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ON THE ASSOCIATED CYCLES AND THE RESTRICTIONS OF
QUATERNIONIC REPRESENTATIONS

HUNG YEAN LOKE

ABSTRACT. In this paper, we survey some results on the restrictions of quater-
nionic representations. In the process, we will compute the associated varieties and
associated cycles of certain unitary quaternionic representations.

1. INTRODUCTION

This paper introduces the work of Gross and Wallach on the continuation of the
quaternionic discrete series [GW1], [GW2]. It also summarizes my investigation on
the restriction of these representations to quaternionic subgroups in [L3] and [L4]. In
explaining [L3], I have make the following changes.

(i) I have changed the notations to the standard ones in the literatures [Vol] [KnVo.

(ii) T. Kobayashi has studied the restriction of representations which are discretely
decomposable [Kol], [Ko2], [Ko3]. I have included some relevant results.

(iii) The connection between the associated orbits of the quaternionic representations

and the associated variety is given in §4, although I am certain that these are

known to the experts. Certain associated cycles are also computed. These

computations give a new and shorter proof of Theorem 5.1.1.

The calculations done on the associated varieties and associated cycles are new and
they are inspired from discussions with H. Yamashita, K. Nishiyama and Chengbo
Zhu whom I am grateful to. The local theta correspondence of (Fy4 4, G3) is also new.
I have left out most of the proofs and they will appear elsewhere. Finally I would like
to thank the organizers for their invitation to participate in RIMS workshop.

2. QUATERNIONIC REAL FORMS

2.1. Let G(C) be a complex simple Lie group with Lie algebra g. Let G, be a
compact real form with Lie algebra g.. Let 7 be the complex conjugation on g
with respect to g.. Let ho be a compact Cartan subalgebra (CSA) of g. and define
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b = ho®C. Choose a positive root system ®* with respect to h and denote its highest
weight by &. The roots +4& induces an embedding

SIQ(C) — g.
We can further require the embedding satisfies the following:

(i) suy is embedded into g.. We will denote its image by suy(@).
(ii) Let X,Y, H denote the standard basis of sl(C) and let X5, Y5, H5 denote their
image in g. Then we assume that H; € v/—1ho and X5 (resp. Y3) spans the
root space gs (resp. g-z).
The embedding also induces an inclusion SU; — G,. Let SU,(G) denotes its image
in G.. It has Lie algebra suy(@). Let h be the nontrivial element in the center of
SUy(@&). The quaternionic real form g, of g is defined as

go:={X €g:7(X)=ad(h)X}.
The quaternionic real form Go of G(C) is defined as the connected component of the
identity element of the group
{9 € G(C): 7g = hgh™'}.

2.2. Let go = € @ po denote the Cartan decomposition. Then & = suy(&) & m,
where my is a compact reductive Lie subalgebra. Define Iy := /—1IRHj & my.

Let g(;) denote the i-th eigenspace of adHz on g. Then this defines a Z grading on
g. One can show that gy = [, g2y = CX;, g(—2) = CY¥z, gz = 0 if |3 > 2.

Define

1=1091)®8@2), T=1 g1 Dg(-2)-

q and q are opposite #-stable parabolic subalgebras with Levi factor I.

Denote Vyy = g(_1) as the representation of m. This is to avoid confusion with
g(-1) later which is a representation of [. V) is a self dual representation of m. Since
8a1) © g(2) is a Heisenberg algebra, Vjs has even dimension. Let dimV), = 2d.

2.3. The quaternionic real form G, has maximal compact subgroup of the form
Ko = SUz(&) X g M

where my is the Lie algebra of M. Let G denote the (connected) two cover of Gy with
maximal compact subgroup

(1) K =8Uy(&) x M

Let G; denote a compact Lie group. Then a Lie group is a called a quaternionic Lie
group if it is a cover of or covered by G x G,.
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ON QUATERNIONIC REPRESENTATIONS

2.4. For each complex simple Lie algebra there is a unique quaternionic real form.
This is evident from the above discussion. We tabulate M(C) and V3, below where
w; is the fundamental weights as given in Planches [Boul].

