
Painlev\’e 方程式の特殊解

大阪大学理学研究科 ・ 大山 陽介 (Yousuke Ohyama)

School of Science, Osaka University

1 Introduction
In this paper we will study the third Painlev\’e equations $P_{111}(\alpha,\beta,\gamma, \delta)$

$y’= \frac{1}{y}y^{\prime 2}-\frac{y’}{x}+\frac{\alpha y^{2}+\beta}{x}+\gamma y^{3}+\frac{\delta}{y}$ , (1)

for $\gamma=0$ and $a\mathit{6}\neq 0$.
The values of complex parameters $\alpha$ , $\beta,\gamma,\delta$ of the third Painlev\’e equations

satisfy one of four cases:

(Q) a $=0,\gamma=0$ (or $\beta=0,\delta=0$),

$(D_{8})\gamma=0$ , $\delta=0\alpha\beta\neq 0$

$(D_{7})\gamma=0$ , $\alpha\delta\neq 0$ (or $\delta$ $=0,\beta\gamma\neq 0$),

$(D_{6})\gamma\delta\neq 0$.

In the case (Q), $\mathrm{f}1_{\mathrm{I}1}$ are sovable by quadraturs ([11], [23]). Since all of solutions
of (Q) are classical in Umemura’s meaning ([27]), we do not include the equation
(Q) in the Painleve equations. Gromak ([4]) also excluded the case (Q). The
type $D_{6}$ , which is generic case, is studied in many articles ([23], [18], [28]). The
equations of type $D_{7}$ and $D_{8}$ are missed in most study of the third Painleve
equation so far. Gromak studied the type $D_{7}$ in [2].

Recently Sakai pointed out the significance of the type $D_{7}$ and $D_{8}$ in [24].
He showed that the spaces of the initial values for the type Dq, $D_{7}$ and $D_{8}$

are different from each other. The vertical leaves become asum of rational
curves, whose intersection diagrams are the root lattices $D_{6}$ , $D_{7}$ and $D_{8}$ in
each case. This is the origin of the name of each type. Moreover the Backlund
transformation groups of the equation of type Dq, $D_{7}$ and $D_{8}$ are $W(A_{1}\oplus A_{1})$ ,
$W(A_{1})$ and $\mathrm{Z}_{2}$ , respectively. Prom Sakai’s viewpoint, we should study eight
(not six) type of Painlev\’e equations.

This papar is asupplement of Okamoto’s series of four papers “Studies
on the Painlev\’e equations” ([20], [21], [22], [23]) published in $1980\mathrm{s}$ . We will
study Hamitonian structures, atransformation group, $\tau$-functions and special
solutions of type $D_{7}$ . The type $D_{8}$ reduced to special case of $D_{6}$ by aquadratic
transformation. We will comment about the type $D_{8}$ in Theorem 3.1.

We will study the equation $P_{111}’(\alpha,\beta,\gamma, \delta)$

$q’= \frac{q^{\prime 2}}{q}-\frac{q’}{t}+\frac{\alpha q^{2}}{4t^{2}}+\frac{\beta}{4t}+\frac{\gamma q^{3}}{4t^{2}}+\frac{\delta}{4q}$ , (2)
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which is equivalent to $P_{1\mathrm{I}1}$ by

$t=x^{2}$ , $y=xq$. (3)

We will consider $P_{111}’$ instead of $P_{111}([23])$ , because the action of atransformaion
group on $P_{111}’$ is simpler than $ffl_{11}$ .

By change of variables

$x=\lambda x_{1}$ , $y=\mu y_{1}$ (Ap $\neq 0$), (4)

we can normalize the parameter $(\alpha, \beta,\gamma, \delta)$ . Essentially, the equations of type
$D_{6}$ have two comlex parameters, the equations of type $D_{7}$ have one comlex
parameter and the equations of type $D_{8}$ have no comlex parameters. For the
type $D_{7}$ , we can take standard form

$q’= \frac{q^{\prime 2}}{q}-\frac{q’}{t}-\frac{q^{2}}{t^{2}}+\frac{a}{t}-\frac{1}{q}$ . (5)

This equation is the main object in this paper.
An algebraic solution of the third Painleve equations are found by Lukashe-

vich ([11], [12]). Gromak classified all algebraic solutions of the third Painleve
equations not only for type $D_{6}$ but also for type $D_{7}([3], [4])$ . If $a$ is an integer,
(5) has one and only one algebraic solution. If $a$ is not an integer, (5) has no
rational solution. The equation of type $D_{8}$ has two rational solutions.

