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HYPERFUNCTION SOLUTIONS TO INVARIANT
DIFFERENTIAL EQUATIONS ON THE SPACE OF REAL
SYMMETRIC MATRICES

MASAKAZU MURO

ABSTRACT. The real special linear group of degree n naturally acts on
the vector space of n x n real symmtric matrices. How to determine in-
variant hyperfunction solutions of invariant linear differential equations
with polynomial coefficients on the vector space of n x n real symmtric
matrices is discussed in this paper. We observe that every invariant
hyperfunction solution is expressed as a linear combination of Laurent
expansion coefficients of the complex power of the determinant function
with respect to the parameter of the power. Then the problem is re-
duced to the determination of Laurent expansion coefficients which is
needed to express. We give an algorithm to determine them and apply
the algorithm in some examples.

INTRODUCTION.

Let V := Sym,, (R) be the space of n x n symmetric matrices over the real
field R and let SL, (R) be the special linear group over R of degree n. Then
the group G := SL,(R) acts on the vector space V' by the representation

p(g) : z— g -z := ga'y, (1)
with z € V and ¢ € G. Let D(V) be the algebra of linear differential
operators on V' with polynomial coefficients and let B(V') be the space of
hyperfunctions on V. We denote by D(V)& and B(V)C the subspaces of
G-invariant linear differential operators and of G-invariant hyperfunctions
on V, respectively. For a given invariant differential operator P(z,d) €
D(V)% and an invariant hyperfunction v(z) € B(V)®, we consider the
linear differential equation ’

P(z,0)u(z) = v(z) (2)

where the unknown function u(z) is in B(V)C.
The main problem of this paper is the construction of invariant hyper-
function solutions to the linear differential equation (2). In particular, when
v(z) is a delta-function é(z) on V, this is a problem of the existence and the
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construction of G-invariant fundamental solution for P(z,d). However, it
is difficult to solve these problems for all G-invariant differential operators
P(z,0) on V. In this paper, we assume that all the homogeneous degrees of
the monomial components of P(z,d) are equal to a certain integer k. Then
we say that P(z,0) is homogeneous and call the integer k the total degree of
P(z,0). Furthermore, we assume that the G-invariant hyperfunction v(z)
is annihilated by a homogeneous G-invariant differential operator. Then we
can prove that the solutions to (2) are expressed in terms of the Laurent
expansion coefficients of the complex powers of the determinant functions.
Thus we can apply the author’s result in Muro [12].

We explain the organization of this paper. In §1, we describe the problem
in a general setting and give some notions and notations we use in this paper.
The important notions are homogeneous differential operators and quasi-
homogeneous hyperfunctions. In §2, we introduce G-invariant differential
equations on the real symmetric matrix space Sym,, (R) and hyperfunctions
P'%3](g) given as linear combinations of complex powers of the determinant
function on Sym,, (R). A main result of this section is Proposition 2.1, that
gives generators of the algebra of G-invariant differential operators. In §3,
we define bp-function that will play an important role in this paper and
clarify its properties. In §4, we prove the first main theorem (Theorem 4.1),
which shows that every G-invariant solution to P(z,8)u(z) = 0 is given
as a linear combination of quasi-homogeneous hyperfunctions under suit-
able conditions. In §5, we examine the properties of the complex powers
pla.s] (z) more precisely and, especially prove that every G-invariant quasi-
homogeneous hyperfunction is given by a linear combination of Laurent
expansion coefficients of Pl&] (z) at on point s = X and the converse is true.
In §6, by applying the results in §5, we prove that there exists a G-invariant
solution u(z) of P(z,d)u(z) = v(z) for a G-invariant quasi-homogeneous
v(z) and that it is determined only by its bp-function. In §6, we give a
method to determine the order of pole of Pl%%l(z) as an application of the
author’s result in [12], and introduce “standard basis”. It will be used in the
algorithms in the later sections. In §8 and §9, we give some algorithms to
construct G-invariant solutions for P(z,d)u(z) = 0 and P(z,8)u(z) = v(z),
and in §10 we give some examples.

The aim of this paper is not only to give solution spaces in an abstract
form but also to write algorithms to construct all the solutions for given dif-
ferential equations P(z,d)u(z) = 0 or P(z,0)u(z) = v(x) using the Laurent
expansion coefficients of the complex power function |det(z)|* (s € C). In
order to accomplish our purpose, we prove Theorem 4.1in §4, Corollary 5.7
in §5, Theorem 6.1, Theorem 6.2 and Corollary 6.3 in §6, which are main
theoretical results of this paper. They guarantee that every G-invariant
hyperfunction solution for P(z,d)u(z) = 0 or P(z,0)u(z) = v(z) can be
written as a finite sum of the Laurent expansion coefficients of |det(z)|*
and that the solution space is determined by the bp-function of P(z,d) (see
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Definition 3.1). Then, we give algorithms to construct G-invariant hyper-
function solutions in §8 and §9 for given G-invariant differential equations
and we give some examples in §10 for typical G-invariant differential equa-
tions. '

The author want to stress.that the algorithms (Algorithm 8.1, Algo-
rithm 8.3 and Algorithm 8.2 in §8 and Algorithm 9.1 in §9) and the examples
in §10 are important results of this paper as well as the main theorems (The-
orem 4.1 in §4 and Theorem 6.1, Theorem 6.2, Corollary 6.3 in §6). For ex-
ample, we prove in Proposition 10.2 that every SL,, (R)-invariant hyperfunc-
tion solutions for the differential equation det(z)u(z) =0 on V = Sym,, (R)
are linear sums of SL,(R)-invariant measures on the SL, (R)-orbits in the
set S := {z € Sym,(R) | det(z) = 0} as an application of the algorithm.
This is a natural extension of the fact that the hyperfunction solution to
the differential equation zu(z) = 0 on the real line z € R is only a constant
multiple of the delta function u(z) = ¢ - §(z).

P.-D. Methée’s papers [6], [7] and [8] are pioneer works on this area. He
solved the problem in the case that the indefinite rotation group acts on
the real vector space. The problem of “construction of invariant hyperfunc-
tion solutions for invariant differential operators” seems to have been first
considered by P.-D. Methée[6] in the framework of Schwartz’s distribution
theory. The book by N.N. Bogoliubov et al [1] on quantum field theory took
up his works in the first chapter and present his results precisely. However
Methée’s method was rather primitive and it seems to be difficult to apply
his method to the other cases. The author would like to propose more gen-
erally applicable method using holonomic system theory of D-modules in
this paper. The author thinks that the method employed in this paper is
more universal and applicable to the wide range of the actions of Lie groups
to real vector spaces.

Notations: In this paper, for a square matrix z, we denote by ‘z, tr(z)
and det(z) the transpose of z, the trace of z and the determinant of =z,
respectively. The complex numbers, the real numbers and the integers are
denoted by C, R and Z, respectively. The subscripts signify the properties of
the sets. For example, Z>o means the non-negative integers and Zso means
the positive integers.

1. FUNDAMENTAL DEFINITIONS AND PROBLEMS.

In this section we explain some definitions we shall use in this paper and
describe the problem at a general setting.

Let V be a finite dimensional real vector space of dimension m with a
linear coordinate (zy,...,Z,). Then a polynomial with complex coefficients
on V is given as a complex finite linear combination of monomials 2% :=
et e--zdm with o = (oy,... ,0m) € ZT,. We denote by §; the partial

derivative % with respect to the variable 2; We define a monomial of 3%',’5
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by 0° := 8{31 - 05m with B = (B1, ... ,Bm) € ZZ,. We define the degrees
of multi-index by |a| :=a; + -+ amp and |B] :=B1 + -+ - + B

The generators z1,... ,2y, and 0,... ,0,, are commutative, respectively,
and hence their algebras are polynomial algebras C[zy, ... , z,,] and C[d,... ,
respectively. However, z; and 0; are not commutative in general. They have
a commutation relation

0;z; = z;0; + &;; (3)
where 9;; is the Kronecker’s delta. The C-algebra generated by z;,... ,z,,
and 4y, ... ,0n, with the commutation relations (3) is a non-commutative C-

algebra. We denote it by D(V') and call an element of D(V') a differential
operator on V. A differential operator on V' is uniquely expressed as a finite
linear combination of monomial differential operators

0657°0° = a5 (a3 ---z;’n'")(afl .. 9Pm) (4)

with aos € C. We call the expression of a differential operator using the
monomial forms (4) a normal form of the differential operator.

We shall give definitions of a homogeneous differential operator in D(V)
and its homogeneous degree.

Definition 1.1 (homogeneous differential operators). For a given monomial
differential operator a,3z*d®, we call |a| — |B| (resp. |B|) a homogeneous
degree (resp. an order) of the monomial differential operator a,zz®9°. A
homogeneous differential operator of homogeneous degree k in D(V) is a
differential operator given as a finite linear combination of monomial differ-
ential operators of homogeneous degree k.

Let P(z,0) be a differential operator in D(V'). Then P(z,d) is expressed

as
P(z,0) = Z Z anpz*0P. (5)

k€Z o,B€ZT,
|or|-181=k

Then each term
Py(z,0) := Z anpz 9"

a,ﬁEZ'z"o
|lal-181=k

is a homogeneous differential operator of degree k. Thus we see that
D(V) = D Dx(V)
keZ

where Dy (V') is a C-vector subspace in D(V'). Note that Dy (V) is invariant
under the linear coordinate transformation of V' and a linear coordinate
transformation of V' gives a C-algebra isomorphism of D(V') that preserves

each Di(V). ‘
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On the other hand, P(z,0) is expressed as

P(z,0):= Y > anpz*d’. (6)
k€Zo 0,BELT,
181=k
We call the order of P(z,0) the highest number & in the sum (6). Let ¢ be
the order of P(z,0). Then the differential operator

o(P)(2,0):= Y aapz®d” (7)
o,BELT,
|8l=q

is called the principal part of P(z,0) and the polynomial
o(P)(z,8) := D aopz*E” (8)

,B€ZT,
|8l=q
is called the principal symbol of P(z,d). Here £ is the coordinate of the dual
space of V' corresponding to 0.
From the definition, Di(V') is closed under the additive operation, but
not closed under the multiplicative operation. However we can easily check
that ‘

(aapz°d”) - (0528 = 3 cuetd” (9)

lul=lvl=r

where r = |a| —|8]+ |y| — 8] and ¢, € C are zero except for a finite number
of them. Namely we have

Di(V) x Di(V) 5 (P,Q) — P-Q € D (V) (10)

and Pz Dr(V') gives a gradation of D(V).

Next we shall consider the differential operators invariant under the ac-
tion of a subgroup G C GL(V'), where GL(V) is the general linear group
on the vector space V. The action of ¢ € G to V leads to an algebra
automorphism on D(V) since ¢ € G gives a linear coordinate transfor-
mation on V. We say that a differential operator invariant under the ac-
tion of all ¢ € G a G-invariant differential operator on V. We denote
D(V)G the totality of G-invariant differential operators on V.. We can easily
check that D(V)€ a subalgebra of D(V) and D(V)% = @,z Di(V)€ =
@Bz Dr(V)ND(V)C gives a natural gradation induced from the gradation
D(V) = @yez Dr(V).

Remark 1.1. Let P(z,0) € D(V) be a homogeneous differential operator
of degree k and let Q(z) be a homogeneous polynomial of degree I. Then
the polynomial P(z,3)Q(z) is a homogeneous polynomial of degree k + [.
Namely, the gradation D(V) = .z Di(V) is consistent with the gra-
dation on the polynomial algebra by the homogeneous degree. Similarly
we see that the gradation D(V)¢ = Pz Di(V)C is consistent with the
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gradation on the algebra of G-invariant polynomials by the homogeneous
degree.

Let B(V') be the space of hyperfunctions on V and let B(V)© be the
space of G-invariant hyperfunctions on V. One of the important notions of
this paper is G-invariant of quasi-homogeneous hyperfunctions.

Definition 1.2 (quasi-homogeneous hyperfunctions). We say that v(z) €
B(V) is quasi-homogeneous if and only if there exist a complex number
A € C and a non-negative integer k € Zy satisfying

Fr’)\OF,.’,\O-”OF,.,,\(v)zo (11)

~

k41

for all r € Ryo where F, 5 (v) := v(r - z) — r*v(z) . We call A € C the
homogeneous degree (or simply degree) of v(z) and k € Zy¢ the quasi-degree
of v(z). It is easily checked that (11) is equivalent to

(9 — NFtly(z) =0 (12)

with 9 := 3| z;0;. In particular, when a quasi-homogeneous function v(z)
is of quasi-degree k and not k — 1, we say that v(z) is quasi-homogeneous
of proper quasi-degree k.

For example, let P(z) be a homogeneous polynomial of degree n and let
A be a complex number with sufficiently large real part. Then |P(z)|* is
a quasi-homogeneous hyperfunction of degree An and quasi-degree 0. More
generally, |P(z)|*(log |P(z)|)* is a quasi-homogeneous hyperfunction of de-
gree An and quasi-degree k.

We use the following notations in this paper.

1. QH(A) = {u(z) € B(V) | u(z) is quasi-homogeneous of degree A € C}.

2. QH(\)G :=QH(\) NB(V)C.
3. QH := P, cc QH(N).
4. QH® =@, cQH()NC.

Proposition 1.1. Let P(z,d) € D(V) (resp. € D(V)%) be a non-zero
homogeneous differential operator of homogeneous degree u. If f(z) € B(V)
(resp. € B(V)C) is quasi-homogeneous of degree A € C, then P(z,0)f(z) €
B(V) (resp. € B(V)€) is quasi-homogeneous of degree A + p € C.

Proof. Let P(z,0) = ‘Elal—!ﬁl=u anpz*0” € D(V) be a homogeneous differ-
ential operator of degree u and let 9 := ) 7", z,0;. We prove that

P(2,8)(9 — \) = (9 — X — p)P(z,d). (13)
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For a monomial term a,3z*8® in P(z,d), we have
80p7°0P (9 — \) =aqgz*(9 — A + |B])0°
=aap(d — A +|B] - |af)2*0” -
=(0 = A+ 18] - le)aasz®0” = (9 — A — p)aapzd”,

and hence we have (13). Thus for a quasi-homogeneous f(z) € B(V) of
degree A, we have

(@ = A= w)*P(z,0)f(z) = P(z,0)(9 — N)*f(z) =0

for some k € Zso. Then we see that P(z,d)f(z) is a quasi-homogeneous
hyperfunction of degree A + u.

For P(z,0) € D(V)€ and f(z) € B(V)%, we can prove it in the same
way. O

Remark 1.2. The notion of quasi-homogeneous hyperfunctions is the same

as that of associated homogeneous generalized functions introduced by I.M.’

Gelfand and G.E. Shilov [3], Chapter 1,§4 when we consider the functions
of one variable. In other words, as far as we only consider the case of one-
variable function, “associated homogeneous generalized functions of order
k and of degree A\” defined in the Gelfand-Shilov’s book is just the same
as “quasi-homogeneous hyperfunctions of degree A and of quasi-degree k”
defined in this paper. Gelfand and Shilov introduced this notion to char-
acterize Laurent expansion coefficients of the complex power z* of homoge-
neous function x with respect to the complex variable s € C. We see later
(in §5) that G-invariant quasi-homogeneous hyperfunctions are obtained as
Laurent expansion coefficients of the complex powers |P(z)|$ of G-invariant

polynomial P(2) with respect to the complex variable s € C in the case of
V = Sym,(R) and G = SL,(R).

