOCIATED CYCLES
OF HARISH-CHANDRA MODULES

HIROSHI YAMASHITA (IUT #)

1. INTRODUCTION

Let g be a complex semisimple Lie algebra with a nontrivial involutive automorphism
6 of g. We write g = €@ p for the symmetric decomposition of g given by 8, where & and
p denote the +1 and —1 eigenspaces for 8, respectively. Let K¢ be a connected complex
algebraic group with Lie algebra &. We assume that the natural inclusion ¢ — g gives
rise to a group homomorphism from K¢ to G¥ through the exponential map. Here G
denotes the adjoint group of g. Then, this homomorphism naturally induces the adjoint
representation Ad of K¢ on g.

We say that a finitely generated g-module X is a (g, Kc)-module, or a Harish-Chandra
module, if the action on X of the Lie subalgebra & is locally finite and if it lifts up
to a representation of K¢ on X through the exponential map. It is a fundamental re-
sult of Harish-Chandra that the study of irreducible admissible representations of a real
semisimple Lie group essentially reduces to that of irreducible (g, K¢)-modules. :

Let X be an irreducible (g, Kc)-module. A Kc-stable good filtration of X naturally
gives rise to a graded, compatible (S(g), Kc)-module gr X annihilated by &, where S(g)
denotes the symmetric algebra of g. By Borho-Brylinski [1] and Vogan [17], [18], the
associated cycle C(X) of X is defined to be the support V(X) of gr X combined with
the multiplicity at each irreducible component of V(X). The support V(X) is called the
associated variety of X. It is a Kc-stable affine algebraic cone contained in the set of
nilpotent elements in p, and each irreducible component of V(X) is the closure O of a
nilpotent Kc-orbit O in p. As we have shown in [5] and [20], the variety V(X) controls
some fundamental properties for X.

The algebraic cycle C(X) describes a sort of asymptotic behavior of X (cf. [16]).
Moreover, it is shown by Vogan [17, Theorem 2.13] that the multiplicity of X at an
irreducible component O of V(X) can be interpreted as the dimension of a certain finite-
dimensional representation (we, W) of the isotropy subgroup K¢(X) of K¢ at an X € O.
We call we an isotropy representation attached to X. In terms of we, the associated
cycle C(X) of X is expressed as '

(1.1) C(X) -——Zdimwo-[a].
o

In this paper, we continue our study in [24] (also in [23]) concerning the associated
cycle C(X) and the isotropy representation wo attached to a (g, Kc)-module X with
irreducible associated variety V(X) = O.
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To be more precise, we first look at in Section 2 a relationship between the (S(g), Kc¢)-
module gr X and the induced representation I'(W) = Indﬁ( x)(@o, W) of K¢ equipped
with a natural S(g)-action. A reciprocity law of Frobenius type for such an induced
module (Proposition 2.4) plays an important role. In fact, it is effectively used to prove
an irreducibility criterion for weo (Theorem 2.9). Section 2 does not contain new results,
but it gives a survey of some part of [17, Sections 2-4] and [18, Lectures 6 and 7] in a
slightly modified and simplified form (but for limited X’s). Some remarks and examples
in connection with our recent works ([23], [24]) are also included.

In order to identify the isotropy representation wp, it is sometimes helpful to consider
not only gr X but also its Kc-finite dual space consisting of certain (vector valued) poly-
nomial functions on p. We present this technique in Section 3. A sufficient condition is
given in Proposition 3.2 for gr X being annihilated by the whole prime ideal I of S(g)
defining O. In such a case, the isotropy representation we can be described by means of
the principal symbol of a differential operator on p of gradient-type (see [24]).

In Section 4, we focus our attention on the irreducible Harish-Chandra modules X of
discrete series. As is well known, such an X has irreducible associated variety (cf. [21],
[22]). The multiplicities in the associated cycles for discrete series have been intensively
studied by Chang [2], [3], by using the theory of D-modules on the flag variety for g.
He succeeds to describe C(X) explicitly for the real rank one case. Taniguchi applies in
[14] and [15] the results of Chang in order to specify Whittaker functions associated with
discrete series for some noncompact unitary or orthogonal Lie groups. Here in this paper,
we would like to propose another approach to identify C(X), by using a realization of
X as the kernel of an invariant differential operator of gradient-type on the Riemannian
symmetric space (cf. [7], [13]; [19], [25]). Through this approach, we can construct
a certain Kc(X)-submodule U)(Q.) of the representation (wg, W*) contragredient to
we, by improving our arguments in [22]. Moreover some evidences are given for this
subrepresentation being large enough in the whole wg,, by means of our technique given
in Section 3. The main results are given as Theorem 4.4 and Corollary 4.6.

An enlarged version of this article will appear elsewhere.

ACKNOWLEDGEMENTS. The author is grateful to K. Taniguchi for stimulating discussion on
his results in [15] and also on Chang’s work [3].