The algebraic solutions of Painleve equations are studied by many authors.
There are many works by Belorussian school (see [5]). After Okamoto showed
that the transformation groups of Painleve equations are isomorphic to affine
Wyle groups, it is easy to understand their works. Murata gives classification of
algebraic solutions of the second, third and fourth Painleve equations in terms
of affine Wyle groups ([17], [18]). Kitaev-Law-McLeod [9] classified rational
solutions of the fifth Painleve equations. Mazzocco [15] classified rational solu-
tions of the sixth Painleve equations. Any algebraic solutions become rational
for the fifth Painleve equations (announced in [30]). Algebraic solutions for the
sixth Painleve equations are very interesiting ([6], [7], [1], [14], [26], [19], [10])
and they are not classified yet. From second to fifth Painleve equations, all
algebraic solutions turn to be rational except for type $D_{7}$ .

All of algebraic solutions of (5) are transformed to each other by the affine
Wyle group $W(A_{1})$ . But it is difficult to calculate all algebraic solutions by the
direct action of the affine Wyle group. If we consider $\tau$-functions, the action
becomes very simple. The action of the affine Wyle group reduces to the Toda
equation on $\tau$-functions. For the second Painleve equations, the Yablonskii-
Vorob’ev polynomials give transformations of $\tau$-functions([29], [22]). There
are similar polynomials for other Painleve equations ([22] for Painleve $\mathrm{I}\mathrm{V}$ , [26]
and [19] for type Dq, $\mathrm{V}$ and $\mathrm{V}\mathrm{I}$). Although the solution of the third Painleve
equations of type $D_{7}$ is algebraic, the action of the affine Wyle group is given
by polynomials. This is an analogue of Umemura’s polynomials for the sixth
Painleve’ equations ([26]).

Yablonskii-Vorob’ev polynomials or Umemura’s polynomials are related to
Shur polynomials ([8], [25]). It is an open problem to represent our new poly-
nomials by Shur polynomials.

In section four, we will study transcendental classical functions of the equa-
tions of type $D_{7}$ . The third Painleve equation of type $D_{7}$ have $0$ like the second
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Painleve equation. The second Painleve equation has also one parameter and
the B\"a&lund transformation group is the affine Wyle group $W(A_{1})$ . The second
Painleve equation has transcendental classical functions which are reduced to
Airy functions ([27]). On the contrary, the third Painlev\’e equation of type $D_{7}$

does not have transcendental classical functions, following the idea of Umemura
and Watanabe. The third Painlev6 equation of type $D_{6}$ has transcendental
classical functions which are reduced to Bessel functions ([28]).

The author would give thanks to Prof. H. Watanabe and Prof. H. Sakai for
fruitful discussions. This work is supported in part by Japan Society for the PrO-
motion of Science under Grand-in Aid for Scientific Research (No. 12640174).

2Third Painleve equation
In this section we will review basic facts on the third Painlev6 equations ([23]).
We will write (1) as $ffl_{11}(\alpha,\beta,\gamma,\delta)$ and (2) as $P_{111}’(\alpha,\beta, \gamma,\delta)$ .

2.1 Fundamental transform
Although the third Painlev6 equations have four complex parameters, essensially
they have two complex parameters by simple transformation.

Theorem 2.1. (1) By the change of variables

$t=x^{2}$ , $y=xq$, (6)

$ffl_{11}(\alpha,\beta,\gamma,\delta)$ and $P_{111}’(\alpha, \beta,\gamma,\delta)$ are equivaliant.
(2) By the change of variables

$x=x_{1}$ , $y= \frac{x}{y}1$ ’ (7)

$P_{111}’(\alpha,\beta,\gamma, \delta)$ changes to $P_{111}’(-\beta, -\alpha, -\delta, -\gamma)$ .
(3) By the change of variables

$x=x_{1}^{2}$ , $q=y_{1}^{2}$ , (8)