Now we complete the preparation to explain our problem in general situ-
ation. The problems we shall propose in this paper are the following ones.

Problem 1.1 (Main Problems). Let P(z,8) € D(V)% be agiven G-invariant

homogeneous differential operator.

1. Construct a basis of G-invariant hyperfunction solutions u(z) € B(V)¢
to the differential equation

P(z,0)u(z) = 0.

2. Construct a G-invariant hyperfunction solution u(z) € B(V)@ to the
differential equation

P(z,0)u(z) = v(z).
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for a given quasi-homogeneous hyperfunction v(z) € B(V)€. In par-
ticular, when v(z) = é(z), it is a problem to find a G-invariant funda-
mental solution.

In this paper, we give a method to construct solutions to the problems
in Problem 1.1 in the case that V := Sym_,(R) and G := SL,(R) and con-
struct solutions actually in some typical examples. The condition that v(z)
is quasi-homogeneous in the second problem of Problem 1.1 may seem to
be highly restrictive at first glance. However, in our case, we see that many
important G-invariant hyperfunctions such as singular invariant hyperfunc-
tions (like 6(z)) are contained in this class, so the author thinks that this is
a class wide enough for our problem.

2. COMPLEX POWERS OF DETERMINANT FUNCTIONS AND INVARIANT
DIFFERENTIAL OPERATORS ON THE SYMMETRIC MATRIX SPACE.

From now on, we shall deal with the symmetric matrix space Sym, (R) on
which the special linear group SL, (R) acts naturally. Let V := Sym,, (R) be
the space of n X n symmetric matrices over the real field R and let SL, (R)
be the special linear group over R of degree n. Then the group G := SL,(R)
acts on the vector space V' by the representation

p(g) : z —> g -z = ga'g,

with z € V and g € G. The pair (G, V) = (SL,(R), Sym,, (R)) is the object
that we shall study in this paper.
The vector space V' decomposes into a finite number of GL, (R)-orbits;

V= |_| 5{ (14)
0<i<n
0<7<n—i
where
Si = {z € Sym,(R) | sgn(z) = (j,n —i — j)} (15)

with integers 0 < 7 < n and 0 < j < n — ¢ In particular, an orbit in
S is a G-orbit. A G-orbit in S is called a singular orbit. The subset
S; := {z € V | rank(z) = n — i} is the set of elements of rank n — 1.
It is easily seen that § := | |;;(, Si and S; = Lo<j<n—i S7. The strata
{s! }1<i<n,0<j<n—i have the following closure inclusion relation

— .—1 . .
SI>S8 usl,, (16)

where g? means the closure of the stratum S{ .
We denote P(z) := det(z) and we set S := {z € V|det(z) = 0}. The
subset V — S decomposes into n + 1 connected components,

Vi:={z € Sym,(R) | sgn(z) = (i,n — i)} (17)
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with 2 = 0,1,...,n. Here, sgn(z) for z € Sym, (R) is the signature of the
quadratic form ¢, (%) :='0-z - U on ¥ € R". We define the complex power
function of P(z) by

par={ O IS as)

for a complex number s € C. These functions are well defined on V — §
but it is not clear whether they are extended to the whole space V . In
order to make |P(z)|! well defined as a hyperfunction on V, we use the

analytic continuation with respect to s € C. Let §(V) be the space of
rapidly decreasing smooth functions on V. For f(z) € 8(V'), the integral

Zi(f,s) = ]V |P()]2 f(2)de, (19)

is convergent if the real part (s) of s is sufficiently large and is meromorphi-
cally extended to the whole complex plane. Thus we can regard |P(z)|? as a
tempered distribution — and hence a hyperfunction — with a meromorphic

parameter s € C. We consider a linear combination of the hyperfunctions
|P ()|

n
Pl(g) := ) " a; - |P(a)f (20)
=0
with s € C and @ := (ao,ai,...,a,) € C**!. Then P4l(z) is a hyper-
function with a meromorphic parameter s € C, and depends on @ € C"*!
linearly.

Remark 2.1. We call S := {z € V; det(z) = 0} a singular set of V and
we say that a hyperfunction f(z) on V is singular if the support of f(z) is
contained in the singular set S. In particular, any singular invariant hyper-
function is written as a finite sum of quasi-homogeneous hyperfunctions. In
addition, if f(z) is SL,(R)-invariant, i.e., f(g-z) = f(z) for all g € SL,(R),
we call f(z) a singular invariant hyperfunction on V. Any negative-order
coefficient of a Laurent expansion of Pl%®l(z) is a singular invariant hyper-
function, since the integral

/ f@) PN (z)de = Zi( f,s) (21)
1=0

is an entire function with respect to s € C if f(z) € C°(V — S), where
Cs°(V — S) is the space of compactly supported C°°-functions on V-— S.
Conversely, we have the following proposition. Any singular G-invariant
hyperfunction on V is given as a linear combination of some negative-order
coefficients of Laurent expansions of Pl (z) at various poles and for some
@ € C"t!. See [10] and [11]. Thus we see that any singular invariant
hyperfunction is written as a linear combination of quasi-homogeneous hy-
perfunctions.
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As defined in Definition 1.1, homogeneous differential operator of degree
k € Z is given by

P(z,0)= )  anp2°9°
oBELY,
|- 181=k

where m = n(n+1)/2 in the case of symmetric matrix space. The notations
here are written as

0
¢ = (Tij)n>ipi>1, 0= (8;) = (5__
Tij ) n3jzix1
¢ = i B — Bi;
o= 1 =, = ]I &
n252i21 n>j2i>1
with
o= (azj) € ZZO’ |a| = Z o
n>j>i>1
and

B=(B;) €L, 18l= > By

n>ji1
We define 0* by
d 1 i=j
0" =(0%) = (e;— , and ¢;; 1= L 22
(05) (6’33&1) e {1/2 i #j (22)

We shall give some examples of G-invariant homogeneous differential op-
erators.

Example 2.1. We give here fundamental invariant homogeneous differen-
tial operators in the sense that they form a complete set of generators of

D(V)SLa(R) and D(V)GLn(R) which we shall prove in Proposition 2.1.

1. Let h and n be positive integers with 1 < A < n. A sequence of in-

- creasing integers p = (py, ..., pr) € Z"* is called an increasing sequence
in [1,n] of length h if it satisfies 1 < p; < --- < pr < n. We denote by
IncSeq(h,n) the set of increasing sequences in [1, n] of length h.

2. For two sequences p = (py,...,p;) and g = (91,--. ,qn) € IncSeq(h,n)
and for an n X n symmetric matrix z = (z;;) € Sym,, (R), we define an
h x h matrix T(p,q) DY

z(p,q) = (xp.' 93 ) 1<i<3<h-

In the same way, for an n X n symmetric matrix § = (0;;) of differential
operators, we define an A x h matrix a(m) of differential operators by

azpﬂ) = (8;:' dj )ISfSJ'Sh-
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3. For an integer h with 1 < h < n, we define

Py(z,0) := Y det(zpg)) det(8y, ) (23)

p,g€IncSeq(h,n)

4. In particular, P,(z,d) = det(z) det(90*) and Euler’s differential opera-
tor is given by

9
Pi(z,0)= ) zijp— =tz ). (24)
ij

n>j>i>1

These are all homogeneous differential operators of degree 0 and invari-
ant under the action of GL,(R), and hence it is also invariant under
the action of G := SL,(R) C GL,(R).

5. det(z) and det(0*) are homogeneous differential operators of degree
n and —n, respectively. They are invariant under the action of G :=
SL,(R), and relatively invariant differential operators under the action
of GL,(R), with characters x(g) := det(g)? and x~!(g) := det(g)~?,
respectively. ’

Proposition 2.1.

1. Every GL,(R)-invariant differential operator in D(V') can be expressed
as a polynomial in P;(x,0)(i = 1,... ,n) defined in (23). The algebra
D(V)GLnR) s isomorphic to the polynomial algebra C[Py, ..., P,].

2. Every SLy, (R)-invariant differential operator in D(V') can be expressed
as a polynomial in Pi(z,0) (1 = 1,...,n — 1), det(z) and det(d*)
(see Remark 2.2). The algebra D(V)Stn(R) is generated by Pi(z,d)
(¢ =1,...,n— 1), det(z) and det(0*) but is not isomorphic to the
polynomial algebra.

Remark 2.2. The differential operators det(z) and det(9*) are not commu-
tative. Then the polynomial expression of an SL, (R)-invariant differential
operator P(z, ) in terms of P;(x,0) (i =1,...,n — 1), det(z) and det(d*)
is not unique. In this paper, by “polynomial” expression of P(z,d) in terms
of Pi(z,0) (¢=1,...,n—1), det(z) and det(0*), we mean an expression as
a finite sum of monomial terms of the form

Pi(z,0)" -+ P,_1(z,8)"-1 (det(z))" (det(8*%) )P+
with non-negative integers h; (i =1,... ,n+ 1).

Proof. The proof of Proposition 2.1-1 is given in H. Maass [5] pp.66-67. We
go to the proof of Proposition 2.1-2.

Let Q(z,0) be an SLy,(R)-invariant differential operator in D(V). We
want to prove that Q(z,d) can be expressed as a polynomial in P;(z,d)
(¢=1,...,n — 1), det(z) and det(9*). We first show that it is sufficient to
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prove it when @(z,d) is a homogeneous differential operator. Indeed, any
SL, (R)-invariant differential operator Q(z,d) can be decomposed as

Q(z,0)= 3" QW(z,)

kEZ

where Q(F)(z, 3) is the homogeneous part of degree k ,i.e., the sum of all the
monomial terms of degree k. Let c € R and g € SL,(R). Then we have

>_ QP80 =3 QW(c-z,c71-9)

kEZ kEZ
=Q(c- z, ¢t 0)=Q(c-g -x,c”1.tg7L. 0)

=) QW(c-g-z,c7tg710) =) FQW(g- z,%9719),

keZ keZ

and hence we have
QW(z,08) = QW (g - z,'9719),

for each k € Z. This means that each Q(¥)(z,d) is SL,(R)-invariant.
Then if we prove that Q(z,d) can be expressed as a polynomial in P;(z,d)
(¢ = 1,...,n — 1), det(z) and det(9*) when Q(z,d) is a homogeneous
SL, (R)-invariant differential operator, then it is valid for any SL,(R)-
invariant differential operator.

Now we suppose that Q(z,0) is a homogeneous SL, (R)-invariant differ-
ential operator of degree k € Z. If k = 0, then Q(z, d) is GL,(R)-invariant,
and hence we have proved it by Proposition 2.1-1. Then we suppose that
k # 0. Since Q(z,0) is homogeneous and SL,(R)-invariant, Q(z, d) is rela-
tively invariant under the action of GL, (R), and hence we have

Q(g-z,’g7! - 0) = det(9)**' Q(z,9) (25)

for all g € GL,(R) with ¥’ = k/n € Z — {0}.
In fact, since Q(z,d) is relatively invariant under the action of GL,(R),
there exists r € Z satisfying

Q(g : zvtg—l ‘ a) = det(g)rQ(xv a)

for all g € GL,(R). We shall prove that r is an even integer. Since Q(z, &)
is a non-zero polynomial on V' X V*. There exists a suitable point (zo,&) €
V x V* such that Q(zo,&%) # 0. In particular, we may take zo to be
positive definite. By moving the point (zo, &) by the action of GL,(R), we
may assume that z¢ and & have the forms

10 -- 00 [y 0 --- 0 0
01 --- 00 0 yo - 0 0
o= . vereueennnn. and §o= |.. o
0 0 10 0 0 Yn-1 O
0 0 0 1] 0 0 0 yn]
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10 0 0]
01 0 0
If r is odd, then by takingg=|............... , we have det(g) = —
00 --- 1 0
0 0 0 -1

Then we have

Q(z0,%) = Q(g - o,’g™" - &) = det(g)"Q(<0,%o)
= (-1)"Q(z0, &) = (—1)Q(z0,&o)-

From the assumption that Q(zo,&) # 0, this is a contradiction. Then we
have r is an even integer. On the other hand, since Q(z,d) is homogeneous
of degree k, the character det(g)” is a homogeneous rational function on
GL, (R) of degree 2k. Then we have 2k = rn. Since r is even, k is divisible
by n and r = 2(k/n) = 2k’. Thus we have (25).

We shall prove that Q(z, d) is expressed as a polynomial of P;(z,8) (i =
1,...,n — 1), det(z) and det(0*) if Q(z,0) is homogeneous of degree k €
Z— {0} and SL, (R)-invariant in the following. We use the induction on the
order of Q(z, ).

Suppose that the order of Q(:c,@) is zero. Then Q(z,0) is a polynomial
in z. Since Q(z,0) is SL,(R)-invariant, it is expressed as a polynomial in
det(z), and hence the proposition is valid.

Next we suppose that any Q(z, 9) is expressed as an polynomial of P;(z, 8)
(t=1,...,n—1), det(z) and det(0*) if the order of Q(z,d) is less than ¢—1
and if Q(z,d) is homogeneous of degree k € Z — {0} and SL, (R)-invariant.
Then we take one Q(z,0) whose order is ¢ and which is supposed to be
homogeneous of degree k € Z — {0} and SL,(R)-invariant. Note that k is
divisible by n. We put k' := k/n and

K’ £
Pz, ) = {Q(a:,(’))—;llet(a) if k' >0
det(z)"* Q(z,0) ifk' <0
Then F(z,d) is homogeneous of degree 0 and SL,(R)-invariant. Thus,
by Proposition 2.1-1, F(z,d) is written as a polynomial of F;(z,0) (¢ =
1,...,n—1), det(z) and det(0*). Therefore, the principal symbol o (F)(z, £)
is a polynomial of P;(z,€) (i =1,...,n — 1), det(x) and det(£*). Here £ is
the dual coordinate corresponding to 8. Then

_Jo(F)(z,&) det(&)™F  ifk' >0
o(@)(=8) = {det(z)k'a(F)(a:,f) if k' < 0
is not only a rational function of P;(z,€) (i = 1,...,n — 1), det(z) and
det(€*) but also a polynomial of them since Pi(z,§) (¢ = 1,...,n — 1),
det(z) and det(£*) are algebraically independent. Thus we can write
a(Q)(z,€) = R(Pi(z,€),. .. , Pao1(z,§), det(z),det(£7))
where R is a polynomial. Then by puttlng

Q1(z,0) := Q(z,0) — R(Pi(z,0),...,Po_1(z,0),det(z),det(8%)),
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the order of Q1(z,0) is less than ¢ — 1 and @ (z,d) is is homogeneous of
degree k € Z — {0} and SL,(R)-invariant. Therefore, form the induction
hypothesis, Q1(z,0) is expressed as a polynomial of Pi(z,8) (i=1,... ,n—
1), det(z) and det(9*) and so is

Q(z,0) = Q1(2,0) — R(Pi(2,8), .. , Pa_y(,d),det(z), det (37)).

Thus, by induction of the order, we have proved that Q(z,0) is expressed
as a polynomial of Pi(z,0) (i = 1,...,n — 1), det(z) and det(9*) if Q(z, d)
is homogeneous of degree k € Z — {0} and SL, (R)-invariant. O

3. bp-FUNCTIONS OF INVARIANT DIFFERENTIAL OPERATORS.

As we will see later (Theorem 4.1), the most important object for our
problems is the bp-function (Definition 3.1) of the invariant differential op-
erator P(z,0) and its homogeneous degree. In this section we shall define
bp-functions and give some examples.

Proposition 3.1. Let P(z,0) € D(V) be a homogeneous differential op-
erator.