2. GRADED MODULE gr X AND INDUCED REPRESENTATION I'(W)

As in Section 1, let X be an irreducible (g, Kc)-module with irreducible associated
variety V(X) = O, where O is a nilpotent Kc-orbit in p. This section introduces some
elementary aspects of Vogan’s theory on the associated cycle and the isotropy represen-
tation attached to X. The results in this section may be read off from [17] and [18] with
a little bit of effort.

2.1. Associated cycle and isotropy representation. To start with, let us introduce
our key notion precisely. Take an irreducible Kc-submodule (7,V;) of X, which yields a
Kc-stable good filtration of X in the following way:

(21) XocX,C---CX,C-+, X :=U,,(g)VT (n=0,1,2,...).

Here U(g) denotes the universal enveloping algebra of g, and we write Uy,(g) (n =
0,1,...) for the natural increasing filtration of U(g). This filtration gives rise to a graded
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(S(g), Kc)-module M = gr X, annihilated by S(¢), as follows:

(2.2) M=gX=@PM, with My,:=Xn/Xn1 (X_1:={0})

n=0
We note that
(2.3) M, = S™(g)V, = S*(p)V; with Mo = Vs,
where S™(b) is the homogeneous component of the symmetric algebra S(v) of degree n.

By definition, the associated variety V(X) of X is identified with the affine algebraic
variety of g given by the annihilator ideal Anng)M in S(g) of M:

(2.4) VIX)={Ze€g| f(Z)=0forall fe AnnggyM} Cp,

where S(g) is viewed as the ring of polynomial functions on g by identifying g with its
dual space through the Killing form B of g.

The Hilbert Nullstellensatz tells us that the radical of Anngg) M coincides with the
prime ideal I = I(V(X)) defining the irreducible variety V(X): I = y/Anngg) M. So we
see I"M = {0} for some positive integer n, and we write ny for the smallest n of this
nature. Then, one gets a strictly decreasing filtration of the (S(g), Kc)-module M as

(2.5) M=I"MD>I'M D ---pI™M = {0}.

By the multiplicity mult;(X) of X at I is meant the length as an S(g);-module of the
localization M; of M = gr X at the prime ideal I. Then, the associated cycle C(X) of
X turns to be '

(2.6) C(X) = mult;(X)-[0] with V(X)=0.

Note that this cycle does not depend on the choice of a good filtration (2.1) of X.

Now, let us explain how the multiplicity mult;(X) can be interpreted as the dimension
of an isotropy representation. For this, we take an element X in the open Kc-orbit
O c V(X). Set Kc(X) := {k € Kc| Ad(k)X = X}, the isotropy subgroup of K¢ at X.
We write m(X) for the maximal ideal of S(g) which defines the one point variety {X} in
g:

(2.7) m(X) =Y (¥ - B(Y,X))S(g) for X € O.
Yeg :

Foreach j =0,...,ng—1, we introduce a finite-dimensional (S(g), K¢ (X))-representation
we(j) acting on
(2.8) , W(3) == FM/wm(X)P M,
in the canonical way, and we set

ng—1
(29) (wo, W) := D (@oli), W(5))-

J=0

We call we the isotropy representation attached to the data (X, V;, O), where V; ’yields
the filtration (2.1) of X. The following lemma is essential for our succeeding discussion.

Lemma 2.1 (cf. [17, Corollary 2.7] and [24, Remark 2.2]). Let N be a finitely generated
(S(g), Kc)-module such that IN = {0}. Then, the length of S(g);-module Ny is equal to
the dimension of the vector space N/m(X)N for every X € O. :
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This lemma tells us that the length of the S(g);-module (I’ M/I7+! M); equals dim we (5)
by noting that the ideal I annihilates the subquotient I?M/I"*1 M of M. Together with
the exactness of localization, we immediately get the following

Proposition 2.2. One has mult;(X) = dimwp. Moreover, the equality
(2.10) mult;(X) = dimwe(0) = dim M/m(X)M

holds if and only if the support of the S(g)-module IM is contained in the boundary
00 = 0\0.

Remark 2.3. The representation we(0) in (2.10) never vanishes because the annihilator
ideal AnnggM/IM is equal to I (cf. [23, Lemma 3.4]). Moreover, the equality (2.10)
holds for a number of unitarizable (g, K¢)-modules X with unique extreme Kc-types V;.
See Example 2.7 and Theorem 4.4 (1).

2.2. Induced module I'(Z). Let (w, Z) be a finite-dimensional (S(g), Kc(X))-module
with X € O. We write I'(Z) for the space of all left Kc-finite, holomorphic functions
f : K¢ — Z satisfying

f(yh) = w(R)f(y) (v € K, h € Ke(X)).

Namely, I'(Z) consists of all Kc-finite, holomorphic cross sections of the K¢-homogeneous
vector bundle K¢ X g.(x)Z on K¢/Kc(X) =~ O. Then, I'(Z) has a structure of (S(g), K¢)-
module by the following actions:

(D- )(y) = w(Ad(y)"'D)f(y), (k- f)y) = f(ky),
for D € S(g), k € K¢ and f € I'(Z). We call I'(2) the (S(g), Kc)-module induced from

w. We note that, if Z is annihilated by the maximal ideal m(.X), the S(g)-action on I'(Z)
turns to be the multiplication of functions on the orbit O:

(2.11) (D - f)(y) = D(Ad(y)X) f(v)-

In this case, the annihilator in S(g) of any nonzero function f € I'(Z) coincides with the
prime ideal I defining O.

