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Vanishing of the local cohomologies of D-modules
assoclated to A-hypergeometric systems
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Abstract

Given a finite set A of integral vectors and a parameter vector,
Gel’'fand, Kapranov and Zelevinsky defined a system of differential
equiations, called an A-hypergeometric (or a GKZ hypergeometric) sys-
tem.

Throughout this paper, we consider a finite set A fixed. Saito [Iso]
introduced a finite set E,(3) associated to a parameter 3 and a face
7 of the cone generated by A. The set E.(8) is important to classify
the parameters according to the D-isomorphism classes of their corre-
sponding A-hypergeometric systems.

The purpose of this paper is to relate the set E.(3) to the algebra.ic
local cohomologies of a D-module associated to the A-hypergeometric

system.
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1 Introduction

Given a finite set A of integral vectors and a parameter vector, Gel’fand,
Kapranov and Zelevinsky defined a system of differential equiations, called
an A-hypergeometric (or a GKZ hypergeometric) system. In the theory of
D-modules, there are several notions: characteristic variety, tensor product,
restriction, localization, de Rahm cohomology, algebraic local cohomology,
and others. In calculating them, this system is an important example.
Throughout this paper, we consider a finite set A fixed. Saito [Iso] in-
troduced a finite set E,(8) associated to a parameter B and a face 7 of
the cone generated by A. The set E,(B) is important to classify the pa-
rameters according to the D-isomorphism classes of their corresponding A-
hypergeometric systems.

The purpose of this paper is to relate the set E;(3) to the algebraic local
cohomologies of a D-module associated to the A-hypergeometric system. In
this paper, we give a result about the relation between the condition of the
vanishing of the local cohomologies and that of E(83).

In Section 2, we will prepare some notions and introduce some facts con-
cerned with them: A-hypergeometric system, the set E,(B), orbits of the
canonical action of the algebraic torus on the toric variety determined by
the set A. In Section3, we will state the main theorem (Theorem 3.1) in this
paper and compute the set of parameters satisfying the vanishing conditions
of the algebraic local cohomologies in some easy examples. We will give the
proof of the main theorem in detail in Section 4.

2 Preliminaries

2.1 A-hypergeometric systems

Let A = (ay,...,an) = (aij) be a dx n-integer matrix of rank d. We suppose
that all a; belong to one hyperplane off the origin in R4. We denote by 4
the toric ideal in C[8] := C[d1,...,0), that is

Iy = (8% — 8" | Au= Av,u,v € N*) C C[8].

For a column vector 8 = *(By,...,04) € C?, we denote by Ha(B) the left
ideal of the Weyl algebra

D=C(z1,...,xn,81,...,3n)

generated by I4 and Y7 a;7;0; — Bi (i =1,...,d). The quotient module
M4(B) = D/H(B) is called the A-hypergeometric system with parameter

B. In this paper, we consider not M4(B) itself but its Fourier transform.

I\J/A(\ﬂ) defined as follows:

——

Ma(B) := D/Ha(B),

2

12



13

where Ho(B) = D - {377, a;505z; + B; | i = 1,...,d} + DIa(x), Ia(z) :
the toric ideal in Clx| = Clz, ..., z,].

2.2 The set E.(8) and orbits of the canonical action of the
algebraic torus on the toric variety V(/4(x))

We denote by A the set {ay,...,a,} as well, and by R>0A the cone

n
chaj CJ‘ERZQ .

j=1
We denote the set of all faces of R»A4 by S(A). For a face 7 € S(A), we
denote

e by Z(AN7) the Z-submodule of Z¢ generated by AN 7,
e by C(ANT) the C-subspace of C? generated by AN,
e by NA the monoid generated by A.

We agree that Z(AN7) = C(ANT7) = (0) when 7 = {0}. For a parameter
B € C4, we define the set E,(8) as follows: ‘

E.(B):={Ae CANT)/Z(ANT) | B-AeNA+Z(ANT)}.
According to the paper [Iso], the following facts hold.

Proposition 2.1 Let 7 € S(A). Then we have the following.

1. If 0 € S(A), and T < 0, then there ezists a natural map from E.(B)
to Eq(B). In particular, if E-(8) # @, then E,(B) # @.

2. For any x € NA, there exists a natural inclusion from E.(8) to
E-(B+ x)

Theorem 2.2 The A-hypergeometric systems M4 (8) and M4(B') are iso-
morphic as D-modules if and only if E.(B) = E.(B') for all faces T € S(A).
Evidently, M4(8) ~ M4(B') as D-modules if and only if M4(8) ~ Ma(8)
as D-modules. Thus we obtain the following.