TABLE 1
Gy M(C) Vm
SU(2,d),d>2 |GLy (Ui? @ C%) @ (UT4 2 ® C9)*)
Spin(4,d), d > 5 | SL, x Spin(d) C?eC?
Sp(2,2d) Sp(2d) c
F4’4 Sp(6) 7r(w3) = /\3C6 — CG
E6,4 b Z/2Z SL(; A Z/QZ 7r(w3) = /\3(C6
E7,4 Spm(12) : W(Wﬁ) = %-—Spiﬂ
Esg 4 simply connected E; | 7(w;) = 56 dim minuscule
Gz SL, S3(C?)

3. QUATERNIONIC REPRESENTATIONS

3.1. First we will introduce some notations. If V is a vector space, then S"V =
Sym"V and S*V = Y /Sym™V. S2 will denote S*(C?) where C?2 is the standard
representation of SUy(&).

3.2. Set L =U; x M and G/L has a complex structure. Constructions of represen-
tations of G from Dolbeault cohomology Hz(G/L, W) of G-equivariant holomorphic
vector bundles W on G/ L was studied by H. W. Wong [W1] [W2], who generalized the
results of Schmid [S1]. These representations are globalization of certain Zuckerman
modules which we will construct below.

Let H denote the Cartan subgroup of G with Lie algebra . Let W be an finite
dimensional irreducible representation of M with highest weight p with respect to
M N H. Let W[k] = ¥ ® W be a representation of L = U; x M. We define the
following Zuckerman modules:

Ry(WIk]) := Ty (Homyq)U(g), Wik + 2d + 2])1)
LoWIK]) = T, U@) ®ug Wk +2d+2])

In [L3], we denote RI(Wk]) by H(G, W[k + 2d + 2]) instead.

The representations LL(W/[k]) and Ri(W[k]) are the main subjects of this paper,
in particular when ¢ = 1. A result of Enright and Wallach states that LW K]) is
the Hermitian dual representation of R2~*(W/k]). See Theorem 5.3 of [Vo2]. Hence
we will only work with Li(W/[k]). :
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3.3.  We recall some properties of Li(W([k]). See [GW2] and §3.3 [L2].
(i) Li(W[k]) has infinitesimal characters
u+p(M)+(d+1+k)% =u+p(G)+k%.

(i) If k > —2d, then LL(W[K]) # 0 if and only if ¢ = 1.

(iii) Suppose G is not of type A and let o’ be the unique simple root that is not
connected to —& in the extended Dynkin diagram. Then £3(W[k]) is the Harish-
Chandra module of a discrete series representation if and only if £ > —(y, o).

(iv) L3(W[K]) has K-types (K = SUy(a) x M)

(2) Yonmo SEHH R (S™(Var) @ W).

n=0
Note that LL(W[k]) is SUz(6)-admissible. S5"?*RW is called the lowest K-type.

(v) LH(WI[K])) have Gelfand-Kirillov dimension dim Vjs + 1 and Bernstein degree
dim W. dim V).

(vi) LYW[k]) contains a unique quotient generated by the lowest K-type SE**¢RW.
This follows from [W1]. An alternative proof is given after (4). We will denote
this unique quotient in LY(WIk]) by LLWIk]) or L.

From now on throughout the paper, we will assume that k > —2d so that LL(W[k]) #

0. We will call LL(W(k]) and LW k]) quaternionic representations or quaternionic
Harish-Chandra modules.

4. ASSOCIATED VARIETY

In this section if V' is a complex vector space, then V* will denote its complex dual
space. Let p = (po)c.

4.1. We refer to [Vo3] for the definition of the associated variety V(U) and the
associated cycle of a Harish-Chandra module U and its properties. In this subsection,
we will give the definition of V(U) when U is either L(W/[k]) or LLW[k]).

Let T denote the lowest K-type of U. By §3.3(vi), T generates U. Let U,.(g) denote
the canonical filtration of U(g). Then U,(g)T is an increasing filtration on U. Let
Gr(U) = 3 72, Gr,(U) denote the graded module. It is a graded module over the
commutative algebra S°g, and hence over S°p as well. Let Ann(Gr(U)) denote the
annihilator ideal of GrU in S°p. Then the associated variety V(U) of U is defined as
the variety in p* cut out by this ideal.

By construction, V(U) is a cone, that is, tV(U) = V(U) for any nonzero t € C.
Suppose V(U) 2 {0}, we define PO(U) as the image of V(U)\{0} under the canonical
projection p*\{0} — Pp*. We will call PO(U) the projective associated variety.
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The definition of the associated variety of Ri(W[k]) (resp. Ri(W[k])) is similar
and we will not give them here. It is the same as that of LY(W[k]) (resp. L3(W[k])).