1. The homogeneous degree of P(z,d) is in (n - Z). Namely the homo-
geneous degree is divisible by n. If the homogeneous degree of P(z,0)
is nk, then it is relatively invariant under the action of g € GL,(R)
corresponding to the character det(g)%*,i.e.,

P(g-z,'g™" - 8) = det(9)* P(z, ).

2. If the homogeneous degree of P(z,d) is nk with k € Z, then we have
P(z,0)(detz)* = bp(s)(det z)*+* (26)

where bp(s) is a polynomial in s € C and = € Sym, (R) is positive
definite. We have also

P(z,8)P1%](z) = bp(s) det(z)* P& (z)

= bp(s)sgn(det(z))* P+ (g) (27)
= bp(s) Pl*" oK ()
forallz € V — S. Here we put
@ = ((=1)"*ag, (~1)*Vkqy . a,) € CMHL (28)

3. If the homogeneous degree of P(z,a) is nk with k < 0, then we have
b=E(s - 1)|bp(s) where b=E(s — 1) :=b(s — 1)b(s — 2)---b(s — (—k))
with b(s) := [Ti=, (s + L.

Proof. 1. By Proposition 2.1, any SL, (R)-invariant P(z,0) is written as
a polynomial of F(z,0) (i =1,...,n — 1), det(z) and det(d*). The
homogeneous degrees of P;(z,d) (: = 1,... ,m — 1) are 0 and those
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of det(z) and det(9*) are n and —n, respectively. Therefore the ho-
mogeneous degree of P(z,d) is a multiple of n. On the other hand,
the operators P;(z,d) (i = 1,... ,n — 1) are absolutely invariant under
the action of ¢ € GL,(R) and the operators det(z) and det(0*) are
relatively invariant under the action of ¢ € GL,(R) corresponding to
the character det(g)? and det(g)~2, respectively. Then each monomial
of P(z,0) (i = 1,...,n — 1), det(z) and det(d*) in P(z,0) is rela-
tively invariant and the corresponding character is determined by its
homogeneous degree. Then, if P(z,8)’s homogeneous degree is nk, it
is relatively invariant under the action of ¢ € GL,(R) corresponding
to the character det(g)%*. ‘

. Note that Pl#](z) = 3" | a;|P(z)|¢. For z € V,,, z is positive definite
matrix and |P(z)|5 = (det(z))®. Then there exists a polynomial bp(s)
satisfying '

P(z,0)|P(z)|;, = P(z,0)(det(z))"
= bp(s)(det(z))***
= bp(s)|P(2) |7+
since P(z,d)|P(z)|: is a relatively invariant function under the action

of g € GL, (R) corresponding to the character (det(g))?(*+F) and since
V., is a GL,(R)-orbit. Here, note that the equation

P(z,8)(det(z))* = bp(s)(det(z))*+* (29)

is extended to any ¢ € V — S by an analytic continuation through the
complex domain V' @ C.
Next, for z € V;, we have

|P(@)[; = |det(z)|* = ((-1)"7(det(2)))* = (=1)"7*(det(2))*.  (30)

However, note that the value of the complex power (=1)(=s is deter-
mined by taking a suitable branch of analytic continuation , but it must
be compatible with the branch of analytic continuation of (det(z))°.
Then, for z € V;, we have
P(z,0)|P(z)[{ = P(z,0)((—1)"*(det(2)))°
(1)~ P(z, 9)(det(2))°
(—=1)""9%bp(s)(det())*** (by (29))
(—=1)=9%bp(s)(-1)~ ("R P(2) |3+ (by (30))
(~1)~=bp ()| Pla)
(~1) =0 (5) | P(a) 7.

Then we have
P(z,8) P& (z) = bp(s) Pl*"#+H(z)
forallz e V- S5.
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3. Let P(z,0) be a homogeneous SLy,(R)-invariant differential operator
of degree nk with k < 0. From the result in Proposition 2.1-2, each
monomial in P(z,0) has (det(0*))” with » > (—k). Namely, for a
monomial in P(z,d)

n—1
I1 Pu(z, 0)P"(det(z))*(det(8"))" (31)
h=1
with pp(h =1,...,n—1),q,7 € Z>o, r must be greater than —k. Since
(det(3%))"(det(x))* = b(s —1)b(s — 2) - - - b(s — r)(det(z))*",
the bp-function of P(z,d) must contain b=K(s — 1) := b(s — 1)b(s —
2)---b(s — (—k)) as a divisor.
O

Now we can give the definition of bp-function for a given SL,,(R)-invariant
differential operator P(z,d).

Definition 3.1 (bp-function). Let P(z,8) € D(V)® be a homogeneous
differential operator of homogeneous degree k. We call bp(s) in (26) the
bp-function of P(z,d).

Example 3.1. The bp-functions of the invariant differential operators given
in Example 2.1 can be explicitly computed by using Capelli’s identity.

1. Consider the invariant differential operators

Ph (.’E, a) = Z det(z(P:Q)) det (a{p,q))'
p,9€IncSeq(h,n) ;

defined by (23) for A =1,... ,n. These are not only SL,(R)-invariant
but also GLy, (R)-invariant and their homogeneous degree is 0. The
bp-function of P,(z,d) is given by
i1
be(s) = en T (s + 5) (32)

i=1

with a non-zero constant cp.
2. The bp-function of P(z,d) := det(3*) is given by
- i—1
bp(s) =ca- [J(s + ) » (33)

=1

with a non-zero constant c,,.
3. The bp-function of P(z,d) := det(z) is given by

bp(s) = 1. (34)

The rationality and the negativity of the roots of the bp-function for
P(z,0) := det(9*) is a consequence of the rationality theorem of b-function
by Kashiwara[4]. However the bp-function for a homogeneous differential
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operator P(z,d) in this paper is different from the b-function for a poly-
nomial in the sense of Kashiwara. For a homogeneous differential operator
P(z,0) € D(V)@, any complex number can be a root of its bp-function and
the multiplicity can be also taken to be arbitrary. We shall prove it in the
sequel.

Proposition 3.2. Let P(z,8) € D(V)C be a homogeneous differential op-
erator with homogeneous degree kn and bp-function bp(s). Then we can
construct a homogeneous differential operator with the same homogeneous
degree kn the same bp-function bp(s) as a power product of the differential
operators (24), det(9*) and det(x).

Proof. Let 9 := tr(z - 0*) be the Euler operator defined in (24). Then we

have
%(19 + nA)det(z)’ = %(ns + nA)det(z)®

= (s + A) det(z)’
Then the polynomial
!

f(s) == H(s — Ag )Pk

k=1
with Aq,..., A\ € Cand py,...,p; € Z>p is the bp-function of the homoge-
neous differential operator

P = (1) TI0+mnr

n
k=1
of homogeneous degree 0 where p = p; + --- + p;. Indeed, we have
P(z,0)det(z)® = f(s)det(z)".

If we need a homogeneous differential operator of positive homogeneous
degree nq (g € Zo) with bp-function f(s), we can take

P(z,d) = det( x)q( ) 1;[ (9 + nAg)P*

and obtain
P(z,0)det(z)* = c- f(s)det(z)*7.
For a homogeneous differential operator of negative homogeneous degree

—nq (q € Z>p), we have only to take

p |
P(z,0) = det(0) (1) 0+ nrep

k=1
Then we have

P(z,0) det(x)° = ¢- f(s)bL(s — 1) det(z)*™?
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where b(s—1) := b(s—1)b(s—2) - - - b(s— q) with b(s) := [T, (s+$1). The
divisor b4(s — 1) must be added to bp-function because of Proposition 3.1-

3. O

Remark 3.1. The explicit computation of bp-functions for a given invariant
differential operator P(z, d) is an important problem. The author [13] gives
an algorithm to compute it explicitly. The method employed in [13] is to give
a procedure to rewrite P(z,d) in terms of the invariant differential operators
Pi(z,0) (i=1,...,n-1), det(z) and det(9*) defined in Example 2.1. Then,
since we have computed the bp-functions of P;(z,0) (: = 1,... ,n—1), det(z)
and det(9") in Example 3.1, we obtain the bp-function of the given P(z,d).

The algorithm in [13] is possible to be implemented on some computer
algebra system. But the possibility of completion of the calculation fully
depends on the performance of the computer.

4. FIRST MAIN THEOREM AND ITS PROOF.
The purpose of this section is to prove the following theorem.

Theorem 4.1. Let P(z,8) € D(V)C be a non-zero homogeneous differen-
tial operator with homogeneous degree kn. We suppose that

- the degree of bp(s) = the order of P(z,d). (35)
The space of G-invariant hyperfunction solutions of the differential equation

P(z,0)u(z) = 0 is finite dimensional. The solutions u(z) are given as finite
linear combinations of quasi-homogeneous G-invariant hyperfunctions.

Proof. Note that the functional equation

.} P(z,0)u(z) =0,
M : { u(z) is SLy, (R)-invariant, (36)

and the system of linear differential equation

.} P(z,0)u(z) =0,
s : { (A-z,0)u(z) =0 for all A € sl,(R), (37)

are equivalent. Here, sl,(R) is the Lie algebra of SL,(R), the action of
A€sl(R)toz € V =8ym,(R)is A-z := Az +2'A and (z,£) := tr(z-€) is
a canonical bilinear form on (z,£) € T*V = V x V*, which is automatically
extended to the complexification to (2,£) € T*V¢ = V¢ x V. We shall
use M3 instead of M, in the following.

Lemma 4.2. Suppose the condition (35). Then the system of linear differ-
ential equation M, is a holonomic system. Then the hyperfunction solution
space of M, is finite dimensional.

Proof. In order to show that 91, is a holonomic system, we have only to prove
that the characteristic variety of 9, is a complex Lagrangian subvariety
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in T*V ¢ where V¢ is a complexification of V. From the definition, the
characteristic variety ch(912) of 9M; is given by

ch(mb) = {(IB,'S) € VC X V(,f: fo(r a?lg A é;[??(]g)ld (A ’ §> o 0} (38)
since the differential operators in (37) form an involutive basis of the differ-
ential equation M,. Let ,

W:={(z,) e Ve x Vi | (A-2,€) =0 for all A € sl,,(R)}, (39)
Wo:={(z,§) e Ve x Vg | (A-2,6) =0 for all A € gl,(R)}, (40)
where gl (R) is the Lie algebra of GL,(R). From the definition, we have
Wo=Wn {(z,€) € Vc x V¢ | (z,€) =0}. (41)
Let Tg V¢ be the conormal bundle of Sic :={z € Sym,, (C) | rank(z) =
n — 1} and let T§,.CV(C be its Zariski-closure. Then, we have

 Wo=|JTi Ve, (42)
1=0
and

Wn{(z,6) € Ve x Vi | det(z) =0} = | JTs V¢ C W,
=1 (43)

‘ o n-=1
Wn{(z,6) € Ve x Vi | det(§) =0} = | JT5 Ve C W0
i=0
Moreover, we can prove that

- W — W, is a Zariski open dense subset in W. B (44)

These results (42), (43) and (44) are obtained by computing the GL,(C)-
orbit structure of W explicitly (see the author’s result [9, pp.400]). Since
each Ao :=Tg Vc is an irreducible Lagrangian subvariety in T*V, Wo
is a Lagrangian subvariety in T*V¢.

We prove Lemma 4.2 by showing that the characteristic variety ch(91,)

coincides with Wp. Before proving this, we need some arguments on the
subvarlety W, Wo and W°. Let

= {(z, s0" logdet(z)) € V¢ x V(C |seC-{0},z€eV - S}, (45)

and let W° be its Zariski-closure. Here, §* is a symmetric matrix of differ-
ential operator defined by (22). We shall prove that

Wo=W-Wy and We=W, (46)

It is clear that W° = W if W° = W — W), is valid since W — W, is a Zariski
open dense subset in W. So we have only to prove that W° =W — W,.
We first show that W° C W — Wy. If (20,&) € W°, then det(zo) # 0 and

& = 500" log det(z)|z=z, = So(0) ™!
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with some constant so € C. Then for any A € sl,(R), we have

(A - z0,&) = tr(A - zo&o) = sotr((A - :co)(xo)’l)
= sotr((Azo + zo'A)(z0) ™)
= so(tr(Azo(z0) ') + tr((zo’4)(z0) "))
= so(tr(A) + tr(*A)) = 0,
and hence (zg,&) € W. On the other hand, since

(z0,€0) = tr(zobo) = sotr(zo(20) ') = tr(ln) # 0,

we have (zo,&) € Wo. Then W° C W — W, follows.

Next we prove that W° O W — Wy. Suppose that (zo,&) € W — W.
Then we have det(zo) 7# 0. In order to prove it, we assume that det(zo) = 0.
Then there exists A € sl,(R) satisfying A - o = z¢. Therefore, we have

0= (A . xO,EO) = <30a§0>’

since (zg,&0) € W = {(z,£) | (A-z,£) = 0 for all A € s[,(R)}. This means
that (zo,&0) € Wo and it violates the assumption that (zo,&) € W — W,.
Then det(zo) # 0.

Since &g is not zero and contained in the orthogonal complement of the
tangent subspace

(47)

__ Jthe complex vector spa,ce. gener-
8l (C) - 7o = {ated by A - zo with A € sl,(R). } CTVc,

it is a non-constant multiple of z3!. In fact, z5! is contained in the or-

thogonal complement of sl,(C) - zo by the same argument in (47). On the
other hand, the dimension of sl,(C) - 2o is n(n + 1)/2 — 1 since it is the
tangent space at zo of the subvariety {z € V¢ | det(z) = det(zo)}, which
is an SL,(C)-orbit of z¢ in V¢c. Therefore, the orthogonal complement is
one dimensional and it is generated by z;' and hence & = ¢(zo)~! with a
non-zero constant ¢. Then we have

(z0,%0) = (z0,c(z0)~!) € W°

if (z0,&) € W — Wy. This means W° D> W — Wy. Then, by combining
the fact that W° C W — W, proved in the preceding paragraph, we have
We =W — Wj.

We show that

1
s= (6| . (48)
on the subvariety W° = W — Wj. Since
(z,€) = (z,50" logdet(z)) = (xasm_l)

on W° =W — Wy, we have

(z,€) = (z,s271) = tr(szz™!) = tr(sl,) = snm,
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and hence we have (48). The function s = %(9’7€>lwo can be naturally
extended to W =W — Wy = W° and

Wo =W n{(z,) | (z,£) =0} = Wn{(,§) | s=0}. (49)

Now we go back to the proof of the fact that the characteristic variety
ch(9M;) coincides with Wy. Let nk(k € Z) be the homogeneous degree of

P(z,0) and Let q(q € Z>¢) be the order of P(z,d). We denote by o(P)(z, )
the principal symbol of P(z,d). By restricting P(z,8) to W°, we have

o(P)(z,s0" logdet(z)) = o(P)(z,sz™ ) = s%0(P)(z,z~").
On the other hand, we have
P(z,0)det(z)*
= s%¢(P)(z,0" det(z)) det(z)°~? + ( lower degree terms in s)
= s%0(P)(z,det(z)"10* det(z)) det(z)* + ( lower degree terms in s)
= s9det(z) %o (P)(x,z7!) det(z)*t* + ( lower degree terms in s)
= bp(s) det(z)*+F

From the assumption (35), the bp-function is given by
bp(s) = bos? + bys7™ 1 +---+ b,
with by # 0. Then we have det(z) %o (P)(z,2!) = by # 0 and hence
o(P)(z,z71) = by det(z)*.
Then by considering o(P)(z,&) on W°, we have (z,£) = (z,sz~!) and
o(P)(z,&) o = sla(P)(z,z™!) o = s%bo det(z)* wo'

If k > 0, then o(P)(z,&) is extended to W naturally as s?bo det(z)*. Then

ch(My) = W N {(z,£) | o(P)(=,€) =0} = W {(2,€) | s7bodet(z)" = 0}
=Wn{(=,& | s=0})UWn{(z,¢) | det(z)=0}),

and, by (49) and (43), we have ch(9M;) = Wy. If k£ < 0, then ¢ > —nk and
— 7 -1 — &9 k
o(P),6)| , = s"0(P)(=,3 )|W° — s7bo det(z) |W
= s%bg det(sf_l)kIWo = s7tnkp, det(f)_k|w

since (z,£) = (z,sz~!) on W°. Then o(P)(z,£) is extended to W naturally

as s1t7%py det(€)~* and

ch(Mz) = W N {(2,€) | o(P)(2,£) =0} = W N {(2,€) | ™" bo det(€) ™"}
=(Wn{(z,8) | s=0}UWN{(z,6) | det(£) =0}),

and, by (49) and (43), we have ch(9;) = Wp.
Thus we complete the proof. O
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Lemma 4.3. Let Sol(9M3) be the hyperfunction solution space to the system
of linear differential equation 9My. Then the Euler operator 9 := tr(z0)
is a linear endomorphism on the finite dimensional complex vector space

801(9312) .