$P_{\mathrm{I}11}’(\alpha,\beta,0,0)$ changes to $P_{111}’(0,0,2\alpha,2\beta)$ .
(4) By the change of variables

$t=\lambda t_{1}$ , $q=\mu q_{1}$ (9)

$P_{1\mathrm{I}1}’(\alpha,\beta,\gamma,\delta)$ changes to $P_{\mathrm{I}11}’(\lambda\alpha,\mu\lambda^{-1}\beta, \lambda^{2}\gamma,\mu^{2}\lambda^{-2}\delta)$ .
By Theorem 2.1 (3), the third Painleve equation of type $D_{8}$ reduced to type

$D_{6}$ . By Theorem 2.1 (4), the third Painleve equations $P_{111}’$ of type $D_{7}$ can be
normalized to (5).

2.2 Hamiltonian system
The Hamiltonian associated with (5) is

$H= \frac{1}{t}(f^{2}g^{2}-a_{1}fg+tg+\frac{1}{2}f)$ , (10)
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(11)

where $f=q$ and $a=1+a_{1}([24])$ . The Hamiltonian system %(ai) is

$\{_{\frac{\frac{df}{dgdt}}{dt}=\frac{1}{t}(2fg^{2}-a_{1}g+\frac{1}{2})}=\frac{1}{-t}(2f^{2}g-a_{1}f+t),$

.

We take an autiliary Hamiltonian

$h(t)=tH+a_{1}^{2}/4$ . (12)

Then we have

$\{$

$f(t)=- \frac{1-2a_{1}h’(t)+2th’(t)}{4h(t)^{2}},$ ,

$g(t)=h’(t)$ .
(13)

Therefore we have

Proposition 2.2. $h$ satisfies the differential equation

$(th’(t))^{2}+4h’(t)^{2}$ (th’ $(t)-\mathrm{h}(\mathrm{t})$ ) $+a_{1}h’(t)- \frac{1}{4}=0$ . (14)

Inversely, for asolution of $h(t)$ of (14), we have asolution $(f,g)$ of (11) by
(13) if

$\frac{d^{2}h}{dt^{2}}\neq 0$ .

Proposition 2.3. TAere exists the one-tO-One correspondence from a solution
$h$ of (14) and a solution $(f,g)$ of (11).

The equation (14) admits asingular solution of the form

$h=\lambda t+\mu$ ,

$- \frac{1}{4}+a_{1}\lambda-4\lambda^{2}\mu=0$ .

2.3 Transformation group
The transformation group of the third Painleve equation of type $D_{7}$ is isomor-
phic to the affine Wyle group $W(A_{1})([24])$ . The geneators of $W(A_{1})$ are given
by

$\pi$ : $a_{1}arrow-a_{1}$ , (15)
$s:a_{1}arrow-1-a_{1}$ . (16)

We will show the explicit expression of the action of $W(A_{1})$ .

Theorem 2.4. 1) If $(f(t),g(t))$ satisfies $H(a_{1})$ ,

$(F, G)=(-f(-t)+ \frac{a_{1}}{g(-t)}-\frac{1}{2g(-t)^{2}},$ $-g(-t))$

satisfies $H(-a_{1})$ .
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$\mathit{2})If(f(t),g(t))$ satisfies $H(a_{1})$ ,

$(F, G)=(-2tg(-t)$ , $\frac{f(-t)}{2t})$

satisfies $H(-1-a_{1})$ .
By Theorem 2.4, we have aB\"acklund transformation which gives

$\pi$ $\circ s:a_{1}arrow a_{1}+1$ ,

as follows:

$(f,g) arrow(\frac{-2t^{2}}{f(t)^{2}}+\frac{2(1+a_{1})t}{f(t)}-2tg(t)$, $\frac{f(t)}{2t})$ . (17)

This transformation is found by Gromak ([2]).

2.4 r-function
We define the $\tau$-function of $P_{\mathrm{I}11}’$ . For any solution (f,g), the $\tau$-function $\tau(t)$ is
defined by

$\frac{d}{dt}\log\tau(t)=H(f,g,$t), (18)

uP to constant multiplication.

Theorem 2.5. The $\tau$-function $\mathrm{r}(\mathrm{t})$ is holomorphic in $\mathbb{C}-\{0\}$ and has simple
zeros.