4.2. Lie algebra action. We will state a technical lemma which we need later. As
a representation of &, p ~ C2X V). Let u € C? and v € V) and we identify ul®v € p.
Let u; € S5 and v; ® wy € S*(Vi) ® W, then u; X (v1 ® wy) is a K-finite vector
in (2).

Lemma 4.2.1. The Lie algebra action of u® v € p on the vector u; B (v1 ® wi) in

3) (uBv): (u ¥ (1 ® w)) = wy ®w-

where wy € SEF2HEL R (S7E1(Vy,) @ W) and wy = uwy K (vv; @ w).

The above lemma follows from a formula on the Lie algebra actions on Zuckerman
modules in [Wa2]. The actual calculation is a little lengthy so we will omit it here.
The formula for w_ is equivalent to the decomposition of tensor products of certain
finite dimensional representations of M. It is rather complicated and we do not have
a explicit formula for it.

4.3. Lemma 4.2.1 implies that
(4) U (g)(SERW) =D SEPHR (S™(Va) @ W).

n=0

Hence the lowest K-type generates L3(W/[k]) and this proves §3.3(vi).

4.4. By (4), Gr (LYWIK])) = SEPH"R(S™(Var) ®W). We can identify ul(v; ®w)
in Lemma 4.2.1 with a vector in Gr,(£}(Wk])). Then Lemma 4.2.1 gives the following
corollary. '

Corollary 4.4.1. The Lie algebra action of u®v € p on the vector uy B (v, ® wy)
in Gr,(L5(W(k]) is

(5) (R ) - (v B (v; ® wy)) = wuy B (vv1 ® w1) € Grnp1 (L5(WK])).

4.5. Next we recall some elementary algebraic geometry in [Fu].

Let V = V3, and let py : V\{0} — PV denote the canonical projection. Let V
denote a projective variety in PV and let A*(V) =Y  A*(V) denote its coordinate
ring. We define the cone over V as the variety (p;;'V) U {0} in V and we denote the
cone by Cone(V).
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Let P* := PC? and let s : P! x V — P(C? x V) denote the Segre embedding (See
Exercise 4-28 in [Fu|). The coordinate ring of the image of s can be identified with

> meoS"(C?) @ A™(V).
From now on P! x PV is considered as a projective subvariety of Pp* under the Segre

embedding s.

4.6. Now we review the work of Gross and Wallach [GW1] [GW?2].

PV}; is a union of finitely many M (C)-orbits and there is a unique dense orbit. In
other words, 9?-1) is a pre-homogenous vector space as a representation of L(C) =
C* x M(C). Gross and Wallach considers a collection of M(C)-orbits on PV};,. For
every M(C)-orbits O in the collection, they construct a unitarizable Harish-Chandra
module oo of G. This is done on a case by case basis.

Let O be one of these M(C)-orbits and let I(O) = 3°°° I, denote the homoge-
neous ideal of its Zariski closure O. Here I,, # 0 and I, C S"V},. Note that I, is a
representation of M and It is observed I(O) = S*(Vj)I,,. Then there exists k such

that oo = L3(C[k]) and it satisfies the following exact sequence

(6) LIk +m]) 2 LYCIK]) = 00 — 0.
oo have K-types
EOO S?+k+2d(c2) X An(@)

n=0 ~Ma

where ) A"(O) is the coordinate ring of @ in PV}y. In [GW2] O is called the
assoctated orbit of 0.

4.7.  The next proposition gives the associated varieties of LY(Wk]) and oo. Its
proof uses Corollary 4.4.1.

Proposition 4.7.1. (i) Let k > —2d. Then P! x PV}, (in p*) is the projective
associated variety of LYW/[K]).
(ii) P! x O is the projective associated variety of co. In particular oo has Gelfand-
Kirillov dimension dim O + 2 and Bernstein degree Deg® + 1.

If W is the trivial representation, then R}(C[k]) is commonly denoted by A%(\)
where A = k§ (See Eq. (5.6) of [KnVo]). A%(\) will lie in the weakly fair range if
k > —d—1. By Lemma 2.7 of [Ko3], A%(\) has associated variety Ad(Kc) P(gi_y)) =
Cone(P! x PVy,).

Finally Lemma 1.1 in [NOT] gives the following corollary.