Proof. This is clear since 9 is commutative with the differential operators
P(z,0) and (A -z,0)(A € sl,(R)). O

Now we go back to the proof of Theorem 4.1. Let f be the dimension of
the vector space M, and consider the linear map

9 : 8ol(M;) — Sol(My).

We can choose a basis {ui(x)}i=1,..,y of 80l(9M2) so that the matrix ex-
pression of the linear map ¥ with respect to {u;(z)}i=1,..,f is a Jordan’s
canonical form. Then, for each u;(z), there exist an eigenvalue \; and a
non-negative integer k; satisfying

Cwiz) T A 1 0 --v .- 07 . wile) T
ui+1(z) 0 X 1 v .o ui+1(z)
,19 S B 1 B | :
: e 1 0 :
ui+k.'—l(x) | X1 ui+ke—l(x)
| Uik (2) 0 --- - 0 0t bV Uitk ()

From this equation, we have
(9~ )\,-)k""lu,-(a:) =0,

which means that u;(z) is a G-invariant quasi-homogeneous hyperfunction.
This is what we have to prove (see Definition 1.2). a

5. SOME PROPERTIES OF LAURENT EXPANSION COEFFICIENTS OF
COMPLEX POWERS OF DETERMINANT FUNCTION.

The following theorem is well-known, see, for example, [11]. The hyper-
function P%#l(z) with a meromorphic parameter s € C has the following
functional equation (50).

Proposition 5.1. Let " be the symmetric matriz of differential operators
defined by (22).
1. We have .
(det(9*)) P+ (z) = b(s) - PIE**](z)

) (50)
| = b(s) - (det(a)) - PE==1(z)
with @* = @*! .= ((-1)"ao,... ,—n_1,0,) and
bs) = ¢ (s+1)(s+3) -+ (s + o), (51)

where ¢ is a constant.
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2. Psl(z) is holomorphic with respect to s € C except for the poles at
s = —(k+1)/2 with k = 1,2,.... The possible highest order of the
pole of Plé3)(z) at s = —(k+1)/2 is
|5 (*k=1,2....,n-1),
5] (k=n,n+1...., and k + n is odd), (52)
|2£L] (k=n,n+1...., and k + n is even).
Proof. 1. This is a special case of Proposition 3.1-2, and the bp-function
for det(9*) in (51) is well known.

2. This is also well known (See also [12]).
O

Here we give two definitions.

Definition 5.1 (poss1ble hlghest order). Let A € C be a fixed complex
number.

1. We denote by PHO(\) the possible highest order of the pole of Pl&s](z)

at s = A\. Namely we define.

&) A=-EL (k=1,2....,n-1),

z A=kl (k=nn+1...., and k4 n is odd),
pHOM =2l A=—a (F= is odd)

|2=] A=-%= (k=n,n+1...., and k+ n is even),

0 otherwise.

(53)

2. Let g € Z. We define a vector subspace A(}, q) of C*t! by
A}, g) := {@ € C**! | Pl%](z) has a pole of order < g st s =A}. (54)
Then we have A(),g—1) C A(, ¢) by definition. We define A(), q) by

A g) = AN 9) /AN g - 1) ‘ (55)
It is easily verified that A(A,q) = {0} if ¢ > PHO(A) or ¢ < 0. We
have '
PAar.g= P A} g=C - (56)
_9€Z © 0<q<PHO()) ’

In particular, @ = 0 if @ € A(], q) for some ¢ < 0 since A(),¢q) = {0}
for ¢ < 0. However, when ¢ < 0, a pole of order ¢ means a zero of
order —q.

Definition 5.2 (Laurent expansion coeﬁiments) Let A € C be a fixed com-
plex number.

1. We define o(a, )\) € Z by
o(@, \) := the order of pole of Pl#*l(z) at s = \. (57)
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Then o(@, A) € Zyo. We have p = 0(@, \) if and only if @ € A(), p) and

[@] € A(), p) is not zero.

2. Let @ € C**! and let r = 0(@,A) € Z»o. This means that Pl@sl(z) has
a pole of order r at s = A\. Then we have the Laurent expansion of
PlEsl(z) at s = A,

Plasl(z) = i PEAN () (s =AY (58)

w=-r

We often denote by
Laurentgz),\(P[a's] (z)) := PlEA(z) (59)

the w-th Laurent expansion coefficient of Pl%¢l(z) at s = X in (58). It
is easily checked that P2 (z) is linear with respect to @ € C*+1,

We shall investigate some properties of P[""""](z) and their Laurent expan-
sion coefficients Pg ’A](:c) at s = A. First we show the following lemma.
Lemma 5.2. For @ € C"*! let r = o(@,)\) € Zo be the order of pole of
P3sl(z) at s = X and let

PEAe) = 3 PEA(E) (s - 2
wGZZO
be the Laurent ezpansion of Pl%%)(z) at s = X\. Then we have
1 S a
(- )P (@) = PE(a) (60)

for all w € Z and hence ng"\](z) # 0 for all w > —r and PE”\](z) =
0 for all w < —r. In addition, we have (9 — nA)‘+1P£“;§i(z) = 0 and
(9 - nA)‘P['i;I'_}_]i(x) #0 fori=1,2,..., where 9 := tr(z0").

Proof. Note that
~ (9~ n2) P (z) = (s - ) PIEI(g).
Then we have
1 - -
(9 — [@,2] —\¥ — [@A] _
> (=) PE()(s - )Y = Y PEN(z)(s - 2+,

weZ wEZ

and hence

1 , a
=9 = NP (2) = P ()

for all w € Z. Therefore, if PE_;_’\I](:L') = 0, then P,Ef-'. "\](:z:) = 0, and if

Pg’)\](z) # 0, then Pi,ﬁ'\l](m) # 0. Since PE":]I (z) = 0 and Pﬁ"\](x) #0
from the assumption, we have the results by applying (60) repeatedly. O

Then we have the following proposition.
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Proposition 5.3. Let @,b € C**! and let r = PHO()).
1. Let q be an integer in ¢ < r. We have

i-be A\q)
if and only if
Laurentg’_ﬁ_)/\(P @el(g)) = Laurentgz))\( P[‘:s}(z))
forw=—-r,—r+1,...,—q— 1. In particular,
PEsl(z) = P[E,s](x)

if@—be A(X,q) for some g < 0.

2. Letdy,...,dx € C*t! be the vectors satisfying that they are linearly in-
dependent in the quotient space C**t1/A(\, ¢—1) with a positive integer
q. Then, for an integer w with w > —gq, the hyperfunctions

{Laurentii)/\ (P[‘-i‘ ] (@) }i=1,2,... k

are linearly independent.

Proof. 1.1f&@—5 € A()\q), then Pl&=8sl(z)’s order of pole at s = A is
less than ¢q. By expanding the both sides of

pla-bsl(z) = plasl(z) — ploel(g)
as Laurent expansions, we have
Laurentiz)/\ (P[a_g’s] (2))=0 ifw< —gq,
and hence
Laurent( (P[“ I(z)) = Laurents_”__)/\ (PL4l(z))
for w < —¢q. In particular, if ¢ < 0 and @ — be A(A,q), then pla-bsl (z)

has a zero at s = A, which means @ — b=0. Then we have @ = b.
2. For an integer w > —g, if

ZQP[G. /\] ZP[c,a,,/\] 117) =0,

then E Pledils (z)’s order of pole at s = A is strictly less than ¢
by Lemma 5.2. Then Zk c;@; € A(A\ g — 1) and hence E,_l c;a; is
zero in the quotient space C”"'I/A(/\ g—1). Since @;(: = 1,... ,k) are
linearly independent in C**!/A(\,q — 1), we have ¢; = --- = ¢, = 0.
Then

are linearly independent.
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For each A € C, if Pl%4l(z) does not have a pole at s = A, then Pl (z) =

P3s)(g)|,=» is well-defined and a non-zero homogeneous hyperfunction of
homogeneous degree An. If Pl&](z) has a pole at s = A of order P, then
(s = A)PPE3)(z)|,_, is a non-zero homogeneous hyperfunction of homoge-
neous degree An. Furthermore, as we have remarked in Remark 1.2, we can
prove that Laurent expansion coefficients of P& (z) are quasi- homogeneous
hyperfunctions and the converse is also true. We shall prove it in the fol-
lowing Theorem 5.6. Before proving the theorem, we show the following

Lemma 5.4. This is a consequence of the author’s paper [11].
We define a standard basis of C*t1!,

Definition 5.3 (Standard basis). Let
SB := {do,d1,...,8,} (61)

be a basis of C"*!. We say that SB is a standard basis of C"+! at s = ) if
the following property holds: there exists an increasing integer sequence

0<k(0) <k(l)<:--<k(PHOA\) =n (62)
such that
SBq = {50, &1, N ,ak(q)}

is a basis of A(], q) for each ¢in 0 < ¢ < PHO()). It is easily seen that the
representatives of SB, — SB,_; form a basis of the quotient vector space

A2 9) = A(A 9)/A(N g - 1).

We need the following lemma which is essentia.lly proved in [11].

Lemma 5.4. Let v(z) be a G-invariant homogeneous hyperfunction of de-

gree nA,i.e., quasi-homogeneous of degree n\ and of quasi-degree 0 and let
{@o, @1, . an} be a standard basis of C**! at s = X. Then v(z) can be
ezpressed umquely as _

v(z) = Zc Laurent( o(a"’\))(P[“"’](a:))

- 1=0
with suitable ¢; € C(i = 0,...,n) where o(@;,\) is the order of pole of
P[“""’]( ) at s = A. In other words, the elements

{Laurent(—o(a”'\)) (P%)(z))}izo,...

are lznearly zndependent and form a basis of the space of hyperfunctions that
are G-invariant and homogeneous of degree n\.
Proof. In the author’s paper [11, Theorem 5.6], he proved that

1. The dimension of G-invariant homogeneous hyperfunctions of homo-
geneous degree nA is n + 1.
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2. Any G-invariant homogeneous hyperfunction of homogeneous degree
nA is written as

Zcz IP | |s—)\’ (63)

where ¢;(s) are meromorphic functions defined at s = A.

Then we can write as

= Zci(s)|P($)lf|s=A’

1=0

with ¢;(s) = 3¢z ¢ij(s — A) are merombrphic functions near s = A.
We see that cz(s) s are assumed to be holomorphic near s = A. Indeed,
the Laurent expansion of |P(z)|? is given by

Y PEA() (s - N

weEZ

where €; = (0,...,0,1,0,...,0) is the unit vector only whose ¢-th entry is
1. Then we have

n

S NP = > 30 3 esPE s - )

i=0 i=0 jEZ weZ

=§:Z . c,-jpfe‘«él (z) 8—/\)'°

_0 kEZ k=j+w

=Y S P a) o - )

1=0 k€Z weZ

=Sy ARt o e

k€Z weZ

By putting by = Yo ¢i k—w€; Hence we have

S Pl d(z) = o,

weZ

for all £ < 0 and

)= Pf-Y(a). (64)

weEZ
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If w <0, then Supp(Pg"\] (z)) C S (see Remark 2.1), and hence we have,

> P @))y_g= Y PR G|

wEZ wEZ
w20

= Z Zci,k—wP,E,g"'\] (x)IV—S

w€Z =0
w>0

= Z ZQ,k—w'P(z)l?‘(log |P(x)l)wlv_s =0
wE€Z =0 .
w>0
for any k < 0. Since the hyperfunctions in
{IP@)21og|P(2))*} iy,
. w=0,1,...

are linearly independent, we have ¢;x—, = 0 for all i = 0,... ,n, k =
-1,-2,... and w =0,1,.... This means that

¢,j;=0foralli=0,...,nand j =-1,-2,....

Therefore, we may assume that each c;(s) is holomorphic at s = A and b =0
forj=-1,-2,....
By (64), we ha,ve

=Y Pz = Y pleed(y),

w<0 —PHO(A\)<w<0
w€Z

We shall show that each P[b""’"\](z) is homogeneous of degree n\. Indeed,
since v(z) is homogeneous of degree n\ by definition, we have

(9 — Bow(ny — [b_.,,,,\]
n(?’ nA) _PHO%:)SWSO Py (z) = _PHO(XA;SWSOP (z) =
by (60). The non-zero hyperfunctions in
(PEr@) | - PHOOY) < w < 0)
are linearly independent since their support are dimensionally different,i.e.,
dim(Supp(P{!(2))) < dim(Supp(PiZ2(z)))

are if Supp(P[El”\](a:)) # 0, Supp(P, [”"\](x)) #0and —-PHO(A) < w; <
wy < 0, by Theorem A.2 in Appendix A. Then we have

20 = nPE=(a) = Py (e = 0

for each —PHO(A) < w < 0. Therefore, if Pg;“"”\] (z) # 0, then o(b_,,, \) =
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Using the standard basis SB := {dp, @1,... ,d,} defined by (61), SB, =
{@o, @y, ... ,dkq)}is abasis of A(A, q) and SBy—SBy—1 = {@k(g—1)+1+-- - » Tk(g
is a basis of A(A,¢). In the sum

o)=Y PF-),

—~PHO(N)<w<0

if Pg"‘”"\](z) # 0, then o(b_y, A) = —w and b_,, € A(\, —w), and hence we
can write
. k(-w)
b_y = Z ¢;@; + ( alinear sum of @; in ¢ =0,... ,k(—w — 1)).
i:k(—w—l)+1
Since @; € A(\,—w—1) for ¢ = 0,... ,k(—w — 1) and w = —o(d;, ) for
i=k(-w-1)+1,...,k(—w), we have
k(—w) )
(@)= ) aPli.@)

t=k(—w-1)+1

g k) e cidi]
e (a) = PR

Then we have

@)= Y PE-e()

—PHO()\)<w<0
PHO())  k(~w)

=¥ oo wPE @)

—w=0 i=k(—w—1)+1
n

@i\ A\
= Z ciPEo(&.’!,A) (III)

1=0
by defining k(—1) = —1 and ¢; = 0 for ¢ = k(—w — 1) + 1,... ,k(—w) if
2 'w’)‘](z) = 0. This is what we want to prove. 0

By using standard basis of C"*!, we have the following proposition.