In most papers, the third Painle6 equations of type $D_{6}$ are represented as
monodromy preserving deformation. Recently Kawamuko and Sakai showed
that the equations of type $D_{7}$ and $D_{8}$ are represented as monodromy preserving
deformations. Therefore the holomorphicity of the $\tau$-function is followed from
Miwa’s result ([16], [13]).

Here we will give direct proof of the holomorphicity of the $\tau$-function Prom
(14), if the auxiliary Hamiltonian $h$ has apole at $t=t_{0}(t_{0}\neq 0)$ ,

$h \sim\frac{t_{0}}{t-t_{0}}+O((t-t_{0})^{0})$ ,

where $O((t-t_{0})^{0})$ is the Landau’s $O$ . Therefore we have

$H= \frac{1}{t}(h-\frac{a_{1}^{2}}{4})\sim\frac{1}{t-t_{0}}+O((t-t_{0})^{0})$ .

By the definiion of the $\tau$-function, $\tau(t)$ has asimple zero at $t=t_{0}$ .

2.5 Toda equation
Let h $=h(t,$f,g,$a_{1})$ be an auxiliary Hamiltonian (12). We difine anew auxiliary
function $h_{1}$ by

$h_{1}=h-fg+ \frac{2a_{1}+1}{4}$ . (19)
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We set $(F, G)$ is the Backlund transformation of $(f,g)$ by $\pi\circ s$ :

$(F,G)=( \frac{-2t^{2}}{f^{2}}+\frac{2(1+a_{1})t}{f}-2tg$ , $\frac{f}{2t})$ .

As the same as (13), we have

$\{$

$f=2th_{1}’$ ,
$-1+2h_{1}’+2a_{1}h_{1}’+2xh_{1}’$

$g=\overline{8th_{1}^{\prime 2}}$
. (20)

Lemma 2.6. $h_{1}(t, f,g, a_{1})$ equals the auxiliary Hamiltonian $h(t, F, G, a_{1}+1)$ .

Proof We have

$H(t, F,G,a_{1}+1)=H(t, f,g,a_{1})- \frac{fg}{t}$ (21)

by direct calculation. Therefore

$h(t, F, G,a_{1}+1)$ $=$ tH$(t, F,G, a_{1}+1)+ \frac{(a_{1}+1)^{2}}{4}$

$=$ tH$(t, f,g, a_{1})-fg+ \frac{(a_{1}+1)^{2}}{4}$

$=$ $h(t, f,g,a_{1})-fg+ \frac{2a_{1}+1}{4}=h_{1}(t, f,g, a_{1})$ .

$\square$

We set $X=fg$ . From (13) we have

$X= \frac{-2th’+2a_{1}h’-1}{4h’}$ . (22)

From (20) we have

$X= \frac{2th_{1}’+2(a_{1}+1_{\grave{)}}h_{1}’-1}{4h_{1}},$ . (23)

We will consider the sequece of solutions transformed by

$\ell=\pi\circ s$ , $\ell^{2}$ , $\ell^{3}$ , $\ell^{4}$ , $\ldots$

For an fixed solution $(f_{0},g_{0})=(f,g)$ , we set

$(f_{n},g_{n})=(\ell^{n}(f),\ell^{n}(g))$ ,

which is asolution for $a_{1}+n$ . Let $\tau_{n}$ be afunction defeined by

$\frac{d}{dt}\tau_{n}=H(t, f_{n}, g_{n}, a_{1}+n)$ .

Theorem 2.7. $\tau_{n}$ satisfy the Toda equation

$\frac{d}{dt}t\frac{d}{dt}\log\tau_{n}=c(n)\frac{\tau_{n-1}\tau_{n+1}}{\tau_{n}^{2}}$ , (24)

for some constants $c(n)$ .
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Proof. We set $X_{n}=\mathrm{f}\mathrm{n}g\mathrm{n}$ . Prom (21) we have

$H(t, f_{n+1},g_{n+1},a_{1}+n+1)=H(t, f_{n},g_{n}, a_{1}+n)- \frac{X_{n}}{t}$ .