Let M be any (S(g), Kc)-module. If p is an (S(g), Kc(X))-homomorphism from M to
Z, we define a function T, : K¢ — Z for each m € M by putting

(2.12) Tu(y) :=p(y™"-m) (ye€ Kc).

Then it is standard to verify that T, lies in I'(Z) and that the map T : m — T, (m € M)
gives an (S(g), Kc)-homomorphism from M to I'(Z). More precisely, one readily obtains
the following reciprocity law of Frobenius type.

Proposition 2.4. Under the above notation, the assignment p — T sets up a linear
isomorphism

(2.13) Homgg), kc(x)(M, Z) ~ Homgg) k. (M, T'(Z)).

Here, for Q-modules A and B, we denote by Homgq(A, B) the space of Q-homomorphisms
from A to B.
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2.3. Homomorphism T = @;T(j). We now return to our setting in Section 2.1, where
M = gr X for an irreducible (g, Kc)-module X with V(X) = O. Take an integer j
such that 0 < j < mg — 1. Let p(j) denote the natural quotient map from I’M to
W(j) = PM/m(X)I?M. Correspondingly, we get an (S(g), Kc)-homomorphism T(j) :
I'M — T'(W(j)) by Proposition 2.4. It follows that

(2.14) | KerT(j) = () m(Y)FPM > F*'M,
YeO

by the definition of T'(5) together with m(Y) > I (Y € O).

Proposition 2.5. The kernel KerT(j) of T(j) is the largest (S(g), Kc)-submodule of
I'M among those N having the following two properties: (i) N D I'*1M, and, (ii) the
support of N/IP*' M is contained in 0O.

Proof. First, we show that Ker T(j) have two properties (i) and (ii). The inclusion (2.14)
assures (i). As for (ii), we consider a short exact sequence of (S(g), K¢)-modules:

(2.15) 0 — Ker T(j)/I"*'M — PM/I"*'M — FM/Ker T(j) —> 0.

Each module is annihilated by I. In view of Lemma 2.1, we find that the multiplicity of
I’M/KerT(j) at I is equal to the dimension of vector space

("M /KerT(5))/m(X)(IPM/Ker T(5)) ~ P M/(m(X)'M + Ker T(5)) = W(j).

Here, the last equality follows from Ker T'(j) C m(X)I’M (see (2.14)). This shows that
the length of S(g);-module I’M/I’*'M and that of I?M/KerT(j) coincide with one
another. Hence (KerT'(j)/I’t'M); vanishes by (2.15). This means that the support of
Ker T'(j)/I°** M is contained in 9O.

Second, let N be any (S(g), Kc)-submodule of I?M with two properties (i) and (ii)
in question. (2.14) tells us that 7'(j) naturally induces an (S(g), K¢)-module map from
IIM/Ii+1M to T(W(j)) which we denote by T(j). Then, T(5)(N/I"*' M) must vanish
by virtue of (2.11) together with the property (ii) for N. This proves N C KerT'(5). O

As for the injectivity of T'(j), one gets the following consequence of Proposition 2.5.

Corollary 2.6. The homomorphism T(j) : M — T'(W(j)) is injective if and only if
Annggym =1 for all m € FM\{0}. In this case, one has I'*'M = {0}, i.e., j = ng — 1.

Example 2.7. We encounter the situation in the above corollary with j = 0, for example,
if X is a unitarizable highest weight module of a simple hermitian Lie algebra g, and V;
in (2.1) is the extreme Kc-type of X. Note that the associated variety of such an X is
the closure of a “holomorphic” nilpotent Kc-orbit in p. See [23, Section 3.2] for details.

Summing up T(j)’s on PM/P*'M (j = 0,...,ng — 1), we obtain an (S(g), Kc)-
homomorphism T := &;T(j): . .

(2.16) M(I) = @ PM/IP*'M = @TW() ~T(W),

where the support of the kernel Ker T is contained in 0.
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Remark 2.8. By using the “microlocalization technique”, Vogan constructed a new K-
stable Z-gradation on X such that the corresponding graded module embeds into I'(W)
as a representation of K¢ (see [17, Theorem 4.2]). Thanks to this result, one always has
X < T'(W) as Kc-modules. Noting that M(I) ~ X as Kc-modules, we find that the
above T : M(I) — T'(W) must be an isomorphism if T is surjective.

2.4. Irreducibility of @wp. The results in Sections 2.1-2.3 lead us to prove the following
natural criterion for the irreducibility of isotropy representation (we, W) of K¢ (X).

Theorem 2.9 (cf. [18, Proposition 7.6]; see also [24, Section 5]). The following two con-
ditions on X are equivalent to each other.

(a) (wo, W) is irreducible as a Kc(X)-module.

(b) If N is any (S(g), Kc)-submodule of M = gr X, either the support of N or that of
the quotient M/N is contained in 00.