Proposition 5.5. Let SB := {dp, dy, ... ,a,} be a standard basis of C**! at
s = X and let rj := o(@;, ) € Zy>o. Then the Laurent expansion coefficients
at s= A

{Laurentg;&j“) (Pw ] (%)) }i=0,1,2,... and j=0,1,2,... n (65)
are linearly independent.
Proof. We have only to show that the elements of the finite subset
{Laurent 7 (P5:)(2)) }ico,1,2,.. k and j=0,12,..m (66)

of (65) are linearly independent. We shall prove it by induction on the
number k. If k = 0, we see that the elements of (66) are linearly independent
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by Lemma 5.4. Next we suppose that it is true when k > 0 and that

k+1 n _
Z Z c,-jLaurentg;';\ﬁ’) (P[‘G's](a:)) =0 (67)

1=0 j=0
where c;; are constants. Then we have

k+1 n )
(0= n0) -3 ey Laurent 7Pl (2))

1=0 j=0
k+1 n

=) cijLaurent| 7D (Pldl())

i=1 j=0
k n )
= Z Z c,-+1,jLaurent£;;j+') (P[“f""] (z))=0
1=0 ;=0
by Lemma 5.2. Then, by the induction hypothesis, we have
Cit1,; =0 foralli=0,...,kand j=0,...,n.
Then, by (67), we have
- . (=r5) [a5,s] _
Zco,_,Laurentﬂ/\ (P**l(z)) =0, (68)
=
and hence, by Lemma 5.4, we have
coj =0 forall j=0,...,n.

Thus we complete the proof by induction. O

Theorem 5.8. Let r := o(d@,\) € Z»o be the order of the pole of Pl33)(g)
at s=A.

1. Then the Laurent ezpansion coefficient of P& (z) at s = X defined by
(59)

Laurentgz)/\ (P22 (2)) = PlEA(g)

is a quasi-homogeneous hyperfunction of degree n\ of quasi-degree r +
w. Conversely, let v(z) € QH(n)\)C, the space of G-invariant quasi-
homogeneous hyperfunctions (Definition 1.2). Then v(z) is written as
a linear combination of Laurent ezpansion coefficients of |P(z)|? at

s= A
2. Let
_ [the vector space generated by
LR w) = {{Laurentii&w[d"sl o laecy) (69
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i.e., the vector space of w-th Laurent expansion coefficients of Plé»*] ()
at s = X. Then we have the direct sum decomposition

QHmN = P LC(\w) (70)
| w’z—wpef%’o(x) | |

Proof. 1. It is clear that pi (z) is a quasi-homogeneous hyperfunction
because we have

(9 — nA) et pEA () =

by Lemma 5.2.

We prove the converse by induction on the quasi-degree of v( ) €
QH(n)\)€. First we suppose that v(z)’s quasi-degree is 0,i.e., v(z) is
homogeneous of degree nA. Then, by Lemma 5.4, v(z) is written as
a linear combination of Laurent expansion coefficients of |P(z)|? at
s=A

Next we suppose that v(z) is written as a linear combination of
Laurent expansion coefficients of |P(z)|? at s = A if v(z) € QH (n)\)C
is of quasi-degree is ¢ — 1. We shall prove this is true even if v(z) is of
quasi-degree is ¢q. Let

vo() = (-71;(19 — nA))70(z).

Then, by Definition 1.2, we have (X (9 — nA))vo(z) = 0, and hence, by
Lemma 5.4, vo(z) is written as

n

w(@) = 3 ciLaurent"S V) (PEA(2)) = 3" e PEA | ()

1=0 1=0
by using a standard basis {dy, @1,... ,d,} of C**1 at s = X and con-
stants ¢; € C. By putting
| @Ay
vi (e Z P—O(a. /\)+q (),
1=0
we have
1 = T, A\
(g (9 — nA)) v (2) = vo(z) — Zc PEO(G},)‘)( )=0
1=0

by applying (60) ¢ times. Then v;(z) € QH(nA)€ and it is of quasi-
degree is ¢—1. By the induction hypothesis, v; (z) is written as a linear
combination of Laurent expansmn coefficients of |P(z)|} at s = A, and
so is

= @i,
v(z) = v (z) + Z(:) ciPEO(&.z,/\)ﬂ(z).
Thus we complete the proof by induction on the quasi-degree.
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2. We have seen that the vector spaces
LC(A\w) (w€Zand w>—-PHO(M))
are linearly independent by Proposition 5.5 since LC(\, w) is generated

by non-zero Laurent expansion coefficients P> (z) where {dy, ... ,d,}
is a standard basis of C**! at s = X\. Then we have the result.
O

By combining Theorem 4.1 and Theorem 5.6, we have the following corol-
lary.

Corollary 5.7. Let P(z,8) € D(V)C be a non-zero homogeneous differ-
ential operator with homogeneous degree kn satisfying the condition (35).
Then G-invariant hyperfunction solutions u(z) to the differential equation
P(z,0)u(z) = 0 are written as finite linear combinations of Laurent ezpan-
sion coefficients of |P(z)|? at a finite number of points.

6. SECOND MAIN THEOREMS AND THEIR PROOFS.
The purpose of this section is to prove the following theorems.

Theorem 6.1. Let P(z,0) € D(V)C be a non-zero homogeneous differen-

tial operator with homogeneous degree kn and let v(z) be a quasi-homogeneous
G -invariant hyperfunction of homogeneous degree n\. We suppose that

bp(s) #0. (71)
Then

1. We can construct a G-invariant hyperfunction solution u(z) € B(V)F
to the differential equation P(z,0d)u(z) = v(z), which is given as a sum
of Laurent ezpansion coefficients of |P(z)|¢ at s = A — k and hence is
quasi-homogeneous of degree n(\ — k).

2. Any G-invariant hyperfunction solution u(z) is given as finite linear
combinations of quasi-homogeneous G-invariant hyperfunctions, and
hence it is written as a finite linear combinations of Laurent ezpansion
coefficients of |P(z)|? at a finite number of points in C.

. Proof. The second statement is derived from the first statement by Theo-
rem 4.1 and Lemma 5.4. Indeed, we see that any G-invariant hyperfunction
solution to the differential equation P(z,d)u(z) = v(z) is a sum of several
quasi-homogeneous G-invariant hyperfunctions, and hence it is written as a
finite linear combinations of Laurent expansion coefficients of |P(z)| at a
finite number of points.

We shall prove the first statement. Let P(z,d) be a G-invariant homo-
geneous differential operator of homogeneous degree nk. For a G-invariant
quasi-homogeneous hyperfunction v(z) of homogeneous degree n)\, we have

v(@) e QHRN®= P Lo\ w).

weZ
w>PHO(\)
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By Theorem 5.6, v(z) is written as a finite sum of the hyperfunctions which
are given as Laurent expansion coefficients of PlEsl(z) at s = X: P ’A](x)
with some w € Z and some @ € C*t!. Thus we have only to show Theo-
rem 6.1 when v(z) = PN (z).
By (27), we have

P(z,0) P@(z) = bp(s) PIT*"+H] () (72)
where bp(s) is the bp-function of P(z,8). By expanding the both sides of
(72) to Laurent series at s = A, we have

P(z,0)P¥)(z) = P(2,0) 3 Pi(z)(s - X"
wEZ
= bp(s) PlF* s+ (1)

=bp(s) 3 PE MM () (s - 0.

w'€Z
Since bp(s) # 0, we can divide it as

bp(s) = (s — A\)Pb(s) with b(A) # 0.

Then PI;(s)_1 is holomorphic at s = A and expanded to Taylor series

b(s)™? Zb s—A

1=0
We have

P(z,0) Y (S 6PN (@) (s - n)*
w€Z 1+j=w )

=P(2,0) Y _b(s)" PP (2)(s — A
JEZ

73

Z P[a# ,\+k] S— A)w’ ( )
w!'€Z

ZP[-‘# )\+k] S /\)w

wEZ
Comparing the both sides of (73), we obtain
P,0)( Y uP (@) = PIZ, (@)
t+i=w
for each w € Z. By arranging the indices we have
a#—k Nk EN
P,0)( Y. bP; J@)) = PEM(a),
i+j=w+p

with M = X 4+ k, which is what we have to prove. Then we can construct a
G-invariant hyperfunction solution u(z) to

P(z,0)u(z) = PE’/\,](Q’)?
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which is written as finite linear combinations of Laurent expansion coeffi-
cients of |P(z)|} at s = X' —k = A. This is true for any G-invariant solution
to

P(z,0)u(z) = v(z)
where v(z) is a G-invariant quasi-homogeneous hyperfunction. O

Next we consider the construction of G-invariant hyperfunction solutions
to P(z,0)u(z) = 0. By Theorem 4.1, a G-invariant hyperfunction solution
u(z) is written as

u(e) = u(z) + - + up(a) (74)

where each u;(z) is a quasi-homogeneous hyperfunctions of homogeneous
degree nA; and A; € C are mutually different complex numbers. Then we
have

P(z,0)ui(z) =0 foreachi=1,2,...,p. (75)
Indeed, we see that
P(z,0)u(z) = P(z,0)u;(z) + - - - + P(z,0)up(z) = 0

where the homogeneous degree of each P(z,d)u;(z) is n); + nk. If some of
P(z,0)ui(z) (: = 1,...,p) are not zero, then they are zero since they are
linearly independent. This is a contradiction. Then we have (75). Then
we have only to construct quasi-homogeneous G-invariant hyperfunction
solution of homogeneous degree n)\, which is written as a finite linear com-
bination of Laurent expansion coefficients of |P(z)|! (¢=0,...,n) at s = A

Theorem 6.2. Let P(z,d) € D(V)C be a non-zero homogeneous differen-
tial operator of homogeneous degree kn satisfying the condition (35). Then
we can construct the G-invariant quasi-homogeneous hyperfunction solu-
tion of homogeneous degree n) to the differential equation P(z,0)u(z) =0
as a finite linear combination of Laurent ezpansion coefficients of |P(z)|s
(i=0,...,n) at s = A. It is determined by the homogeneous degree kn and
bp(s) and does not depend on P(z,d) itself.

Proof. Let P(z,0) be a non-zero homogeneous differential operator of ho-
mogeneous degree kn and whose bp-function is bp(s). Then we have
P(z,0)P*)(g) = bp(s) PI*"++H](z).
We expand the both sides into the Laurent series. By the Laurent expansions
bp(s) =) _bi(s — A,
1€EZ
PEel(g) =)~ PlEN(z) (s - A)¥,
wEZ
a#k s a*k \+k j
PEetie) = 3 BT @) s -
JEL
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we have
P@,8) Y PENG) (s - N =Y 3 6P M) (s - ayv.
wEZ wWEZi+j=w
Then we have
(CI) 6)P[a Al :I:) Z b; P[a#k )\+k]( )
t+i=w

When u(z) is given as a quas1-homogeneous hyperfunction of degree nJ, it
is written as a finite sum

g
=S PN - (76)

, p=1
with w, € Z and @, € C"*!. Then

P(w,a)u(:c) _ Z Z b; P[ap ,)\+k] Zzbwp_JP[ap ,)\+k]( )

Pl Hhi=up p=1j€Z

= Z Xq: bwp—jp}a#k,)""k] (.’l?) — Z P}z;’,:l b'”p—j&.#k,/\-i-k] (m)
JEZ p=£ ‘e

=Y P ),
j€ez

where & :=371_, bwp_Jd'fk This is a finite sum since ¢; = 0 for sufficiently

large |j|. By Theorem 5.6, non-zero elements in {P[CJ ’A+k]( )| j € Z} are
linearly independent. Then P(z,0)u(z) =0is equlva.]ent to that

[& Ak, \ . '
P (z) =0 for all j € Z. (77)

Thus we can construct a solution u(z) as a function of the form (76) satis-
fying the condition (77). The condition (77) depends only on k and bp(s).
Then the condition for G-invariant u(z) to be annlhllated by P(z,0) de-

pends only on k and bp(s).
O

Corollary 6.3. Let P(z,0),Q(z,0) € D(V)© be non-zero homogeneous
differential operators with the same homogeneous degree and satisfying the
condition (35). We suppose that their bp-functions coincide with each other.

Then the G-invariant hyperfunction solution space of the differential equa-
tion P(z,0)u(z) = v(z) coincides with that of Q(z,0)u(z) = v(z).

Proof. We have seen that in the proof of Theorem 6.1 that the differential
equations P(z,8)u(z) = v(z) and Q(z,d)u(z) = v(z) have the same G-
invariant solution if their homogeneous degrees and bp-functions coincide
with each other. On the other hand, by Theorem 6.2, the G-invariant solu-
tion spaces of P(z,d)u(z) = 0 and Q(z, d)u(z) = 0 coincide under the same
conditions. Since any solution to P(z,d)u(z) = v(z) (resp. Q(z,0)u(z) =
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v(z)) are given by a sum of one solution to P(z,d)u(z) = v(z) (resp.
Q(z, 0)u(z) = v(z)) and one solution to P(z,d)u(z) = 0 (resp. Q(z, d)u(z) =
0), the G-invariant hyperfunction solution space of the differential equation
P(z,0)u(z) = v(z) coincides with that of Q(z,8)u(z) = v(z). O

7. ORDERS OF POLES OF COMPLEX POWERS OF DETERMINANT
FUNCTIONS.

In the preceding section, we have proved that the solutions of (2) can
be constructed in terms of the Laurent expansion coefficients of the com-
plex powers of the determinant functions P%*l(z) (Theorem 6.1 and The-
orem 6.2). However, in order to apply these constructions of solutions in
concrete examples, we have to see the exact pole of Pl&s] (x) especially at
s = half-integers 1Z.

In this section, we shall give a condition to determine the exact order of
pole of Pl%sl(z) at s = half-integers 1Z for a given vector @ € C**!. This is
a direct application of the author’s result in [12].

In order to determine the exact pole of PI%*l(z) at s = sg, the author

introduced the coefficient vectors
d®[so] := (d§[so], d[sal, ..., d, [s0]) € ((C7*1))™ 4+ (78)

n

with k = 0,1,...,7n in [12). Here, (C"*!)* means the dual vector space of
C"+!. Each element of d*)[sq] is a linear form on @ € C"+! depending on
so € C ,i.e.,a linear map from C**! to C,

d®)s] : €1 5 @+— (d¥)[s0], @) € C. (79)
We denote
(@B fsal, @ = ((dg”[s0], @), (a{”[s0], @), ..., (4 [su], @)) € C>*+1. (80)
The precise definition of d(*)[s¢] is the following.

Definition 7.1 (Coefficient vectors d*)[sg]). Let so be a half-integer, i.e.,
a rational number given by ¢/2 with an integer g. We define the coefficient
vectors d*)[s,] (k=0,1,...,n) by induction in the following way.

1. First, we set

dO[so] := (d[s0], d2[s0}, .. ., dO[s0]) (81)

such that (d,(-o)[so], a):=ga;fori=0,1,...,n.
2. Next, we define d!)[so] and d?[sq] by

dM(s) := (d§[s0],d[sal, .. ., d [so]) € (C™H))", (82
with dg-l)[so] = dgo)[so] + e[so]dﬁ?l [so], and
d@[so] := (dP[s0], @ [s0], - - -, dP;[s0]) € (C™+1)*)n-1,  (83)
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with d§-2)[so] = dg-o)[so] + dg-(_)l_)z[so]. Here,

(84)

[s0] := 1 , (if sp is a strict half-integer),
o (=1)%+! [ (if sp is an integer).