Therefore

$X_{n}=t \frac{d}{dt}\log\frac{\tau_{n}}{\tau_{n+1}}$ . (25)

Let $h_{n}$ be the auxiliary Hamiltonian for $(f_{n},g_{n})$ . Prom (22), we have

$X_{n}= \frac{-2th_{n}’+2(a_{1}+n)h_{n}’-1}{4h_{n}},$ .

Changing $a_{1}$ to $a_{1}-1$ in (23), we have

$X_{n-1}= \frac{2th_{n}’+2(a_{1}+n)h_{n}’-1}{4h_{n}’}$ .

Therefore we have

$X_{n-1}-X_{n}= \frac{th_{n}’}{h_{n}},=t\frac{d}{dt}\log h_{n}’$ . (26)

Prom (25) and (26), we obtain

$h_{n}’=c(n) \frac{\tau_{n-1}\tau_{n+1}}{\tau_{n}^{2}}$ .

$\square$

3Polynomial generated by special solution
3.1 Algebraic solution
Theorem 3.1. The third Painleve equation of type $D_{8}$ does not have trancen-
dental classical solutiotes. The third Painleve equation of type $D_{8}$ has two ratiO-
nal solutions. There are no more algebraic solutions.

The first part comes ffom [28] and the second part comes from ([18]) by
the transformation in Theorem 2.1 (3). Actually, $ffl_{11}(\alpha,\beta, 0,0)$ has constant
solutions $y=\pm\sqrt{-\beta}/\alpha$.

Lukashevich found special algebraic solutions and Gromak classified all al-
gebraic solutions for type $D_{7}$ :

Theorem 3.2. $([\mathit{1}\mathit{1}J, [12])$ In case $a_{1}=-1$ , $H(a_{1})$ has an algebraic solution

$f(t)=-t^{2/3}$ , $g(t)= \frac{1}{6t^{2/3}}-\frac{1}{2t^{1/3}}$ .

$H(a_{1})$ has one and only one algebraic solution if $a_{1}$ is an integer. These alge-
braic solutions are transformed by the the Bdcklund transformation $\ell^{n}$ .
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3.2 Sequence of algebraic solution
First few algebraic solutions in Thorem 3.2 by the Backlund transformation $\ell$

is as followes.
If $a_{1}=0$

$(f,g)=( \frac{-t^{\frac{1}{3}}}{3}-t^{\frac{2}{3}}$ , $\frac{-1}{2t^{\frac{1}{3}}})$ .

If $a_{1}=1$

$(f,g)=( \frac{-5t^{2}\S-12t-9t^{\frac{4}{3}}}{(1+3t^{1}\S)^{2}}$ , $\frac{-1-3t^{\frac{1}{3}}}{6t^{2}\S})$ ,

If $a_{1}=2$ ,

$(f, g)=( \frac{-35x^{1}\S-315x^{2}\S-990x-1350x^{\frac{4}{3}}-891x^{\frac{5}{3}}-243x^{2}}{3(5+12x^{\frac{1}{3}}+9x^{\frac{2}{3}})^{2}}$ , $\frac{-5-12t^{\frac{1}{3}}-9t^{\frac{2}{3}}}{2(1+3t^{\frac{1}{3}})^{2}t^{\frac{1}{3}}})$

We can calculate $\tau$-functions of algebraic solutions by the Toda equation
(24) more easily. From now on we set $\tau_{n}(t)$ as the $\tau$-function of the algebraic
solution for $a_{1}=n$ .

Theorem 3.3. Let $s=3t^{1/3}$ . Then we have

$\tau_{n}(t)=\exp(-\frac{1}{2}ns-\frac{s^{2}}{8})s^{-d_{\mathfrak{n}}/12}S_{n}(s)$ ,

up to constant multiplication. Here $d_{n}$ is

$d_{n}=\{$
$9n^{2}-1$ $n$ is even,
$9n^{2}-4$ $n$ is odd.

(27)

$S_{n}(s)$ are monic polynomials of $s$ with integral coefficients. $S_{n}(0)\neq 0$ and

$nS_{n}(s)^{2}+sS_{n}(s)^{2}-2S_{n}(s)S_{n}’(s)+2sS_{n}’(s)^{2}-2sS_{n}(s)S_{n}’(s)$

$=\{$
$sS_{n+1}(s)S_{n-1}(s)$ $n$ is even, (28)

$S_{n+1}(s)S_{n-1}(s)$ $n$ is odd.