In this case, we have wo = we(0), or equivalently, the support of IM is contained in
00 by Proposition 2.2.

Proof. The implication (a) = (b) is an easy consequence of the exactness of localization.
In what follows let us prove (b) = (a). First, we note that the condition (b) together
with Remark 2.3 implies that the support of IM is contained in 8O. Thus one gets
we = we(0), or,

W =W(0)=M/m(X)M.
Now, suppose by contraries that W is not irreducible. Then, there exists a K¢ (X)-stable
subspace C of M such that M 2 C 2 m(X)M and that Z := M/C is irreducible as
a Kc(X)-module. The condition C D m(X)M assures that C is S(g)-stable. Thus Z
becomes an (S(g), Kc(X))-module annihilated by m(X).

Next, we consider two induced (S(g), Kc)-modules I'(W) and I'(Z). The quotient
map W = M/m(X)M — Z = M/C gives rise to an (S(g), Kc)-homomorphism, say
v, from ['(W) to I'(Z) in the canonical way. Set T' := v o T'(0), where T(0) : M —
I'(W) is the (S(g), Kc)-homomorphism defined in Section 2.3. Then, as shown in the
proof of [18, Proposition 7.9], the image T"(M) of T" is a finitely generated (S(g), Kc¢)-
submodule of I'(Z) whose isotropy representation is isomorphic to Z. This combined
with T'(M) ~ M/KerT' tells us that the multiplicity of Ker T’ at the prime ideal [
is equal to dimW — dim Z > 0. By the assumption (b), we find that the support of
M/Ker T’ ~ T'(M) is contained in 8O. This necessarily implies Ker T = M, i.e., T' = 0,
because the S(g)-module T"(M) (C I'(Z)) admits no embedded associated primes by
(2.11). Finally, the resulting equality 7’ = 0 means that

y ' -m+m(X)M =T(0)n(y) € C/m(X)M forally € Kc and m € M.
This contradicts C # M. O

Example 2.10. Let X be an irreducible unitarizable highest weight (g, Kc)-module
of a simple hermitian Lie algebra g, with extreme Kc-type V;. In [23, Section 5], we
have described the isotropy representation weo = we(0) explicitly, when X is the theta
lift of an irreducible representation of the compact groups G' = O(k), U(k) and Sp(k)
with respect to the reductive dual pairs (G, G') = (Sp(n,R), O(k)), (SU(p,q), U(k)) and
(SO*(2n), Sp(k)), respectively. In particular, one finds that the representation we is
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irreducible if the dual pair (G, G") is in the stable range with smaller member G'. In this
case, X <> w}, essentially gives the Howe duality correspondence. See also [11].

It should be an important problem to specify the isotropy representations we attached
to (singular) unitary highest weight modules X, for the remaining simple hermitian Lie
algebras g with real forms o(p, 2), EIIl and EVII. Toward this problem, an interesting
investigation has been made by Kato and Ochiai [9, Section 5.2] for EVII case.

3. UTILITY OF THE DUAL (S(g), Kc)-MODULE

In this section, we do not assume that the associated variety V(X)) of X is irreducible.
Let M = gr X be the graded (S(g), Kc)-module attached to an irreducible (g, Kc)-
module X by (2.1) and (2.2). For any nilpotent element X € p, we can define m(X),
W(0) = M/m(X)M and (S(g), Kc)-homomorphism T'(0) : M — T'(W(0)), just as in
Section 2. We are going to make a simple observation on the Kc-finite dual M* of M
realized as a space of V,*-valued polynomial functions on p. This will be helpful to describe
in Section 4 the isotropy representation we for discrete series X.

First, the tensor product S(p) ® V; admits a natural structure of (S(g), Kc)-module so
that £ annihilates the whole S(p) ® V,. Since M = S(p)V, with V; = M,, there exists
a unique surjective (S(g), Kc)-homomorphism, say 7, from S(p) ® V; to M such that
(1 ®v) = v for v € V. We write N for the kernel of 7. This is a graded (S(g), Kc)-
submodule of S(p) ® V,. On the other hand, we identify S(p*) ® V.* with the space of
polynomial functions on p with values in V,* = Hom¢(V;,C). This space also becomes
an (S(g), Kc)-module on which g acts by directional differentiation through the quotient
map g — g/& ~ p. Note that the action of S(g) on S(p*) ® V;* is locally finite.

Then, it is standard to verify that

(SP)Y®V:) x (S(P*) @ V7) > (D®v, f) — (D ®w, f) €C,

(D®wv, f) = (("D- £)(0),v)v:xv,,

gives a nondegenerate (S(g), Kc)-invariant pairing, where T denotes the principal auto-
morphism of S(p) such that 7Y = —Y for Y € p, and (-, - )v:xv, is the dual pairing on
V* x V;. Now, let M* denote the Kc-finite dual space of M, viewed as an (S(g), Kc)-

module through the contragredient representation. We write N for the orthogonal of N
in S(p*) ® V.* with respect to (-, -). Then, (3.1) yields a nondegenerate invariant pairing

(3.2) (-, )1:MxN*+—C,

(3.1)

which gives an isomorphism of (S(g), K¢)-modules as
(3.3) M*~NtcCS@p)eV,.