A strict half-integer means a rational number given by ¢/2 with an odd
integer q.
3. Lastly, by induction on k, we define the coefficient vectors d(k)[so] for
k=0,1,...,n by
21 l l n+lyx\n—
d@+0)[so] := (dE ) [so), dPHV[sq), .. ., dPED [s0]) € ((CPHY)*)"~ 2,
(85)

with d§-2l+1)[so] = d§2l—1)[80] - dﬁf;l)[so], and

d®[so] := (& [s0), & [s0), - ., d? [s0]) € ((C™H1)*)"~2+1,  (86)

with d{[se] := &~ [so] + di; ?[so].

By using d*)[so] in Definition 7.1, the author obtained an algorithm to
compute the exact order of poles of Pl%sl(z) in [12]. It is Theorem A.1 in
Appendix. In this section, we shall characterize

A\ q) :={@ e C"t | Pl%l(z) has a pole of order < g at s = A}. (87)
in terms of the coefficient vectors d*)[)].

Definition 7.2. We define the vector subspaces D,(llll £ ng)en and Dg}d in
CrHi.
1. Note that d®**+2)[\] does not depend on the choice of A if it is a half-
integer. We define

D,(Ql ji={de C*t1 | (dPH2[)], @) = 0 for any strict half-integer A}.

2. Note that d@+V[)] does not depend on the choice of A if it is an odd
integer or an even integer, respectively. We define

Dfﬁd = {@ e C"t! | (d(zlﬂ)[z\], @) = 0 for any odd integer A}.

Dg,)en = {@ e C"*! | (d(2l+1)[)\], @) = 0 for any even integer A}.

Theorem 7.1. D,(glf, Dg?en and Dggd in C"*! have the following proper-
lies.

1. We define
at = g#l .= ((—1)"ag, (—1)""1a1, .. ,an) e C"tl
for @ = (ap,a1,-.. ,an) € C**'. Then we have

ge DY), — a* DV,
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and
ge D)

a

(
iy = @ eD)..

2. Letl be an integer 0 <1 < PHO()). Then we have
ace€ D,(fz,f if A is a strict ﬁalf-z'nteger,
g€ AN <= Sa@eDY),  if\isan odd integer, (88)
ac Dg,)en if A is an even integer.
In addition, we have A(\, PHO())) = C"*1,
Proof. We can see that the second statement is nothing but the definition
of D,(:z, 1 Dg,)en and D¢(>2d by Theorem A.l in Appendix, which is the main
result of [12].

We shall prove the first statement. Let odd be an odd integer and let
even be an even integer. We have only to prove that

(d®*+)[odd], @) = (-1)*(d(**V[even], a*#). (89)
foreach 1 =0,1,2,.... We prove it by induction on I. When | = 0, we have

(d(l)["dd],5> = (a0 + a,a1 + ay,... ,an_1 + ay)
— (_l)n(a# # _# # # - a#)

o —ai,al —al, ... a¥_
= (-1)*(dV[even], a#)
since @#* = (a¥,d¥,... o) = ((-1)"ao, (-1)""lay,...,a,). We see that
(@D [odd), @) = (~1)(d?*+D[even], o)
if
(@ Vodd], d) = (-1)"(d®V[even], a*)

by the definition of (85). Thus (89) is valid forall / = 0,1,2,... by induction
on l. By (89), we have
| @ € DY), <= (d®*V[odd),a) = 0
<> (d@*V[even),@*) = 0 < a* ¢ DY

Next let half be a strict half-integer. We have only to prove that
(dC*D[hal f],8) = (d*+D[half], 7#)*. (90)
for each 1 =0,1,2,.... We prove it by induction on I. When I = 0, we have
(dD[half],@) = (a0 + az, a1 + as, ... , an_z + ay)
= ((-1)"*(af +af), ~)"*(af +af),..., (e, +a}))
= (dW[half], a*)*
since @ = (a¥,a¥,... ,a¥) = ((~1)"ao, (-1)""'ay,...,a,). We see that
(@ (half], @) = (@ [half], a*)*
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if
(d®[half),@) = (dP[half],a*)*
by the definition of (86). Thus (90) is valid for all I = 0, 1,2,... by induction
on . By (90), we have '
- l
i€ DY), <= (d®+I[half],a) = 0
— (dP*[half],d*)* =0
I I
= (d®*)[half],d*) = 0 = a* Dfuz,f
O
When X ¢ %Z, any basis is a standard basis defined by Definition 5.3
since all Pl&s] (x) is holomorphic at s = A. When A is in %Z, we can easily

choose one standard basis for a given A by utilizing Theorem 7.1. However,

it is sufficient only to consider the following three kinds of standard basis,
SBhalf SBeven and SBodd

Definition 7.3. For \ € 1Z we define the bases of Cr+l §Bhalf g peven
and SB°% by

SBhailf ._ {"h“’f, "h“lf, ..,a@ Y if X is a strict half-integer,
SBever .= {agve", asve", ... ,ac’*"} if X'is an even integer, 91
o g
SBedd .— {""dd ""dd, e ,(ifzdd if A is an odd integer,
satisfying that there exists an increasing integer sequence
g g
0<1(0) <I(l) <---<I(p)=n (92)
with
pim [%J if 1+ n is odd,
I_"%IJ if 14 n is even,
such that '
SBhall = = (g gt | (—i;z(alf } is a basis of Dﬁ‘i’: b
SBeven - {-'even —'e'uen, &e)n} is a. ba,SlS Of De(zg;)en’

SBOdd = {a3%, "°dd, e d'lo(”g} is a basis of Dg%,

for ¢ = 0,1,...,p, respectively. In particular, we take SB¢*" and SB°%
such that '

@ =a""" (j=0,1,...,n) (93)

where @* := ((=1)"ao, (-1)""lay, ..., a,) for @ = (ag,ay, ... ,a,) € C**L
This is possible by Theorem 7.1. :

Proposition 7.2. The bases (91) are standard bases for )\ € %Z in the sense
of Definition 5.3. When \ € %Z, every basis is a standard basis since every
Pl@sl(z) does not have a pole.
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Proof. This is just the definition of the standard basis. O

8. ALGORITHMS FOR CONSTRUCTING SOLUTIONS — KERNELS OF P(z,0).

In this section we give algorithms to compute all the hyperfunction solu-
tions to P(z,0)u(z) = 0 for a homogeneous G-invariant differential operator

P(z,0).

Algorithm 8.1 (The case of homogeneous degree zero). For a given non-
zero- SL,,(R)-invariant differential operator P(z,8) € D(V)§ of homoge-
neous degree 0 satisfying the condition

the degree of bp(s) = the order of P(z,0), (94)
one algorithm to compute a basis of the SL,, (R)-invariant differential equa-
tion P(z,0)u(z) = 0 is given in the following.

Input: A non-zero SL,,(R)-invariant differential operator P(z,8) € D(V)§
satisfying the condition (94).
Output: A basis of the SL,(R)-invariant hyperfunctions to the differential
equation P(z,0)u(z) = 0.
Procedure:
1. Compute the bp-function for P(z,d). It is denoted by

bp(s) = (s = A1)Pt--- (s = AP,

2. Foreach \; (i =1,...,l), take one standard basis at s = \;
SB* = {do(Ai), -+ s @n(Ai)},

which is defined in Definition 5.3.
3. Compute the Laurent expansion coefficients

Laurentg;))\i (P15(X))(z))

for each @j(X\;) (i=1,...,1,j=0,...,n)andk € Z in —o0;; < k <
—0;; +pi — 1 with o;; := o(@;(X;), A;). Here, o(@, \) has been defined
by (57). Then we have the generators of the vector space L;; in (95).

L;; := the vector space generated by

2 O0)s (95)
{Laurentﬁi),\'.(P[ s, ](‘”))}k=—oa1,--- —0ij+pi-1

4. Then
D Li (96)
f=1’ 11
1=0,...,n

forms a basis of the G-invariant hyperfunction solution space to P(z, 0)
0.
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Proof. Note that, by Theorem 4.1 and Corollary 5.7, every G-invariant hy-
perfunction solution to P(z,d)u(z) = 0 is written as a finite combination of
Laurent expansion coefficients of |P(z)|? (= 0,...,n). Suppose that u(z)
is written as

u(z) = wp(2)+ - + wi(z)

where each u;(z) is quasi-homogeneous of degree s; and sy, ... ,s; are mutu-
ally different. If P(z,d)u(z) = 0, then P(z,8)u;(z) =0foralli=1,...,1
since the homogeneous degrees of P(z,d)u;(z) (¢ = 1,...,[) are mutually

different and hence linearly independent. Then, for each complex number
A € C, we have only to see what u(z) given as a finite combination of Lau-
rent expansion coefficients of |P(z)|? (¢ = 0,...,n) at s = A is annihilated
by P(z,0).
Let
SB := {dyp,ay,-..,0n}

be a standard basis of C*t! at s = A with an increasing sequence

0<k(@) <k(l)<---<k(PHO(A)=mn (97)
such that

SBq = {(_1:0, 61, ey Eik(q)}

is a basis of A(A,q) for each ¢ in 0 < ¢ < PHO(A). Then every u(z)
given as a finite combination of Laurent expansion coefficients of |P(z)|?

(t=0,...,n) at s = X is expressed as a linear combination
39\
u@) = Y eroPf" (@) (98)
f9€Z
0<g<n
with

P}[fi" Al (z) = LaurentﬁQ \ (Pls)(z))
and cs 4 € C. Let

bp(s) =) bi(s — A)PF
=0

be a expansion of bp(s) with respect to (s — A). The number p is the
multiplicity of bp(s) at s = A\. Then what we have to prove is that
csg = 0 except for — o(dy,A) < f < —o(dg,A) +p—1

if and only if P(z,8)u(z) =0 (99)

since P)[,Eg”\] () = 0 if f < —o(dy, A) from the definition. Here, o(@, A) has
been defined by (57). Indeed, the basis of L;; in (95) is just the basis of the
remainder terms in the expression (98) with the condition (99) when A = A;
and p = k;. In particular, if A is not a root of bp(s) = 0, i.e., p = 0, then
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there is no G-invariant solution to P(z,d)u(z) = 0. The rest of the proof is
devoted to proving (99).-
The Laurent expansion of P1%:%l(z) at s = X is denoted by

PE() = 37 PN (g)(s - ).
weZ
Then we have

P(z,0)P1%(z) = > P(z,8)P*M(z)(s — \)* = bp(s) P¥I(z)

wEZ
Zb (s = AP B @) (s - A)
JEZ
= Z 3 6PEN) (s - A
we€Zit+j+p=w
and hence we have
Pz, 0P = Y 5P (100)

t+j+p=w

Here b; = 0 except for 7 in 0 < i < ¢ and P[a A]( ) = 0 for sufficiently small

j. Then for
Z € ,yP[ag'A]
f.9€Z
0<g<n
we have
(x 3 Z Cfg :E 6)P[ag,>~](x Z cfgzb P[“_g;)—
' f.9€Z f.9€Z i=0
dg) 3y
=Y erg D brpiP (@) =Y S epgbppiPEN(2)
f9€Z J€Z J€EZ f,g€Z
= Z}-’;.[Ef.yez cf,gbs—p—jdgA] (:E) -0

JEZ
where g runs in 0 < ¢ < n. Then we have

Z Crgbs—p-jly = chf,gbf—p—j‘-ig € A(A\,—j—1)

- f,9€Z 9=0 f€Z
for all j € Z by Theorem 5.6. This means that,
for each ¢ = 0,1,...,n,
Z ctobs_p—j =0 for all j € Z satisfying g > k(—j) (101)
f€Z

since @y ¢ A(A, —j—1)if g > k(—j) by definition. Here k(—7) is the number
defined by (97) if 0 < —j < PHO()) and k(—j) = 0 (resp. k(—j) = n+1) if
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—7 < 0 (resp. —3 > PHO(A)). Since g > k(—j) is equivalent to o(dg, A) >
—j by definition and A ‘ , o

p+it+q
Zcf,gbf—p—j = Z Cfgbf—p—j = Zcp+1+s gb =0,
fEZ f=p+j s=0

the condition (101) is rewritten as the condition

for each ¢ =0,1,...,n

: 102

Zcp.,.j.,.s,gbs = 0 for all j € Z satisfying j > —o(d,, A) (102)
s=0

Note that coefficients by and b, are not zero. Then the condition (102) is

equivalent to

for each ¢ =0,1,...,n,
Cptig = 0 for all j € Z satisfying j > —o(d,,A) | (103)
This is just equivalent to the condition (99), which we have to prove. O

Next we consider P(z, ) of non-zero homogeneous degree.

Algorithm 8.2 (The case of negative homogeneous degree). For a given non-

zero SL,(R)-invariant differential operator P(z,0) € D(V)® of negative
homogeneous degree ¢in < 0 satzsfymg the condztzon 7 ‘ ‘
the degree of bp(s) - the order of P(z, (’)) (104)
one algorithm to compute a basis of the SLy(R)-invariant differential equa-
tion P(z,0)u(z) = 0 is given in the following. -
Input: A non-zero SL, (R)-invariant differential operator P(z,0) € D(V)¢
of homogeneous degree qin < 0 satisfying the condition (104).
Output: A basis of the SL,, (R)-invariant hyperfunctions to the differential
equation P(z,0d)u(z) = 0.
Procedure:
1. Compute the bp-function for P(x,d). It is denoted by

bp(s) = (s — A1)Pr--- (s = AP

2. Foreach \; (i=1,...,1 ) take one standard bas:s

SB'—{ao( )00 @n(N)}

at s = \;, which is the standard basis defined by (91) when X; € 1Z
and the one defined in Definition 5.3 otherwise.
3. Compute the Laurent expansion coefficients

Laurent(’i) _(P[ai(A‘)’s](a:))

for each @j(\) (i=1,...,1,j=0,... ,n) and k € Z in —0;; < k <
#‘“+p2 1 with o;; _o(aj()\) )\)ando#‘“ = o(@;(\)#, \+
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q1). Here, o(@,\) has been defined by (57). Then we have the
generators of the vector space L;; in (105).

L;; := the vector space generated by

{Laurentgl;)/\‘ (Pla;(x)s] (=)}, _ 1)

=—0ijye.. ,—oﬁ-ql +pi—1

Here, if —o0;; > ——of;q’ + p; — 1, then we set L;; := {0}.

4. Then
D L (106)

i=1,...,0
7=0,...,n

forms a basis of the solution space.

Algorithm 8.3 (The case of positive homogeneous degree). For a given non-

zero SL,(R)-invariant differential operator P(z,8) € D(V)C of homoge-
neous degree g1n > 0 satisfying the condition

the degree of bp(s) = the order of P(z,d), (107)

one algorithm to compute a basis of the SL, (R)-invariant differential equa-
tion P(z,0)u(z) = 0 is given in the following.
Input: A non-zero SL,(R)-invariant differential operator P(z,d) € D(V)G
of homogeneous degree qin > 0 satisfying the condition (107).

Output: A basis of the SL, (R)-invariant hyperfunctions to the differential
equation P(z,0)u(z) = 0.