Proof. We assume that

$\tau_{n}(t)=\exp(-\frac{3}{2}t^{1/3}-\frac{9}{8}t^{2/3})t^{-c_{n}/36}T_{n}(s)$ .

By the Toda equation (24) we have arecurrent relation

$nT_{n}(s)^{2}+sT_{n}(s)^{2}-2T_{n}(s)T_{n}’(s)+2sT_{n}’(s)^{2}-2sT_{n}(s)T_{n}’(s)$
(29)

$=T_{n+1}(s)T_{n-1}(s)$ ,

and $2c_{n}+12=c_{n-1}+c_{n+1}$ .
We set

$T_{n}(s)=a_{0}^{(n)}+a_{1}^{(n)}s+a_{2}^{(n)}s^{2}+O(s^{3})$ .
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Then the left hand side of (29) is

$(na_{0}^{(n)}-2a_{1}^{(n)})a_{0}^{(n)}+((a_{0}^{(n)})^{2}+2na_{0}^{(n)}a_{1}^{(n)}-8a_{0}^{(n)}a_{2}^{(n)})s+O(s^{2})$ .

We will see that if $n$ is even, $na_{0}^{(n)}-2a_{1}^{(n)}=0$ and $(a_{0}^{(n)})^{2}+2na_{0}^{(n)}a_{1}^{(n)}$ -

$8a_{0}^{(n)}a_{2}^{(n)}$ is an odd integer and that if $n$ is odd, $na_{0}^{(n)}-2a_{1}^{(n)}=0$ is an odd
integer by induction.

If $n$ is odd and $T_{n}(0)=a_{0}^{(n)}$ is an odd integer, $na_{0}^{(n)}-2a_{1}^{(n)}=0$ is an odd
integer. Prom (29) we have

$na_{0}^{(n)}-2a_{1}^{(n)}=a_{0}^{(n-1)}a_{0}^{(n+1)}$ .

Therefore $a_{0}^{(n+1)}$ is also an odd integer.
Assume that $n$ is even and $T_{n}(0)=a_{0}^{(n)}$ is an odd integer. We will show

$na_{0}^{(n)}-2a_{1}^{(n)}=0$ later. Then $(1+n^{2})(a_{0}^{(n)})^{2}-8a_{0}^{(n)}a_{2}^{(n)}$ is an odd integer.
Therefore if we set

$\{$

$S_{n}(s)=T_{n}(s)$ $\mathrm{n}$ is even,

$S_{n}(s)= \frac{T_{n}(s)}{s}$ $\mathrm{n}$ is odd,

we have $S_{n}(0)$ is an odd integer.
We set

$\tau_{n}(t)=\exp(-\frac{3}{2}t^{1/3}-\frac{9}{8}t^{2/3})t^{-d_{n}/36}S_{n}(s)$ .

Then $S_{n}$ satisfy (28) and $d_{n}$ satisfy (27).
Now we will show that $na_{0}^{(n)}-2a_{1}^{(n)}=0$ when $n$ is even.

$\frac{d}{dt}$ lote $\tau_{n}\sim-\frac{d_{n}}{36}\frac{1}{t}+k_{1}t^{-2/3}+k_{2}t^{-1/3}+O(t^{0})$ ,

where

$k_{1}$ $=$ $\frac{a_{1}^{(n)}}{a_{0}^{(n)}}-\frac{n}{2}$ ,

$k_{2}$ $=$ $- \frac{3}{4}-\frac{3(a_{1}^{(n)})^{2}}{(a_{0}^{(n)})^{2}}+\frac{6a_{2}^{(n)}}{a_{0}^{(n)}}$ .

Therefore the auxiliary hamiltonian $h$ is the form

$h \sim\frac{9n^{2}-d_{n}}{36}+k_{1}t^{1/3}+k_{2}t^{2/3}+O(t)$ .

By (14)

$(th’(t))^{2}+4h’(t)^{2}(th’(t)-h(t))+nh’(t)- \frac{1}{4}=\frac{(4-9n^{2}+d_{n})k_{1}^{2}}{81}t^{-4/3}+O(t^{-1})$.