Corollary 4.7.2. [Cone(P! x O))] is the associated cycle of 0.
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4.8. Groups of type F and E. . Suppose G is a quaternionic real form of type F
or E. Then PV}; is a union of four M (C)-orbits: Z, Y, X and PV}, \ X.

PVvy2X2YDZ.

Here IP’VA*,‘I\.—X— is Zariski dense and Z is the unique closed orbit in PV3,. X, Y and
Z are associated orbits of three unitary quaternionic representations oy, oy, and oz
constructed in [GW1] and [GW2]. In particular oz is annihilated by the Joseph ideal
in U(g) and it is called the minimal representation of G.

5. RESTRICTIONS

5.1. Next we consider restriction of quaternionic Harish-Chandra modules. Let G’
denote a quaternionic subgroup of G with compact subgroup K’ = SU,(&)x M’. Then
we get Vapr C Vir and we define Vj to be the subspace of Vs such that Vi = Vi @V,
as representations of M’. We will abuse notation and use Res&,U to denote the
restriction of a quaternionic Harish-Chandra module U of G to G'. It is easy to see
that the above decomposition is discrete since Lz(Wk]) is SU,(@)-admissible. See
[Ko3] for the definition of discrete decomposable restriction.

The inclusion I,(O) € S™(Vy) and Viy = Vi @ Vp give rise to the following
natural maps of M’-modules

Sn_m(VM) ® Im(a) — Sn_m(VM) ® Sm(VM) — Sn(VM) — Sn(‘/o)
Let r,, denote the composite of the above maps and let R, denote its cokernel. Define
R. = @, , Rn. Note that R, is a representation of M’ and we write
Rn = ZjWn,j

where W, ; are the irreducible subrepresentations of M.

Let @' = O NPVy and denote its coordinate ring in PV;* by A*(Q') = @A\"((’)’ )-
Then O is cut out by r,(I,,(0)) and R,/Nil(R,) = A*(O").

If W =}, W/ is a sum of irreducible M’ modules, then we define the (g, K')-
module L2, (W'[k]) := 3=, L2, (W/[k]). We can now state Theorem 3.3.1 and Corollary
2.8.1 of [L3].

Theorem 5.1.1. Let 2dy = dim V. Then
(i) Res§oo =Y LL(Ru[k + 2do + 7)) Z D LL(W, lk +2do + n])

n=0 n=0 j
(i) ResGoo 2 ) | LL(A(O")[k + 2do + n]).
n=0

Equality holds if and only if rm(In(O)) generates the ideal of O .

75



HUNG YEAN LOKE

(iii) If r, ts surjective, then r, is surjective for n > m and

m—1
Res&, 00 = Z L3(8"Volk +2do +n]). O
n=0

PROOF. (ii) and (iii) follows from (i). We will sketch a proof of (i) which is a little
different from that in [L2]. We write ResS,00 = Y. Vi. Here the restriction is a
discrete direct sum of quaternionic representations V; since o¢ is unitarizable and
SU,(&)-admissible. Let A’ := > S2 ® S"Vjy. Then Grop is a direct sum of A’-
modules whose generators are the lowest K’-types of V;. We check that R, is such a
minimal generating set. O

5.2. Next we compute the associated variety of the restriction. Write p* = (p’)* &
(C*®Vp)*. Let pr,_,,s denote the canonical projection from p* to (p)*. Similarly we
deﬁne prVA‘rI—’VA.,f' USing VM = VM' (4] ‘/0

Proposition 5.2.1. Let J denote the annihilator ideal of Groy in S*p. Let U’ denote
an irreducible Harish-Chandra module of G' on the right side of Theorem 5.1.1(3).
Then the associated variety V(U') is defined by S°p’' N J.

In particular V(U') contains

Plye_ypy-(Cone(P! x 0)) = C* x (pry; v, (Cone(0)).
The last assertion of the above proposition is a special case of Theorem 3.1 of [Ko3].

5.3. Restrictions of holomorphic representations. Let G be a simple Lie group
such that G/K is a bounded symmetric domain. The reducibility and unitarility
of the continuation of the holomorphic discrete series representations with one di-
mensional lowest K-types were studied by [RV] and [Wal]. The associated cycles
are documented in §7 [NOT]. Our method can also be applied to the restrictions of
these representations to symmetric subgroups [L2]. On the other hand, the restriction
problem for the classical groups can be easily calculated using the compact dual pairs
correspondences [KV] and the Kulda’s see-saw pairs argument. The restrictions of
holomorphic discrete series representations are also known [Ma] [JV].