For an integer n > 0, we denote by (N1), the homogeneous component of N* of degree
B (N4)a = N* 01 (S"(5°) @ V7).
Noting that M = V; + m(X)M, we have a natural K¢(X)-homomorphism

V. — W(0) = M/m(X)M —> 0.

This induces an embedding W(0)* — V.* by passing to the dual. In this way, we regard
W(0)* as a K¢(X)-submodule of V*.
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For each integer n > 0, let ¥,, be the Kc-submodule of S*(p*) ® V.* generated by the
vectors X" ® v* (v* € W(0)*):
(3.4) U, = (X"Qv* | v* € W(0)") k.
Here the polynomial function X™ ® v* € S™(p*) ® V;* is defined by
X"®@v*':p>3Z+— B(X,Z)"v* €C
through the Killing form B of g. We set

¥i=Pv. cS5E) eV
n=0

Then, it is standard to verify the following

Lemma 3.1. (1) ¥ is an (S(g), Kc)-submodule of S(p*) ® V,* contained in N*.

(2) We write +U for the orthogonal of ¥ in M with respect to the pairing ( -, - ); on
M x N+. Let T(0) : M — T'(W(0)) be the (S(g), Kc)-homomorphism defined in Section
2.3. Then, one gets

(3.5) KerT(0)N M, = ¥ N M, for every integer n > 0,
In particular, *¥ = @, 1V N M, is contained in Ker T(0).
Proof. (1) It is easy to see that ¥ is (S(g), Kc)-stable by noting that
Y- ((Ad(y)X)" ®y - v") = nB(Ad(y) X, Y)(Ad(y)X)" "' @y - v* € ¥y,
for Y € g, v* € W(0)* and y € K¢. To prove ¥ C N+, let ¢,. denote the linear form on
S(p) ® V;, which is the pull back of v* € W(0)* through the quotient map
S(p)®V, — M — W(0) = M/m(X)M.

Then ¢, is zero on the subspace m(X)® V;, + N C S(p) ® V.

Ifm=3Y"®uv (Y; € p,v; € V;) is a homogeneous element of N of degree n, it
follows that

(m, X"®v*) = Zn!B(X, Yi) " (vj, v* v, xve = nlpys (1) = 0,
J

by noting that Y* — B(X,Y;)" € m(X). Hence one gets (Ad(y)X)"®y-v* € y- N+t = N+
for all v* € W(0)*, y € K¢ and n > 0. Thus we obtain (1).

(2) Let m =3, Y*- v; be an element of M, with Y; € p and v; € V;. Just in the proof
of (1), we see that m € 1V if and only if

0=(m, (Ad@X)" @y-v) = > n!B(Y;Ad@)X)" (™" - vy, v")vxyy
J
= n{(T(0)m(y), v*)wio)xw(oy

for all v* € W(0)* and y € K¢. This means m € KerT(0). O

Now, let O = Ad(Kc)X be the nilpotent Kc-orbit through X. We write I for the
ideal defining the Zariski closure O of O, and let {D;| i = 1,...,7} be a finite set of
homogeneous elements of S(p) which generates the ideal . We set n(i) := deg D;.

Proposition 3.2. Assume that Wn5) = (N1)a fori = 1,...,7. Then we get I C
Anngg M. In this case, the multiplicity of M at I equals dim W(0) by Lemma 2.1.
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Proof. We see for every v € V, that
T(0)pw(y) = (D; - T(0),)(y) = Di(Ad(3)X) T(0)s(y) = 0 (y € Kc),

since D; € I and Ad(y)X € O. It then follows that D;v = 0 by Lemma 3.1 (2) together
with the assumption ¥,y = (N+)n(), which is equivalent to L% N M, = {0}. Hence,
D; annihilates V, and so the whole M = S(p)V,. This shows the assertion. O

In particular, if the associated variety V(X) is irreducible, i.e., V(X) = O, as in previous
sections, the conclusion of the above proposition turns to be

(3.6) I =AnnggyM, and W = W(0).

In this case, the dual K¢(X)-module W* = W(0)* can be specified by means of the
principal symbol of a differential operator on p of gradient-type (see [24, Theorem 4.1}).
Moreover, the (S(g), Kc)-module ¥ is almost equal to N1 ~ M*, because the support of
1% C KerT(0) is contained in dO by Proposition 2.5.

4. ISOTROPY REPRESENTATION ATTACHED TO DISCRETE SERIES

In this section, we assume that g = € @ p is an equi-rank algebra (cf. [12]), i.e.,
rank g = rank £, and we study the isotropy representations attached to irreducible (g, K¢)-
modules of discrete series, by refining our discussion in [22].