— e—

Corollary 2.3 The A-hypergeometric systems Ma(B) and M4(B') are iso-
morphic as D-modules if and only if E-(B) = E.(8') for all faces T € S(A)



Next, we will consider ’orbits’. It is well-known that the algebraic torus
(C*)? canonically acts on the toric variety V(Ia(x)). For 7 € S(A), we
define a subset X, in C" by

X;:={(z1,...,22) €C" | 2; =0 (if a; € 0),z; # 0 (if a; € 0)}.
In fact, X, is the orbit of the action, that is

V(14s(x)) = H X, : disjoint union.
o€S(A)

3 Main theorem and some easy examples

3.1 Main theorem

Let RIjz( - ) be the algebraic local cohomology functor with respect to
Z C C" in Mod(D). The following is the main theorem in this paper. We
will prove this theorem in detail in the next section.

Theorem 3.1 Fiz a parameter B and ax. Then we have the following.

1. If Er(ﬁ)jﬂf(ﬁ + may) for allm € N and all faces T € S(A), then
RI'|x,|(Ma(B)) = 0 for all faces T € S(A) with ar & 7.

2. If E.(B) = E.(B — may) for all m € N and all faces T € S(A), then
RI(x,)(D(Ma(B))) = O for all faces T € S(A) with ax & T, where
D( - ) is the dual functor in Mod(D).

By the definition of E,(83), we can easily prove that E.(8) = E,(8 — may)
for all m € N and all faces 7 € S(A) if and only if E,(8) = @ for all facets
7 € S(A) with ay ¢ 7. Hence, we obtain the following.

Corollary 3.2 If E.(B8) = @ for all facets T € S(A) with ay & T, then
RI(x,|(D(Ma(B))) = 0 for all faces T € S(A) with ax & 7.

3.2 Some examples

In this section, we consider some easy cases.
111
Casel A= 01 2 )
In this case, we have S(A) = {R>04,01,02,{(0,0)}}, where

R>04 = R>0%(1,0) + Rxo%(1,2), 01 = Rx¢%(1,0),02 = Rx0*(1,2)
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Computing the sets E-(8) (7 € S(A)), we have

ER;,4(8) = {8 mod ZA},
B,.(8) = {g(ﬂl,()) mod Z(1,0)} (if B2 € N)

(if B2 & N),
E,,(B) = {*(61,261) mod Z*(1,2)} (if 261 — B2 € N)
" o (if 26, — B2 & N),

{(0,0)} (if 8e NA)

Ef0,00} (B) = {Q (if B NA)

Therefore, by Corollary 3.2,

—

261 ~ o ¢ N = RI(x, | (D(M4(B))) = 0,RTx, ) (D(#a(B))) = 0.

Similarly, we obtain

e~

B2 ¢ N = RTx, (D(Ma(B))) = 0, RTx, .| (D(M4(B))) = 0.

Case 2 A= (1) 1 ; : not Cohen-Macauley case.

1
4
In this case, we have S(A) = {R>0A4,01,02,{(0,0)}}, where
R>0A = Rzot(l, 0) + Rzot(l, 4),01 = Rzot(l, 0),02 = Rzot(l, 4)
Computing the sets E,(8) (1 € S(A)), we have

Ery,4(B) = {B mod ZA},
Es(B) = {g(ﬂl’o) mod Z'(1,0)} (if B2 € N)

(if B2 ¢ N),
E.(B) = {t(ﬁh 4(31) mod Zt(1,4)} (if 48, — B2 € N)
R T | (if 46, — B> ¢ N),

0,0)} (if 3eNA
Eooy B ):{g y EingNA;.

Therefore, by Corollary 3.2,

— e —

46, — B2 ¢ N = RI'x, 1(D(Ma(B))) = 0, RIx, ;] (P(Ma(B))) = 0.

Similarly, we obtain

By & N = RTx, |(D(MA(B))) = 0, RTx, 1 (D(M4(B))) = 0.
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-0 O

Case3A=(

O O
O = O

-1
1 : normal case with d = 3.
1
= {

In this case, we have S(A) R>0A, 11,72, T3, T4, 01,02, 03,04, {(0,0)}},

where

R>0A = Rzot(l, 0,0) + Rzot(o, 1,0) + Rzot(o, 0,1) + Rzot(—l, 1,1),

T1 = RZOt(L 0) 0) + RZOt(Oa 1) O)a T2 = RZOt(O, 1) 0) + RZOt(*l, 1) l)a

T3 = Rzot(o, 0,1) + Rzot(-—l, 1,1),74 = Rzot(l, 0, 0) + Rzot(o, 0, 1),
g1 = RZOt(l,Oa 0)’02 = RZOt(O) 1)0),03 = RZOt(Ov 0, 1)’04 = RZOt(_l, 1, 1)
Computing the sets E.(8) (7 € S(A)), we have