Procedure:
1. Compute the bp-function bp(s) and consider the set R := R; U R,
with
1+ 1
Ry :={\ = —-H2- |t =1,2,... ,n4+2q — 2}, |

Ry:={A € C| bp(N) =0}.
Let q; be the number of elements of the set R, — R,. We denote by

)\n+2q1—17 /\n+2q1 Yooy )‘n+2Q1 +q2—2

the elements of Ry — Ry. Then we can write the elements of R by

R= {Ala A2y.en A7&-!-2q1-}-¢12—2}-
2. We define the multiplicity k; of \; by

; e W : )=
pi = { he multiplicity of s — A; in bp(s) ifbp(X\;) =0 (108)

0 if bp(\;) # 0
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3. Foreach \; (i=1,... ,n+ 2q1 + g2 — 2), take one standard basis

Bl\i = {60(’\5)7 T 1&’.11(Ai)}
at s = );, which is the standard basis defined by (91) when \; € 1Z
and the one defined in Definition 5.3 otherwise.
4, Compute the Laurent expansion coefficients
| Laurentgl;))‘i (Pl (g))
for each @;(Xi) (1 = 1,...,n+2q1 +¢2—- 2,5 = 0,...,n) and
keZin—-o; <k<-— #q1+p,-—1 with o0;; := o(a](/\) Ai) and
0¥ = o(@;(M), A + q1). Here, o(@,)\) has been defined by (57).
1) J
Then we have the generators of the vector space L;; in (109).

L;; := the vector space generated by

{Laurentg;)/\i (Pl (X)) () }_ 109

S Y T #'ql +pi—1

Here, if —0;; > —o#q1 + pi — 1, then we set L;; := {0}.

5. Then
D (110)

i=1,. 7"‘3‘241 +g92-2

forms a basis of the solution space.
Proof. We shall give the proof of Algorithm 8.2 and Algorithm 8.3 simul-
taneously. First note that we have only to see what u(z) given as a finite
combination of Laurent expansion coefficients of |P(z)|! (i = 0,...,n) at
s = A is annihilated by P(z,d) for each complex number A € C for the same

reason in the proof of Algorithm 8.1.
Let

SB := {do, a1, ... ,dn}
be a standard basis of C**! at s = X\ with an increasing sequence
0<k(0)<k(l)<:--<k(PHO\)=n (111)
such that
SBy = {do, @1, .. ,dx(q)}

is a basis of A(A,¢q) for each ¢ in 0 < ¢ < PHO()). In particular, we
suppose that it is the standard basis defined by (91) when \; € 3Z and the
one defined in Definition 5.3 otherwise. Then, by the property (93), we see
easily that

SB#n .— {d#QI,qul,... -*#ql}

is a standard basis of C**! at s = A + ¢q; with an increasing sequence
0 < k#9(0) < k#9(1) < --- < k¥ (PHOA +q1)) = n (112)
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such that

SB;'#Ql — {"#Ql,(‘l‘l#QI,... -iﬁ:;l(q)}

is a basis of A(A+ ¢1,¢) for each ¢in 0 < ¢ < PHO(A + ¢q;). Here, we see
from the definition that
PHO(A+q1) > PHO()) if ¢1 <0
PHO(A+q) < PHO(M) if ¢1>0
and that
k(q) = k*% (g)

for ¢ < PHO()) if g1 < 0 or for ¢ < PHO(A + q1) if g1 > 0.
Every u(z) given as a finite combination of Laurent expansion coefficients

of |P(z)|! (¢=0,...,n) at s = X is expressed as a linear combination
= Y ¢ P (2) (113)
f,9€Z
0<g<n
with

P}a" Al () = Lauren_tgf:) A\ (Pl3o:%)(z))

and cy4 € C. Let

s) = Zb;(s — A)PH

1=0
be a expansion of bp(s) with respect to (s = A). The number p is the
multiplicity of bp(s) at s = A.
Then what we have to prove is that

cr,g =0 except for — o(dg,A) < f < —o(@#", A+ q1) +p—1

if and only if P(z,d)u(z) =0 (114)

since Pf[ag"\](z) = 0 if f < —o(d@y,A) from the definition. Here, o(@, A) has
been defined by (57).

Indeed, first we consider the situation that A is not a root of bp(s) = 0,
i.e., p =0, When ¢; < 0 (Algorithm 8.2), there is no non-zero G-invariant
homogeneous solutions of homogeneous degree nA to P(z,d)u(z) = 0. When
@1 > 0 (Algorithm 8.3), there is no non-zero G-invariant homogeneous so-
lutlons of homogeneous degree n) to P(z,d)u(z) = 0 ezcept that A € R;.
Then we have only to consider the cases that A is a root of bp(\) = 0 when

¢1 < 0 (Algorithm 8.2), and the cases A is a root of bp(A\) =0or A € Ry
when ¢; > 0 (Algorithm 8.3). This is the reason why we restrict the \’s
to the finite sets of numbers in the first step of the procedures in the algo-
rithms. We can easily see that the basis of L;; in (109) is just the basis of
the terms in the expression (113) with the condition (114) when A = )\; and
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The rest of the proof is devoted to proving (114). The Laurent expansion
of Pl&(z) at s = X is denoted by ‘
P[a,s] il‘) Z P[a )\] A)w
T w€Z

Then we have

P(z,0) PP (z) = Y~ P(z,0) PN (2)(s — \) = bp(s) PLE* " o= 01](z)

wGZ

Zb (s — APt ZP[a#ql’Aﬂl](x)(s —A))
#JGZ
ara )\ w

—Z DT O TEEPY
wEZ 1+ j3+p=w
and hence we have
P(z,0)PfN @)= Y P Mal gy (115)
i+j+p=w

Here b; = 0 except for 7 in.0 < i < ¢ and P][a#ql ’A+q1](:c) = 0 for sufficiently

small j. Then for
Z c ’gP[G'g”\]

f,9€Z
0<g<n .
we have |
P(z,d)u(z) = Y ¢syP(z, )Py N(z) = Y cf,ga P Aal )
f9€Z fr9€Z =0
ola¥a atq], [
=Y crg) brpib; @) =) ergbsp-iF;
f9€L €L | J€L f,9€2.
by—pei@F N Atar]
= Z_P}Efpgech’g f-p—3% +q1]($) =0

JEZ

where g runsin 0 < g < n i.é. d, = 0 except for 0 < g < n. Then we have

Z Ctgb—p—jlg = chf,gbf —p- J-#ql €EAA+q,-5—1)
f19€L 9=0 feZ :

for all j € Z by Theorem 5.6. This means that,
for each ¢ =0,1,... ,n, |
Zcf’gbf“?"j =0 for all j € Z satisfying g > k*% (—) (116)
fez ' '

since @ ¢ AA+q1, —j -1) 1fg > k#QI( Jj) by definition. Here k#‘“( 7)
is the number defined by (112) if 0 < —j < PHO(A+ ¢;) and k#% (—j) =0
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(resp. k*91(—j) = n+1)if —j < 0 (resp. —j > PHO(A + q1)). Since
g > k#91(—j) is equivalent to o(d’f‘q‘, A+ q1) > —j by definition and

p+i+q q
D ergbrpi= Y Crgbiop—i =D Cptiteghs =0,
fez f=p+i s=0

the condition (116) is rewritten as the condition
for each ¢ = 0,1,... ,n,
g
' . o . 117
Zcp+j+,,gb, = 0 for all j € Z satisfying j > —o(d’f‘“,)\ +q1) (117)
s=0 '
Note that coefficients by and b, are not zero. Then the condition (117) is
equivalent to

for each ¢ =0,1,... ,n,

118
Cotig = 0 for all j € Z satisfying j > —o(@¥", A + q1) (118)

This is just equivalent to the condition (114), which we have to prove. O

9. ALGORITHMS FOR CONSTRUCTING SOLUTIONS — INHOMOGENEOUS
EQUATIONS.

Algorithm 9.1 (The case of inhomogeneous equation). For a given non-
zero SLy, (R)-invariant homogeneous differential operator P(z,8) € D(V)®
of homogeneous degree kn € Z satisfying the condition

bp(s) #0 (119)

one algorithm to compute a G -invariant hyperfunction solution of the SL, (R)-
invariant differential equation P(z,0)u(z) = v(z) is given in the following.
Input: A non-zero SL,, (R)-invariant homogeneous differential operator P(x,0) €
D(V)G of homogeneous degree kn € Z satisfying the condition (119) and
a non-zero quasi-homogeneous SL,, (R)-invariant hyperfunction v(z).
Output: A non-zero SL,(R)-invariant hyperfunction u(z) to the differential
equation P(z,0)u(z) = v(z).

Procedure:
1. Write v(z) as a sum of Laurent expansion coefficients. Namely, v(z)
is given by
9
v(z) =) PLM(2)
=1
with @y,... ,dx € C**! and wy,... ,w; € Z.

2. Compute the bp-function bp(s) and divide it as

bp(s) = (s— A+ K)Pb(s), (B(A— k) #0)
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and expand 7;(3)'l into a Taylor series at s = A — k,

B(s)~! = ib,-(s — A+ k)

1=0

3. Then
g ek '
w) =Y 3 wP M) (120)

I=1 i+j=wi+p

is an SL,, (R)-invariant hyperfunction solution to P(z,d)u(z) = v(z).

Proof. The proof can be found in the proof of Theorem 6.1. O

10. EXPLICIT COMPUTATIONS OF EXAMPLES

We shall give in this section some examples. Some homogeneous differen-
tial equations generated by det(z) and det(3*) are dealt with in this section.

10.1. The equations det(9*) det(z)u(z) = 0 and det(z) det(0*)u(z) = 0.
First we consider two examples of differential equation of homogeneous de-
gree 0. Let us consider the case of P(z,d) = det(9*) det(z) and P(z,d) =
det(z)det(d*). The homogeneous degrees of P(z,d) are 0 and the bp-
functions are bp(s) = (s + 1)(s + 2)---(s + 2t%) and bp(s) = (s)(s +
1y (s+ 271), respectively.
Proposition 10.1. First we consider the differential equations det(0*) det(z)u(zx)
0 and det(z) det(d*)u(z) = 0.
1. The SL,(R)-invariant hyperfunction solution space to the differential
equation det(0*) det(z)u(z) = 0 is generated by
n [

U U {powrent 2, (o) |ae a0} a2
=1 ¢=0 2 .
Here, A(—ﬂi;—l, q) is a vector subspace of C"*! defined by (54) in Def-
inition 5.1 and explicitly computed in (88) of Theorem 7.1. Similarly,
the SL,(R)-invariant hyperfunction solution space to the differential
equation det(z) det(8*)u(x) = 0 is generated by

n—2 l'—%lJ _
U U {Laurenti;‘i)ﬂ(P[a"’](x)) | e A(—'—’g—l,q)} (122)
1=—1 ¢=0 2

2. In particular, for : = -1,0,1,2,... ,n,

15 ) _
U {awrent 0 (PEI) | a€ -4 0)} (2)
- 2

9=0
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forms an n + 1-dimensional vector space generated by all the relatively
invariant hyperfunctions under the action of ¢ € GL,, (R) correspond-
ing to the character det(g)~*~!. The dimensions of SL, (R)-invariant
hyperfunction solutions to det(9*) det(z)u(z) = 0 and det(z) det(0*)u(a
0 are n(n + 1).

Proof. 1. We compute the solution space following Algorithm 8.1. For
the differential operator P(z,8) = det(8*)det(z), the bp-function is

n -+ 1)
7 )
In the first step in the procedure of Algorithm 8.1, we have | = n
and the roots of bp(s) = 0 are \; = ﬁ,_;—l with multiplicity p; = 1

(1=1,...,n). Since they are all half-integers, we can take a standard
basis at s = A;

bP(S)=(S+l)(s+g)---(s+

SBY = {@o(\),-. , @n(A0))

as the one defined in Definition 7.3. Let S B’\' be a subset of SB* such
that SB’\ forms a basis of A();,q) for each qin 0< ¢ < PHO(X\) =
| L. Then we have

L5
SBY = | | B} - SB) .
9=0
and the set SB,;\" —S’B;\i1 forms a basis of A(X;,q) := A(\i,q)/A(Ni, q—
1), where A(X;, 1) = {0} and SBY) := 0. For each &@;(\;) € SB —
SBq' 1» We have o0;; := 0(@;(\;), A;) = q and hence
—0;; Sk<—0ij+pi—1 = —g<k<—q+pi—-1= k=—¢
for each ¢in 0< ¢ < [%J Since
Laurentg:f\)‘. (P1%3(z)) =0
if @ € A(Mi, ¢ — 1), we have
Vector space generated by {Laurentg;g)‘ (P%(z)) | G e A(Miy9)}

=Vector space generated by {Laurenti;g)‘ (P%(2)) | [a] € ANy 9}
=Vector space generated by {Laurentg:f\)i (PB(z)) |G e SB;\" - SB;\LI},

for each ¢in 0 < ¢ < [312’—1J Then the vector spaces generated by

144
U {LaurentZ9 ' (PEel(2)) | & € A(Ni, q)}

g=0
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and

1 | .
U U {Laurent{Z) (P*(2))} = @ Ly;
=0 3eSByi-SB):, , g =0
coincide with each other, and so the vector spaces generated by
n L] - - |
U U {ZaurentZ%) (P*(z)) | @ € A(%,0)) (129)
i=1 ¢=0

and the vector space generated by

n L] |
EB@L,,_U U U | {Laurent %) (P4 (z))}.

=1 =0 - 1i=1 ¢=0 i ¢
J 9= eSBq' SBqL1

Thus we have proved that (121), which is (124), forms a basis of the
vector space of SL;,(R)-invariant hyperfunction solution space to the
differential equation det(d*)det(z)u(z) = 0. ‘

For the differential equation det(z) det((‘?*)u(x) = 0, we can prove in
the same way that the vector space of SL, (R)-invariant hyperfunction
solution space to the differential equation det(z)det(d*)u(z) = 0 is
generated by (122) since the bp-function of P(z,d) = det(z) det(d*) is

bp(5) = (s)(s+ 5) -+ (s + o).

2. By Proposition 5.5, the elements in

15 , ) ; - .
U U ' {Laurentﬁ;‘f\)i(P[a,S](m))} (125)

9=0 gesB,i-sB):

are linearly independent and forms an n + 1-dimensional vector space.

On the other hand by Theorem 5.6, each
Laurent( 9 (P[“ I(z))

for d € SB;\" - SB(}\‘_1 is a homogeneous SL, (R)-invariant hyperfunc-
tion of homogeneous degree nA; = —n(: + 1)/2. This means. that it is
relatively invariant under the action of GL,(R) corresponding to the
character det(g)™*~!. By the main result of [11], the space of relatively
invariant hyperfunctions for a fixed character det(g)?* (s € C) is n+1.
Then (125) forms a basis of all relatively invariant hyperfunctions corre-
sponding to the character det(g)"*~1. Then we see that the dimensions
of SL,,(R)-invariant hyperfunction solutions to det(8*) det(z)u(z) = 0
and det(z) det(9*)u(z) = 0 are n(n + 1).



MASAKAZU MURO

10.2. The equations det(z)u(z) = 0. Let us consider the case of P(z, §)
det(z). Then the total homogeneous degree of P(z,d) is n and bp(s)
1. We can prove by our algorithm that the G-invariant solution space of
the differential equation det(z)u(z) = 0 is generated by the G-invariant
measures on all the singular orbits (i.e., G-orbits contained in det(z) =
0), and hence, it is ﬂnz—“l-dimensiona,l (= the number of singular orbits).
Here the G-invariant measure on each singular orbit is a relatively invariant
hyperfunction. Namely we have the following proposition.

1

Proposition 10.2. Consider the differential equation det(z)u(z) = 0.