4.1. Discrete series. We begin with a quick review on the discrete series representations,
and let us fix our notation. As is well known, the complex Lie algebra g has a §-stable
real form go such that

go="8®dpo with & :=E€Ngo, po:=pNgo,

gives a Cartan decomposition of go. Such a real form g, is unique up to Kc¢-conjugacy.
Take a maximal abelian subalgebra t; of &, and we write t for the complexification of t,
in €. Since g is an equi-rank algebra, t turns to be a Cartan subalgebra of g. We write
A for the root system of (g, t). The subset of compact (resp. noncompact) roots will be
denoted by A, (resp. A,).

Let G be a connected Lie group with Lie algebra of go such that K¢ is the complexifica-
tion of a maximal compact subgroup K of G. An irreducible unitary representation o of G
is called a member of discrete series if the matrix coefficients of o are square-integrable on
G. We are concerned with the irreducible (g, K¢)-modules X of discrete series, consisting
of K-finite vectors for such o’s. For example, we refer to 7], [13], and also [19, I, Section
1] for the parametrization and realization of discrete series representations.

Now, let X = X, be the (g, Kc)-module of discrete series with Harish-Chandra pa-
rameter A € t*. Since the parameter A is regular and real on v/—1t;, there exists a unique
positive system A* of A for which A is dominant:

(4.1) At :={a€eA| (A a) >0}

We denote by (7, V) the unique lowest Kc-type of X which occurs in X with multiplicity
one. Set A} := At N A, (resp. A} := At NA,;). The Af-dominant highest weight A
(say) for 7 is called the Blattner parameter of X. Then, ) is expressed as A = A — p. + p,,
with p. := (1/2) - Yqear @ and pn = (1/2) - 350+ B-
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4.2. Results of Hotta-Parthasarathy. In what follows, we assume that the Blattner

parameter A of X is far from the walls (defined by compact roots) in the sense of [19,

I, Definition 1.7]. Let M = gr X = @,>9M,, be the graded (S(g), Kc)-module defined

through the lowest Kc¢-type V;. As in Section 3, we have a natural quotient map 7 :

S(p)® V; - M with N = Kern. This subsection explains the structure of graded

modules M, N, and M* ~ N by interpreting the results of Hotta-Parthasarathy [7].
For this, we first decompose the tensor product p ® V; as

pV, =V @V~ as Kc-modules,

where V¥ denotes the sum of irreducible Kc-submodules of p ® V; with highest weights
At B (B € A}), respectively. The inclusion V.- < p ® V, naturally induces a quotient
map of K¢-modules:

(4.2) P:p*"@V:=0(p&V;)" — (V).

Hereafter, we replace p* by p through the identification p = p* by the Killing form By,,.
Let B, be the Borel subgroup of K¢ with Lie algebra b, = t&® Zae a: 9a; Where g, is
the root subspace of g corresponding to a root a. We set

(4.3) Pt = @ 815

Then, we have p = p, @ p_ as vector spaces, and p_ is stable under the action of B..

If U is a holomorphic B.-module, the i-th cohomology space H*(Kc/B,;U) of K¢/B.
with coefficients in the sheaf of holomorphic sections of the vector bundle K¢ x . U has
a structure of K¢-module.

The following theorem can be read off from the proof of [7, Theorem 1], by taking into
account the Blattner multiplicity formula [8] for discrete series. (See also [13]; [22].)

Theorem 4.1 (Hotta-Parthasarathy). (1) One has N = S(p)V,~.
(2) The orthogonal N+ of N in S(p) ® V;* coincides with the kernel of the differential
operator D on p of gradient-type defined as follows:

(4.4) (DF)(Z) :=PQ_Xe® (Xe- f)(2)) (feSp)®V;, Zep).
L

Here {X,}4 is an orthonormal basis of po with respect to the Killing form.
(3) For every integer n > 0, the dual M of M,, is isomorphic to the cohomology space:

H*(Kc/Bs; S™(p-) ® C_x_3,.) with s:=dimKc/B.,

as a Kc-module. Here C_5_, denotes the one dimensional B.-module corresponding to
_A - 2pc e t*-

Remark 4.2. The operator D in the above theorem gives the “polynomialization” of an
invariant differential operator of gradient-type (on the Riemannian symmetric space for
(80, €0)) whose kernel realizes the maximal globalization of dual (g, Kc)-module X* of
discrete series.
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4.3. Description of associated cycle. For a positive number ¢, we say that a linear
form p on t satisfies the condition (FFW(c)) if

(FFW(c)) (p,0) >c forall a€ A

Theorem 4.1 coupled with the Borel-Weil Bott theorem for the group K¢ leads us to the
following proposition, which is crucial to describe the associated cycle of X.

Proposition 4.3 (cf. [22, Section 6.1]). (1) Let vy be a nonzero lowest weight vector of V!
of weight —X. Then, N+ = Ker D contains the Kc-submodule (S(p_) ® v})k. generated
by S(p-) ® v3.

(2) For any integer n > 0, there ezists a positive constant ¢, such that

(4.5) | (NF)n = (S™(p-) ® V) ke
holds if the Blattner parameter A satisfies the condition (FFW(cy,)).