ER,04(B) = {B mod ZA},

E (,3) . {t(ﬂl,ﬂz, 0) mod Z‘(I,O, 0) + Zt(O, 1, 0)} (if ,33 € N)
T e (if B3 ¢ N),
E (ﬁ) — {t(ﬁl’ ﬂ2, —ﬁl) mod Zt(Oa 1’ 0) + Zt(—ls 1) 1)} (lf ,31 + ,33 € N)
™2 o (if By + Bs & N),
E ('3) — {t(ﬂla _/Blv 183) mod Zt(O, 0, 1) + Zt(—l, 1, 1)} (lf ﬂl + ﬂg € N)
™ @ (if By + B2 & N),
E,.(8) = {¥(61, 0, B3) mod Z(1,0,0) + Z!*(0,0,1)} (if B2 € N)
"\ e (if B2 ¢ N),
E (ﬁ) _ {t(ﬂl, 0,0) mod Z‘(l,O, 0)} (if B2 € N and 3 € N)
e (if ¢ Nor B3 ¢N),
E,.(8) = {¢(0, B2,0) mod Z*(0,1,0)} (if 51 + B3 € N and (3 € N)
e (if B+ Bs € N or B3 ¢ N),
E (ﬁ) _ {t(oa 0’133) mod Zt(oy 0, 1)} (if ,31 +ﬂ2 € N and )82 € N)
e (if B+ B2 € N or B2 ¢ N),
E, (8) = 4 L (“P1:B1, 1) mod ZE(=1,1, 1)} (if by + B € N and fy + G5 € N)
o 2 (if B+ B2 € N or B1 + B3 ¢ N),
0,0,0 if 3 NA
E{0p,03(B) = {{Z( )} Efg ¢ N A;.

Therefore, by Corollary 3.2,

e —

BENA, B+ (2 ¢ N,B1+ 83 € N=RI[x,|(D(Ma(B))) = 0 (1 = 72,73,02,03,04, {0
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Similarly, we obtain

:8 ¢ NA; p1 + :82 ¢ N)ﬂ? ¢ N = RF[X,](D(AZA(\#)))) =0 (T = 73,74,01,03, 04, {0})a
BENALEN,fi+ L EN=> RF[X,](D(ATA(\ﬁ))) =0 (1 = 1, 72,01, 02,04, {0}),
ﬁ ¢ NA7 :32 ¢ N’ ﬂ3 ¢ N = RI‘[XT](D(m))) =0 (T =mN,T74,01,02,03, {0})

4 Proof of the main theorem

In this section, we will prove the main theorem. In order to prove it, we will
prepare some facts. For a face 7 € S(A) and 1 < j < n, we denote

q:Fw=m (if a; ¢ 7)
e {.’l)j # 0} (lf a; € 7').

Then we have X, = V(Ia(x))N(}-, Sr,j- Moreover, according to the theory
of D-modules, we can obtain

RI(x,) > ROy (14 RLs,, ) - - Rs, -

Since Supp(i4(B)) C V(Ia()) (resp. Supp(D(Ha(B))) C V(Ia())),
we can easily proove that

R (v(14(2))] (Ma(B)) = Ma(B) (resp. Ry (1,(a))(D(Ma(B))) =~ D(Ma(B))),
and
RI({z,=0}) =0 <= RI'x,) =0 (for all 7 € S(A) with a;, & 7).

Therefore, it is sufficient to focus on the functor RIs,
[Kas], the following theorems hold.

4] According to

Theorem 4.1 Let M be a holonomic D-module, then the following condi-
tions are equivalent.

1. RF[{kaO}](M) = 0.
2. (a) the module M has no nonzero coherent submodules supported
in {zp = 0}. ‘
(b) Let N be a holonomic D-module and f : M — N be an injec-
tive D-homomorphism. If the restriction of f on {zx # 0} is

an isomorphism and N has no nonzero coherent submodules
supported in {z} = 0}, then f is an isomorphism.

Remark The conditions 1. and 2. are equivalent to 2.



2. M =~ Clz]s, ®c[z] M, where C[z];, is the locallzatlon of C[z] with
respect to the multiplicatively closed set {1, z, xk, -+ }.

On the other hand, considering the dual theorem of this, we obtain the
following.

Theorem 4.2 Let M be a holonomic D-module, then the following condi-
tions are equivalent.

1. RF[{szO}](D(M)) = 0.
2. (a) the module M has no nonzero coherent quotient modules sup-
ported in {z} = 0}.

(b) Let L be a holonomic D-module and g : L — M be a surjec-
tive D-homomorphism. If the restriction of f on {zx # 0} is an
isomorphism and L has no nonzero coherent quotient modules
supported in {zy = 0}, then g is an isomorphism.

Before proving the main theorem, we need to show the following proposition.

Proposition 4.3 Fiz a prameter B and an index k. Then we obtain the
following.

1. If E.(B) = Ei(£+ may) for allm € N and all faces T € S(A), then
the module M(B) satisfies the condition (2) of Theorem 4.1.