1. The SL,(R)-invariant hyperfunction solution space to the differential
equation det(z)u(z) = 0 is generated by

U {Laurent( l__LJ)(P[" (z)) I S C"'H} (126)
=1

2. In particular, for:=1,2,... ,n,
_it
{Laurenti_l_é_lj)(P[a”](z)) | dec C”"’l} (127)
- 2

forms an (n+1—1)-dimensional vector space generated by the tempered
distributions

1@ — [rowi (@) esv))
(7=0,1,... ,n —1) where du{ is the SLn(R)-invariaﬁt measure on

5! = {z € Sym,(R) | sgn(c) = (j,n — i - 5)}
Proof. 1. We shall prove it by carrying out Algorithm 8.3.
The bp-function is bp(s) = 1 and we have
i+1
2

and ¢ = 1 and g = 0 in the first step of the procedure. In the
second step, we have p; =0 for all i = 1,...,n. Since all \; € R are
half-integers, we take the standard basis

SBY = {dy(\),-.. ,@n(N)}
defined by Definition 5.3 as a standard basis at s = );. For each &@;(\;)
((i=1,...,mand j=0,...,n), we have defined

0ij := 0(@;(A), As),
o9 = oﬁ = o(@;(M)¥*, X + 1).

t]

R=R;={\=-

|i=1,...,n}

Let SB’\L1 be a subset of SB* consisting of the vectors @;()\;) such
that P[“J(")"](z) has a pole of order less than ¢ — 1 at s = ;. If

2(A) € SBY — SB , then Pl3i(%):5](2) has a pole of order g at s = );
g-—1

134
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since the possible highest order of PlEs)l(z)ats = \;jisq = |&1]. Then
we have, by putting ¢ = [ﬁij,
0ij = of +1=¢q if &(\)eSBY-SB),,
0;j = Oﬁ <g-1 if a;j(N)e€ SB;‘il.

Indeed, by Theorem 7.1, Definition 7.3 and the property (93), we see
that

(128)

(the order of P[af()“)#’s](x) ats= X\ +1)
=(the order of P(%):3l(g) at s = \))

for all &;(\;) € SB)", and that

(the order of P[af(f\‘)#’s] (z)ats=A+1)=q—1
for all 6] (\;) € SB — S’B;‘il. Then we have (128). Thus, for @;(X;) €
SB* - SB)¢

11 We have
141
2 L

o= () = ot 1=—g= |
and L;; in (109) is generated by |
LY, s ()
LaurentszlA? J(P[“J(’\')’ I(z)).
For @;(\;) € SBq 1» We have

—0;; = —Ofﬁ > —0i; — 1= —o0i; + pi — 1,

and hence L;; in (109) is {0}. Therefore we have

D L

7 7n
J—O, <n

the vector space generated by

- ({Laurent U3 (plai00sl(2)) | @5(\) € SBY — SBX |} )
the vector space genera.ted by
(U{Laurent 5L (PRI e c"”})

_pikl ) ~ -
since Laurentszl_zt:u (PlE:;X)sl(z)) = 0if @;(\) € SB;\LI. This is what
we want to prove.
2. For i =1,...,n, each element of

{Laurent L 2 ) (P[“ sl(w)) | @ E C”+1}

is a homogeneous SL,, (R)-invariant hyperfunction of homogeneous de-
gree n(—'|2'—) and its support is contained in S; (Theorem A.2). It is
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proved that such hyperfunctions are given as a linear sum of SLy, (R)-
invariant measures on the (n-i4+1) open orbits §7 (j=1,... ,n—i+1)
in S;. See, for example, §4 in [9]. Thus we have the result.

a

10.3. The equations det(0*)u(z) = 0. Similar argument is possible for
the case of P(z,0) = det(d). In this case, the total homogeneous degree of
P(z,0) is (—n) and we see that bp(s) =[], (s + 51). The solution space
of det(d)u(z) = 0 is just the Fourier transform of that of det(z)u(z) = 0,
and hence it is l("2—'*'11-dimensional and generated by relatively invariant
hyperfunctions. We can construct them from the complex power of det(z)

Proposition 10.3. Consider the differential equation det(8*)u(z) = 0.

1. The SL,(R)-invariant hyperfunction solution space to the differential
equation det(9")u(z) = 0 is generated by

n—-2 |.'_-2L1J
U U {Laurent.(;q_)ﬁ(P[a’sl((a:))) l ae DS.Q)} (129)
i=—1 ¢=0 . 2

Here, .DS.J Y'is a vector subspace of C**! defined by Definition 7.2. The *
in DS,’ ) is substituted hal f, even or odd according as —132‘—1 is a strictly
half integer, an even integer or an odd integer, respectively.

2. In particular, for i = -1,0,1,... ,n — 2,

L&) )
U {Laurentf’;q_)iﬂ(P[“”]((z))) l e D,E"’} (130)
q=0 2 '

forms an (i + 2)-dimensional vector space generated by the Fourier
transforms of the tempered distributions in (127).

Proof. We follow Algorithm 8.2. The first step and the second step of the
procedure of Algorithm 8.2 are the same as those of Algorithm 8.1. The
roots of the bp-function are

A= —’;1 (i=-1,0,...,n—2)

and their multiplicity p; is 1. We can determine the generators of the solution
space in the same way as the proof of Proposition 10.1. Since they are all
half-integers, we can take a standard basis at s = \;

SBY = {@o(M),... ,@a(M)}
as the one defined in Definition 7.3. For each @;();) € SB*, we define
0ij 1= 0(d@; (A:), Ai)
and

of M = of ™! = o(@;(N)*1, A — 1).
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We have only to pick up the vector @;(\;) satisfying .

—0;; < —o§_1‘+p, 1=- f; 1 (131)

Since for ¢ = —-1,0,...,n — 2, we see —o;; Z - f;—l by Theorem 7.1,
Definition 7.3 and Theorem A.1, (131) means

~o0;; = —of . (132)

Namely, we have to choose @;();) satisfying
(the order of Pla;a)* sl (z)ats=X—1)
=(the order of P(%):s)(g) at s = \;).
By Theorem 7.1, Definition 7.3 and Theorem A.1, we see that this condition
is equivalent to that
@;(x) € DY

with some ¢ = 0,1, [’“J Here, the x in D(]) is substituted half, even or
odd according as i is a strictly half integer, an even integer or an odd
integer, respectively. Thus we_have the first result.

The second result is easily verified. . O

10.4. The equations P(z,d)u(z) = 4é(z). We shall find a G-invariant
fundamental solution to the homogeneous G-invariant differential operator
P(z,d). First note that the delta function é(z) on Sym,, (R) is given as

5(:0) (Qonst ) X P [-:] (z)

= (const.) X Laurent( L_ 22 J)(P[“ 2l ()

with a vector @ € A(—2tL, |2 |) which is non-zero in A(—24L, |24 ).
Henceforth, we fix @ = d@p satisfying : '

[&‘0,_2‘2}1]
§() = P} (@), (133)

Example 10.1. We consider the differential operator P(z,d) = det(9*) det(z).
It is a operator of homogeneous degree 0 and hence k£ = 0 in Algorithm 9.1.
The bp-function is
-3 n+1
bp(s) = (s+ 1)(s+5) (54 ;“ ).

The function v(z) in Algorithm 9.1 is given by (133) and. hence A = — 2L
in Algorithm 9.1. Since (s — A+ k) = (s+ 2£1), we have

bp(s) = (s + “3)H()

where

b(s) = (s + 1)(s+g)...(s+g).
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Then p =1 in Algorithm 9.1. We have the Taylor expansion
b(s)™ Zb s+ —— 1

with

Then, by the third step of the procedure in Algorithm 9.1, we have
~nil
ww= Y wPP e 3 wp )
i+j=—| 28 41 i+j=—|25)

&0.— Bl
Since ¢ > 0 and P! T2 ](z) = 0 except for j > —|2tL |, we have

u(@) =bo x P2 F @) + 8 x P TH o),
This is a G’—invariant funda.mental solution to P(z,0) = det(9*)det(z). I

this case, b; X pi 2 J (:c) is not necessary since it is annihilated by P(z, 8)

Next we consider the differential operator P(z,8) = det(z)det(d*). It is
a operator of homogeneous degree 0 and hence £k = 0 in Algorithm 9.1. The
bp-function is
1 n—1
bp(s)_(s)(s+§)... 5 )-
The function v(z) in Algorithm 9.1 is given by (133) and hence A = —2f!
in Algorithm 9.1. Since (s — A+ k) = (s + 2£1), we have

~ 1 -1
bp(s) =B(s) = (s)(s+ 3) ... ).
Then p =0 in Algorithm 9.1. We have the Taylor expansion

b(s

+1., n -1
bo= ((-"5H)=3) -+ ()
Then, by the third step of the procedure in Algorithm 9.1, we have

- ntl
u(x) — z bif,.’l:'ao,"—}—] (27)

i+j=— 2

1=0
with

. . [601_ ﬁ2'_1] —_ . n+1
Since i > 0 and P; (z) = 0 except for j > —| 2|, we have

n + 1 [601—ﬁl]

-1
o) = (2D (1) x Pl
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This is a G-invariant fundamental solution of P(z,d) = det(z)det(9*).

Example 10.2. We consider the differential operator P(z,d) = det(z). It
is a operator of homogeneous degree n and hence k¥ = 1 in Algorithm 9.1.
The bp-function is

bp(s) =1
The function v(z) in Algorithm 9.1 is given by (133) and hence A = — 241 in
Algorithm 9.1. Since (s—A+k) = (s+ 22), we have p = 0 in Algorithm 9.1

and b(s)~! = 1, and hence by = 1 and b; = 0 for i > 1. Then, by the third
step of the procedure in Algorlthm 9.1, we have

_L s#—-1 _nt3
ww)= Y wP® Yo=Y wp® 7 ](:c)
i+j=—[2|+0 i+j=—| 2] '
n43
Since ¢ > 0 and P[ E ](:c) = 0 except for j > — |21 |, we have

[ao Pt 3]
u(z) =P sy (:c)

This is a G-invariant fundamental solution of P(z,8) = det(z).

Example 10.3. We consider the differential operator P(z,8) = det(0%). It
is a operator of homogeneous degree —n and hence k£ = —1 in Algorithm 9.1.
The bp-function is

bp(s):s(s+%)...( ;1,).

The function v(z) in Algorithm 9.1 is given by (133) and hence A = — 241
in Algorithm 9.1. Since (s — A+ k) = (s + 251), we have

bp(s) = (s + Z=—2)5(s)

where
n—2

~ 1
b(s):s(3+§)...(s+ )-
Then p =1 in Algorithm 9.1. We have the Taylor expansion

b(s)"! =

with

bo = ((—";1)(—";2)---(—5))_1.

Then, by the third step of the procedure in Algorithm 9.1, we have

a# gt s _nst
wey= Y BPROTEHG o 5 g plE

i+j=—[ 2 J+1 . i+j=—| 251

(z)
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s#1 _n=1
Since 7 > 0 and P][% e ](:z:) = 0 except for j > —| 25|, we have

_ n—-1 . n-2 1 [a¥!-251)
) = (2D () < PR,
This is a G-invariant fundamental solution to P(z,8) = det(d*).

APPENDIX A. SOME RESULTS IN THE PREVIOUS PAPER BY THE AUTHOR [12].

The following subsections are devoted to explaining the results quoted from
the author’s paper [12], which play crucial roles in this paper. We shall give the
statements of the theorems used in this paper for the reader’s convenience without
proof.

A.l. The exact order of complex power functions. Using the vectors d(k)[so]
defined in (78), we can determine the exact orders of poles of Pl&4](z).

Theorem A.1 (Exact orders of poles). The ezxact orders of poles of P[a”](z) are
computed by the following algorithm.

1. Ats=-241(m =1,2,...), the coefficient vectors d*)[— 2mtl) are defined
in Definition 7.1. The ezact order Pl33)(z) at s = ——*—(m =1,2,...) 1s
given in terms of the coefficient vector d(zk)[ —+—]

(a) If1 <m < 2, then Pl%2)(z) has a possible pole of order not larger than
m.

o If (d¥ [-2m41], &) = 0, then P13](z) is holomorphic, and the con-
verse 1s true.

o For integers p in 1 < p < m, if (d<2p+2)[ mel] G = 0 and
(d®P)[- —L] @) # 0, then PI3 ’](:c) has a pole of order p, and the
converse 1is true.

e Lastly, if (d(z"‘)[— l'%‘tl-],&) # 0, then P[a"](:c) has a pole of order
m, and the converse is true.

(b) If m l> J%, then Pl32)(z) has a possible pole of order not larger than
n =2

o If (dV[- 2mtl) §@) =0, then PI& ’]( ) is holomorphic, and the con-
verse is true.

e For integers p in 1 < p < n', if (d(2p+2)[ ntl]) G) = 0 and
(dPP)[—2m41) ) £ 0, then PIA "](a:) has a pole of order p, and the
converse s true.

e Lastly, P1%%)(z) has a pole of order n’ if (d™~V[- ML) a@) £ 0
(when n is odd) or (d™[- 2m31) &) £ 0 (when n is even), and the
converse is true.

2. At s = —m(m = 1,2,...), the coefficient vectors d¥)[—m] are defined in
Definition 7.1 with e[-m] = (=1)"™*1. We obtain the exact order at s =
—-m(m =1,2,...) in terms of the coefficient vectors d(2k+1)[—m].

(a) If1<m 5 8 then Pl4, ) (2 ) has a possible pole of order not larger than
m.

o If (d(l)[—m],c'i) =0, then Pl%%)(z) is holomorphic, and the converse

is true.
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o Forintegerspinl < p < m, if (d%®*V[—m),&@) = 0 and (d®~V[-m],d) #
0, then Pl34)(z) has a pole of order p, and the converse is true.
o Lastly, if (d?™ V[—m],&) # 0, then P34)(z) has a pole of order
m, and the converse is true.
(b) If m > 3, then P[a”](m) has a possible pole of order not larger than
e
o If(dV[—m],a@) = 0, then Pl%*](z) is holomorphic, and the converse
is true.
e Forintegerspinl < p < v, if (d®*V[—m],d) = 0 and (dP~V[-m), @) #
0, then P[a”](m) has a pole of order p, and the converse 1s true.
o Lastly, Pl%*](z) has a pole of order n' if (d™[-m],@) # 0 (when n
is odd) or (d~V[=m),a) £ 0 (when n is even), and the converse
is true.

A.2. The exact support of complex power functions. The exact support of
Pl3:5](z) is given by the following theorem.

Theorem A.2 (Support of the singular invariant hyperfunctions). Let g be a pos-
itive integer. Suppose that P13*1(z) has a pole of order p at s = —9';—1 Let

(&, .s] (a, —ﬁ'—] g+1 w ‘
P E Py ()(s + ) (134)
w=-p,
be the Laurent expansion of P[a"’](z) at s = —9‘;—1. The support of the Laurent

. . [a,- 2] : : . .
expansion coefficients Py, (z) s contained in S if w < 0.
. g —atl
1. Let q be an even positive integer. Then the support of P,E,a’ 2 ](m)‘for w=
—1,-2,...,—p is contained in the closure S_s,,. More precisely, it is given
by '

- Blay=( U $9,.).  (135)

je{o<ign+aw | (a7 [- 2E2),a) 0}

Supp(

g _ 2l
2. Let q be an odd positive integer. Then the support of P,E,a’ 2 ](:c) for w =

—1,-2,...,—p is contained in the closure S_,,,_1. More precisely, it is given
by
- _sd-_l .
Supp(Py" * (2)) = ( U S pu-r)-  (136)

j€{0<j<nt2w+1 | (a{77 V[ 2t],8)#0}

Here, Supp(—) means the support of the hyperfunction in (—).
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