6. REALIZATIONS OF ORBITS X, Y AND Z.

6.1. Theorem 5.1.1 reduces the restriction problem to the computation of R,,. How-
ever it is still relatively difficult to determine R,,. This is the subject matter in [L4]
where we treat the restrictions of oo of the exceptional quaternionic Lie groups of
type F and E to to certain quaternionic Lie subgroups. For the ease of explaining we
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will only deal with the restriction of oo of G = E8,4 to G' = I:},A X u; SU2 where the
tilde above the group denotes its double cover.

6.2. The data. Set G = Eg4 (Double cover), K = SU, x E;, M = E; and Vjy is
the 56 dimensional minuscule representation of E;. Up to a cover, G’ = E7,4 x SU,,
M' := Spin(12) x SU,. Vi = 7gpinqa2)(we) KC, Vo = C12KC? and dy = 12. Referring
to (6), we have (k,m,0) = (-31,4, X), (-40,3,Y) or (—48,2, Z).

6.3. Next we will describe the explicit realizations of orbits X, Y and Z. The basis
references are [B], [GW1], [GW2], [SK]. We will first introduce the Cayley numbers
Q¢ and Jordan algebra J.

6.3.1. The Cayley numbers Oc. O¢ has an anti-automorphism z — Z called con-
Jjugation. Define N(z) := 2Z = Zz. Then N(z) is a multiplicative norm, that is,
N(z2') = N(2)N(2'). Next define tr(z) := z + z. Then (z, 2') := tr(2Z’) is a bilinear
symmetry form.

6.3.2. Jordan algebra J. Let J be the Jordan algebra consisting of 3 by 3 Hermitian
symmetric matrices of the form

T €3 Co
J= (1718 00,6):=| G 1 a

c2 C1 73

where 7; € C and ¢; € O¢. The composition in 7 is given by Jy0J, = % (N1 s + Joh).
We define an inner product on J given by (X,Y) = Tr (X oY) where Tr denotes the
usual trace of matrices. There is a cubic form

det(J) = 117273 — 1 N(c1) — ’YzN(Cz) — 73N (c3) + tr(ci(cacs))

on J which induces a trilinear form on J such that (J,J,J) = detJ. Finally we
define the bilinear map J x J — J such that (J; x Jp, J3) = (Jy, Jy, J3) for all
J3 cJ.

6.4. Define

Vu=CoJdgaeJeC

and we denote a vector in Vs by (§,J,J',£'). The action of E;(C) on V} is given in
[BI.

(1) X is defined as the zeros of the equation

Fi6,9,01,8) = (X 5,0 X ') = £det(]) = £ det(T) — 2((J, J) - €€
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(ii) Y is defined by {% (v € Vg
- (ili) Z is generated by the E7(C) action on the highest weight vector (1,0, 0, 0).

7. RESTRICTION TO E;4 x SU,

7.1. In order to apply Theorem 5.1.1, it is important to compute the coordinate
rings of these intersections

XNPVy, YNPVy, ZNPVy.

These intersections are Spin(12,C) x SLy(C) invariant in PV;*. In general, these
are rather difficult to compute. The important observation which we need is that
M'(C) = Spin(12, C) x SLy(C) has finitely many orbits on PV;'.

7.2. M'(C)-orbits on PVy [GW2]. Recall V; = C2 R C2. Let e;,e; denote the
standard basis of C? and let (, )} denote the inner product on C2. Let v = w; ® e +
wy®eq € ‘/0*.
PV contains five M(C)-orbits: Z, Y;, Y2, X; and PVy\X;. The orbit PVy\X] is
Zariski dense and X is a hypersurface defined by
wy,w) (wp,w
fi(v) = det ( ng,wig gw;wzg ) .
Y; is the complete intersection of the 3 quadrics
(wl,wl) = (wl,wg) = (1.02,'!.02) =0.
Y: is the subvariety P! x P!. Note that X; C Y; UY;.
Let @ C P! defined by (w;,w;) = 0, then Z; = Q x P! = Y; NY; is the unique
minimal closed orbit in PVj;.