Now, let © be the unique nilpotent Kc-orbit in p which intersects p_ densely. Then one
sees that O = Ad(Kc)p—. As before, we write I for the prime ideal of S(g) defining O.
It follows from the the claim (1) in Proposition 4.3 that AnnggM C I, ie., V(X) D 0.
Also, the same claim shows p_ ® v} € Ker P, which can be easily verified by noting that
—\— 3 (B € A}) cannot be a weight of (V,7)*.

Take an element X € O Np_. By virtue of our discussion in [24, Section 3], we find
that the K¢(X)-module W(0)* = (M/m(X)M)* C V;} consists exactly of all the vectors
v* € V* satisfying P(X ® v*) = 0. Let Ng(X,p-) be the totality of elements k € Kc
such that Ad(k)X € p_ (cf. [3]). For any subset R of Nk.(X,p-), we denote by Ux(R)
the K¢ (X)-submodule of V.* generated by R~ - vj:

Ur(R) == (R™" - 0} ) ke(x)-
Then, we readily find from p_ ® v; € Ker P that
(4.6) Us(R) c W(0)*, andso (X" ®@UrN(R))k.C ¥n C (N,
for every n > 0. Moreover one gets the equality
(4.7) (X" ®ULNR) )k = (S™(p-) ® V3 )k

if Ad(R)X C p_ is Zariski dense in p_. This is true when R equals the whole Nk, (X po),
because Ad(Ng(X,p-))X = ONp_ is dense in p_.

As in Section 3, we take homogeneous generators D; (i = 1,...,7) of the ideal I such
that deg D; = n(i). We set ¢(I) := max;(ca(3)). By virtue of Proposition 3.2 together with
(4.5), (4.6) and (4.7), we come to the following conclusion. :

Theorem 4.4. Assume that the Blattner parameter A of discrete series X is far from
the walls and that it satisfies the condition (FFW(c(I))).

(1) One gets I = AnngiyM and so V(X) = Ad(Kc)p- = O. Moreover, the Kc(X)-
module W* contragredient to the isotropy representation (wop, W) is described as

(4.8) W =W(0)* = {v* € V)| P(X ®v*) =0},
where X € ONp_, and P : p® V* — (V.7)* is the Kc-homomorphism in (4.2).

T
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(2) Let R be a subset of Nk (X,p_) such that Ad(R)X is Zariski dense in p_. Then,
the Kc(X)-submodule Up(R) = ( R™'-v})ko(x) C W* is ezhaustive in the following sense:
for every integer n > 0, one has

(4.9) (X" @ Wk = (X" @ U (R)) ke
if A satisfies FFW(cy).

Remark 4.5. (1) The assertions I = Anngg)M and V(X) = Ad(Kc)p- = O have been
obtained in [22]. But, in that paper, we did not discuss the possibility of applying the
results to describe the isotropy representation.

(2) One should get a result similar to Theorem 4.4, more generally for the derived
functor modules Aq()).

(3) Compare Theorem 4.4 (1) with Chang’s result [3, Proposition 1.4] established by
means of the localization theory of Harish-Chandra modules.

4.4. Submodule U (Q.). In this subsection, we give a natural choice of R C Nk (X,p_)
for which we expect to have the property (4.9). Let IT be the set of simple roots in A*.
We write S = [INA, for the totality of compact simple roots. Then, there exists a unique
element Hg € t such that

0 ifaesS
Hg) = ’
o(Hs) {1 if o € TI\S.

The adjoint action of Hg yields a gradation on the Lie algebra g as
s=EP 9j) with g(j):={Z €| (adHs)Z = jZ}.

J
Here j runs through the integers such that |j| < §(Hs) with the highest root 6. Note that

t= P s, p=E () with p.= P g())

J:even j:odd 3>0,0dd

Now, we set

q:= @ g(j), l:=g(0)Ct and u:= @ a(5)-
<0 j<0

Then, q = [® u gives the Levi decomposition of the standard parabolic subalgebra q of g
associated with the subset S of II. We write @ (resp. Q.) for the parabolic subgroup of
Gc := G¥ (resp. of Kc) with Lie algebra q (resp. qN€). The group Q (resp. Q.) admits
the Levi decomposition @ = LU (resp. Q. = L.U.), where L and U (resp. L. and U,)
are the connected subgroups of @ (resp. Q.) with Lie algebras [ and u (resp. [ and un )
respectively. Note that Ad(L.) = L. The parabolic subgroup @ acts on its nilradical u,
and so Q. acts on p_ = pNu by the adjoint action. Thus, Q. is contained in Nk (X,p_)
for all X € p_, and the corresponding K¢(X)-submodule U, (Q.) of V.* turns to be

(4.10) Ur(Qc) = ((V:\Lc)*)Kc(X)'

Here, (V;)* = U(l)v; denotes the irreducible L.-submodule of V;* generated by the lowest
weight vector vj.
We can now apply Theorem 4.4 to deduce
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Corollary 4.6. Under the assumption in Theorem 4.4, the Kc(X)-submodule Ux(Q.) of
W* is ezhaustive in the sense of (4.9), if p_ is a prehomogeneous vector space under the
adjoint action of the group Q., and if X € O Np_ lies in the open Q.-orbit in p_.