Thus when $n$ is even, we have

$k_{1}= \frac{a_{1}^{(n)}}{a_{0}^{(n)}}-\frac{n}{2}=0$ .

30



By Theorem 2.5, $S_{n}(s)$ have simple zeros. The polynomials $S_{n}(s)$ are ana-
logue of Yablonskii-Vorob’ev polynomials for the second Painleve equations. It is
aconjecture that $S_{n}(s)$ can be represented by Shur polynomials like Yablonskii-
Vorob’ev polynomials ([8]).

We will list $S_{n}(s)$ for $n=0,1,2,3,4,5$.

$S_{0}(s)=1$ ,

$S_{1}(s)=1$ ,

$S_{2}(s)=s+1$ ,

$S_{3}(s)=s^{2}+4s+5$ ,

$S_{4}(s)=s^{4}+10s^{3}+40s^{2}+70s+35$ ,

$S_{5}(s)=s^{6}+20s^{5}+175s^{4}+840s^{3}+2275s^{2}+3220s+1925$ .

4Transcendental classical solutions

4.1 Main Theorem

(30)

The third Painleve equations have classical solutions written by Bessel functions.
The third Painleve’ equations of type $D_{6}$ is in [24].

The Hamiltonian form of the third Painleve equations of type $D_{6}$ as follows
([28]):

$\{_{t\frac{}{dt}=-2qp^{2}+2pq-v_{1}p+\frac{1}{2}(v_{1}+v_{2})}^{t\frac{dq}{d_{p}^{t}}=2q^{2}p-q^{2}+v_{1}q+t}’$

.

Umemura and Watanabe show that (30) has transcendental classical solutions
if and only if $v_{1}+v_{2}$ or $v_{1}-v_{2}$ is an even integer. For example, if $v_{1}+v_{2}=0$ ,
we have classical solutions $p=0$ and

$t \frac{dq}{dt}=-q^{2}+v_{1}q+t$ . (31)

We will introduce anew variable $u$ by

$q= \frac{v_{1}}{2}+t\frac{d}{dt}(\log u)$ .

Then (31) turns to be the linear equation

$\frac{d^{2}u}{dt^{2}}+\frac{1}{t}\frac{du}{dt}-\frac{1}{t^{2}}(t+\frac{v_{1}^{2}}{4})u=0$ ,

which is equivalent to Bessel’s equation.
If $v_{1}+v_{2}$ or $v_{1}-v_{2}$ is an even integer, there exist aBacklund transformation

on (30), we can reduce to the case $v_{1}+v_{2}=0$ . Therefore any transcendental
classical solutions can be represented by Bessel functions.
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The Backlund transformation group of the third Painleve equations of type
$D_{6}$ is the affine Wyle group $\ovalbox{\tt\small REJECT} \mathrm{T}^{\prime^{\ovalbox{\tt\small REJECT}}}(A.)\mathrm{e}\mathrm{I}\ovalbox{\tt\small REJECT} \mathrm{I}^{\ovalbox{\tt\small REJECT}}(A.)$ and walls of this action is the set

{ $(v_{1},v_{2})\in \mathbb{C}|v_{1}+v_{2}$ or $v_{1}-v_{2}$ is an even integer} .

For other Painleve equations (second, fourth, fifth and sixth), they have tran-
scendental classical solutions on the walls of action of the affine Wyle group.

The third Painleve equations of type $D_{7}$ has one parameter $a$ and the
Backlund transformation group is the affine Wyle group $W(A_{1})$ . Hence we
may expect that the equation (5) has transcendental classical solutions on the
walls. But the this expectation is incorrect. We will show that

Theorem 4.1. The third Painlevi equations of type $D_{7}$ do not have transcen-
dental classical solutions.

In [2] algebraic solutions of the third Painleve equations of type $D_{7}$ are
classified. Combined with Theorem 4.1, we have

Theorem 4.2. The third Painlevi equations of type $D_{7}$ have classical solutions
if and only if $a$ is an integer. If $a$ is an integer, (5) has only one algebraic
solutions with three-sheeted covering.