7.3. It is now possible to compute the intersections by checking whether they contain
elements in the M’(C)-orbits.

Lemma 7.3.1. YHPVI):Y;,?OPVO:?U?{ and Z NPV, = Z;. (]

The coordinate rings of above intersections are documented in [GW2] and [L4].
We will not repeat them here. Finally we know that the homogeneous ideal of the
intersection is generated by its elements of lowest degree. We can now apply Theorem
5.1.1(ii) to get the following theorem (see [L4]).

Theorem 7.3.2. Let Vo = mspin(12)(aw; + bws). Then

(i) Respyixsu,0z = 3 Lk (Vnoln — 24]) RS™(C).

n=0
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(i) Resptisu,ov = 3, LL(Vacn—16) RS™*(C?).

a+2b+2c=n,bc=0

(iii) Rest™*  ox = Y *Lh(Varaaeln — 7]) BS™(C?).

7,4 XSU2
(iv) ResgjﬁxSUzﬁé (Clk])) = Z Z L3 (Vayaaclk +n +4m]) B S+ (C?) if k > —6.
m=0

Each summands on the right of the above equation are irreducible and unitarizable.
The summation Y, appearing in (iii) and (iv) is taken over all nonnegative integers
a,b,c,d,n satisfying the relations

n—20<a+2b+2c+4d<n, cd=0, a=nmod(2).

The right hand side of Theorem 7.3.2(i) contains the representation oy of E7 4 when
n = 0. By Theorem 3.7 in [Ko3], P! x Y is the projective associated variety of every
summand on the right hand side of (i).

7.4. Other groups. The restriction of oz for other groups qllaxte/rnioniC groups G can
be similarly computed. For example if G = Fy4 D G’ = Spin(4,4) X (z/22y3 (Z/2Z)?,
then one can show that Z NPV, = {}. Thus the restrictions of oz to G’ decomposes
into a finite sum of irreducible representation of G’ by Theorem 5.1.1(iii). We refer
the reader to [L4] for details.

8. DUAL PAIRS CORRESPONDENCES

8.1. Definition. Let G be one of the exceptional Lie group of real rank 4. A dual
pair is a pair of subgroups (Gi, G2) in Eg4 such that G; is the centralizer of G;;1 in
G for i € Z/2Z. 1t is called a compact dual pair if either G; or G is compact.

For example G = Eg 4 contains the following compact dual pairs:

(i) (E7,4,SUs), (ii) (Ee4,SUs) (iii) (Spin(4,4), Spin(8)), (iv) (F44,Gz2), (v) (G2,2,F4)

Partly motivated by the local theta correspondences for the Weil representation (See
[Ho|, [KV] and many others), it is of interest to know ©(w) where ©(n) is defined by
the following equation

Resg ¢,0z = E O(m) R prfinite dim |

Unfortunately, in all the dual pairs above except Case (i), M'(C) does not have a
dense orbit in PV;. Other methods have been employed. We will briefly discuss the
correspondences. The pair (iv) is given in [HPS]. The pair (i) is Theorem 7.3.2(i)
and it first appeared in [GW1] and [G]. (ii) is given in [L3]. We will state (iii) and
(iv) below: ,
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8.1.1.

E
Resgpin 4.4)x8pin(3)02 = Z(m2 + 1)mx ® Tspin(s) ()
A

Here the sum is taken over A\ = m w; + mywy + matws; + myw,s where w; is the
fundamental weights of Dy. ) is the quaternionic discrete series representation of
Spin(4,4) which has the same infinitesimal character as mgpins)(A). [L2]

8.1.2.
Resgrixc,02 = ) 6(a,) ® ma, (aw; + bumy).
n=0
where
LL (mgp, (atoy + bwy)[a + 2b — 6]) ifob#0
O(a,b) = { L1(s°Cola - 6]))  LL(S*'Cla—7])) ifa#0,6=0
cl(col-e)) ifa=b=0

8.2. Unitary representations. The restriction formula and compact dual corre-
spondences is a very efficient way of producing unitarizable quaternionic representa-
tions. For example, it helps to determine all the unitarizable quaternionic represen-
tations of F, 4 [L1].

8.3. Non-compact dual pairs. J-S Li has obtained the almost all the discrete
spectrum of the restriction of oz to (See [Li2])

SU(1,1) x,, E73 C Eg4.
His method also applies to the dual pairs
SU(1,1) x,, Sp(6,R) C Fyy4
SU(1,1) x,, SU(3,3) C Egg4
SU(1,1) x,, 0*(12) C Eq4.
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