4.5. Relation to the Richardson orbit. We end this article by looking at the condition
for p_ in Corollary 4.6, and also some related conditions, in relation to the Richardson
Gc-orbit associated with the parabolic subalgebra gq.

First, let us recall some basic facts on the Richardson orbit (cf. [6, Chapter 5]). The
Gc-stable subset G¢ - u (C g) forms an irreducible affine variety of g whose dimension
is equal to 2dimu. Noting that G¢ - u consists of nilpotent elements only, there exists a
unique Ge-orbit @ such that

@ = GC ‘U,
by the finiteness of the number of nilpotent G¢-orbits in g. O is called the Richardson
Gc-orbit associated with q. The parabolic subgroup @ acts on u prehomogenenously, and
O N u turns to be a single Q-orbit in u. Moreover, the centralizer in g of any element
X € ONuis contained in g.

Now, we have two nilpotent G¢-orbits G¢-© and O with the closure relation G¢-O C 0.
By virtue of a result of Kostant-Rallis {10, Proposition 5|, this relation implies that

(4.11) dimO = —;—dimGC-Og -;—dim(’3=dimu.

In particular, we find that the Gelfand-Kirillov dimension dim V(X)) = dim O of discrete
series X cannot exceed dimu. The following proposition tells us when these two orbits
turn to be equal.

Proposition 4.7. The following three conditions (a), (b) and (c) on the positive system
AT = {a| (A, a) > 0} are equivalent with each other:

(@) Gc- 0 =0, (b) dmO=dimu, (c) ONnp_#0.

In this case, O N p_ is a single open Q.-orbit in p_, and so one gets the conclusion of
Corollary 4.6.

Proof. The equivalence (a) < (b) is a direct consequence of (4.11). The condition (a)
immediately implies (c), since O (C G¢ - @ = O) contains an element of p_. Conversely,
if O Np_ # 0, this is a nonempty open subset of p_, since O Np_ = (O Nu) N p_ with
O Nu open in u. Hence, @ N p_ intersects O. We thus get (c) = (a). This proves the
equivalence of three conditions in question.

Next,we assume the condition (b) (& (a) < (c)), and let X be any element of ONp_.
We write 35(X) for the centralizer of X in a Lie subalgebra s of g. By noting that
3g(X) C q, the dimension of the @ orbit Ad(Q.)X is calculated as

dimAd(Q.)X = dimqN¥—dim3gne(X) = (dim€ — dimu N &) — dim 3¢(X)
= dimQO -dimuNt=dimu - dimunNé=dimp_,

where we used the condition (b) for the forth equality. This shows that the orbit Ad(Q.) X
is open in p_ for every X € O Np_. We thus find that O N p_ forms a single Q.-orbit,
because of the uniqueness of the open ).-orbit in p_. O
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Remark 4.8. Each of the conditions (a), (b) and (c) in Proposition 4.7 is equivalent to
Assumption 2.5 in [2] concerning the generically finiteness of the moment map defined
on the conormal bundle T (G¢/Q), where Z; is a closed Kc-orbit in G¢/Q through the

origin eQ.

Suggested by Corollary 4.6 and Proposition 4.7, let us consider the following three
conditions on the positive system A™:

(C1) ONp_#0 (& dimO =dimu & G¢-O = O, by Proposition 4.7),
(C2) OnNp_ is a single Q.-orbit,
(C3) p_ is a prehomogeneous vector space under the adjoint action of Q..

Proposition 4.7 says (C1) = (C2), and the implication (C2) = (C3) is obvious.
As for the conditions (C2) and (C3), we can show the following

Proposition 4.9. One gets (C3) if ONg(—1) # 0. Moreover, the equality Ad(Q.)(O N
g(—1)) = ONnp_ assures (C2).

Proof. Let X € ONg(—1). Since O = Ad(K¢)X contains a nonempty open subset of p_,
we find that [¢, X] D p_. We set &, := @;509(27j). Then ¢t = tNqd t, is a direct sum
of vector spaces. Then it follows from the assumption X € g(—1) that [¢,, X] C p, and
[N g, X] C p_. We thus obtain

p-= [E,X]ﬂp_ = [Eﬂq,X].

Hence Ad(Q.)X is open in p_, and one gets (C3).
The above argument shows that any element X € O N p_ lies in the unique open
Qc-orbit in p_. This proves the latter claim, too. O

Following Gross-Wallach [4], we say that a discrete series (g, Kc)-module X is small
if 6(Hs) < 2, or equivalently, g(j) = {0} if |j| > 3. Here ¢ is the highest root of A* as
before. In this case, one has p_ = g(—1), and so the above proposition implies

Corollary 4.10. The positive system A%t corresponding to a small discrete series admits
the property (C2).

Remark 4.11. By case-by-case analysis, Chang (3] proved the property (C2) for any dis-
crete series representations of simple Lie groups of R-rank one.

We can give an explicit, combinatorial algorithm to find out whether or not a given A*
satisfies the condition (C1), for the case of arbitrary discrete series of SU(p,q). We will
discuss it elsewhere.
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