2. If E-(B) = E;(B — may) for allm € N and all faces T € S(A), then
the module Ma(B) satisfies the condition (2) of Theorem 4.2.

Proof of 1. By the remark of Theorem 4.1, it is sufficient to show that

MaB) £ MA(ﬂ)
First, we will check the injectivity of . Let P mod H4 (ﬂ) € Ker ¢ (P (P e

D). Then there exists I € N such that z} P mod MA(['I) = 0 in MA(B)
Therefore, we can write

d n
.'IILP = Z Q,(Z a,-jajxj + ,31) + Z R.caq,
=1 j=1 a
where Q;, R, € D, cq € I4(x). Multiply the both sides by z}*, we obtain

Tk PL] = Z Q,(Z aij0jzj + Bi)xy + ZRaca:ck

=1

= ZQ,mk Z aij0jz; + (B + maix)) + E Rozy Cor-
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If m € N is sufficiently large, then we have Q;z]*, Ro2}* € xch. Hence we
obtain z} Pz € .’L‘kH Aa(B+ mak) Since the element xfc is not a zerodivisor

in D, thus we have Pz} € HA(ﬁ + may).
On the othe hand, by the assumption and Corollary 2.3, we obtain

Ma(B) % MA(,B + may).

This implies P € m) and ¢ is injective.
Second, we will check the surjectivity of ¢. By the assumption and Corollary
3.2, for any m € N, there exists @,, € D such that

1 mod IZ{(B) = ' Qm mod H/A(\,B)

Hence, we immidiately obtain C|z];, ® (1 mod IE(E)) C Im .
Since D(C[z]z, ® (1 mod Ha(B))) = Clzl]s, ®cle] Ma(B) and ¢ is a D-

morphism, finally we obtain Im ¢ = C[x]s, ®cjs) Ma(B) and ¢ is surjective.
Proof of 2. (the condition (a)) ‘ ,
We consider the following exact sequence:

0———)F—)A4/A(\3)LG_)O,

where Supp(G) C {zx = 0}. For a sufficiently large m € N, we have
Y (zf mod HA(ﬂ)) = zp'9(1 mod HA( ))=0in G.

Hence, z7* mod Ifq(\ﬁ) € F(= Ker ). By the assumption and Corollary
2.3, we obtain

MA(B —may) = Ma(B) (1 mod Ha(B — may) — zi* mod Ha(B)).

The module K contains the image of the morphism -z}, therefore K =
M4(B). This implies G = 0.
(the condition (b))

Suppose that a morphism g : L — M4(B) satisfies the condition of the
proposition. We will show that the following exact sequence is split:

0 — Ker g — L % Ma(B) — 0. Y

Since g is surjective, there exists u € L such that g(u) =1 mod,m). we
define D[s] := D ®c C[s] (s = (s1,---,54)), and
HA[s] = D[s|I4(x) + ZD s] - Zama iTj =+ sz)

=1 j=1

9
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It is easy to check that for any P(s) € D[s] there exist Q(s) € D[s] and
¢ € N such that P(8 — mag)zy* = z” °Q(B — mayg) in D for any m > c.
In particular, P(s) € H4[s] implies
zp~°Q(B — max) mod Ha(B) = P(B — max)zy’ mod Ha(B)
=0.

Recall that the restriction of g on {zj # 0} is an isomorphism, thus we

have Q(B — may) mod Hx(B) = 0 on {zx # 0}. This implies supp(Q(B —
mayg)u) C {zx = 0}.

Hence, for a suffciently large [ € N, a:ch(,B——mak)u =0in L for any m > c.
Thus, for all m € N, m > ¢ + [ implies P(8 — mag)z*u = 0. In summary,
for any P(s) € m, there exists ¢ € N such that P(8 — mag)z?u = 0
for m > . o

Furthermore, since the left ideal H4[s] is finitely generated as a D[s]-module,
we can choose ¢ independently of P(s). Therefore, we will define a D-

morphism § : M, A(F——\c'ak) — L by

——— cl

£(1 mod Hy(B — day)) := zjf u.
By the assumption and Corollary 2.3, we have

/
—— .zi —
ad

Mu(B — cdar) =~ Mu(B).

Considering the composite mapping of £ and the inverse of -a:i', we define

a morphism ¢ : ]\TA(\[&) — L. Obviously, go € = idm'). This implies
the exact sequence (1) is split. Therefore Ker g is a quotient module of L.
Finally, since Supp(Ker g) C {z; = 0}, by the assumption of g, we obtain

Ker g = 0 and g is an isomorphism.

Finally, the statement 1. (resp. 2.) of the main theorem immidiately
results from Theorem 4.1 and Proposition 4.3.1 (resp. Theorem 4.2 and
Proposition 4.3.2).
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