4.2 Invariant divisor
In this section we will show akey lemma for Theorem 4.1.

Let $K$ be an ordinary differential field which is an extention of $\mathbb{C}(t)$ , the
field of rational functions of $t$ . Let $K[f,g]$ be the polynimial ring over $K$ in two
independent variables $f$ and $g$ . We consider the following derivation $X(a)$ on
$K[f,g]$ :

$X(a)=t \frac{\partial}{\partial t}+(2f^{2}g-af+t)\frac{\partial}{\partial f}-(2fg^{2}-ag+\frac{1}{2})\frac{\partial}{\partial g}$ . (33)

The differential ring $(K[f,g],X(a))$ represents (11).
In [27], Umemura and Watanabe introduced the condition (J) for $X(a)$ as

follows:

(J) For any ordinary differential field extension $K/\mathbb{C}(t)$ , there exists no prin-
cipal ideal I of $K[f,g]$ such that O $\subsetarrow I$ C, $K[f,g]$ and $X(a)I\subset I$ .

The following Proposition is the key in this paper.

Proposition 4.3. The derivation $X(a)$ does not satisfy the condition (J).

Proof. Assume that there exists aprincipal ideal I of $K[f,$ g] which is invariant
under the action of $X(a)$ . Let F in $K[f,g]$ be agenerator if I. Then we have

$X(a)F=GF$, (33)

for some G $\in K[f,g]$ . We will show there is no such polynomial F in $K[f,g]$ in
six steps.

Step 1. Two gradings in $K[f,g]$ :
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We will introduce two gradings in $K[f,g]$ . At first, we define the weights
of $f$ and $g$ to be -1 and 2respectively. The weight of amonomial $af^{:}g^{j}$ in
$K[f,g]$ is $2j-i$ for any $a\in K(a\neq 0)$ . Let $R_{d}$ be the $K$-linear subspace of
$K[f,g]$ generated over $K$ by all the monomials of weight $d$ . $R_{-d}=K[f^{2}g]f^{d}$ ,
$R_{2d}=K[f^{2}g]g^{d}$ , $R_{2d-1}=K[f^{2}g]fg^{d}$ , for any non-negative integer $d$ and

$K[f,g]=\oplus R_{d}d\in \mathrm{Z}$ ’
$R_{d}\cdot R_{d’}=R_{d+d’}\backslash$ .

We define three homogeneous derivations $X_{-2}$ , $X_{0}$ , $X_{1}$ by

$X_{1}=(2f^{2}g+t) \frac{\partial}{\partial f}-2fg^{2}\frac{\partial}{\partial g}$ ,

$x_{-2}x_{0}$ $==$ $t \frac{\partial}{\partial}-a.f\frac{\partial}{\partial f}+ag\frac{\partial}{\partial g}-\frac{1t}{2}\frac{\partial}{\partial g}$

,

We have $X(a)=X_{-2}+X_{0}+X_{1}$ and each $X_{i}$ maps $R_{d}$ to $R_{d+:}$ .
In the second grading, we set the weights of $f$ and $g$ to be 2and -1 re-

spectively. The weight of amonomial $af^{:}g^{j}$ in $K[f,g]$ is $2i-j$ for any $a\in K$

$(a\neq 0)$ . Let $R_{d}’$ be the $K$-linear subspace of $K[f,g]$ generated over $K$ by all the
monomials of weight $d$ . $R_{-d}’=K[fg^{2}]g^{d}$ , $R_{2d}’=K[fg^{2}]f^{d}$ , $R_{2d-1}’=K[fg^{2}]f^{d}g$ ,
for any non-negative integer $d$ and

$K[f,g]=\oplus R_{d}’d\in \mathrm{Z}$ ’
$R_{d}’\cdot R_{d}’,$ $=R_{d+d’}’$ .

We define three homogeneous derivations $X_{-2}’,X_{0}’$ , $X\mathrm{i}$ by

$X_{1}’$ $=$ $2f^{2}g \frac{\partial}{\partial f}-(\frac{1}{2}+2fg^{2})\frac{\partial}{\partial g}$ ,

$X_{0}’$ $=$ $t \frac{\partial}{\partial t}-af\frac{\partial}{\partial f}+ag\frac{\partial}{\partial g}$,

$X_{-2}’$ $=$ $t \frac{\partial}{\partial f}$ .

We have $X(a)=X_{-2}’+X_{0}’+X_{1}’$ and each $X_{i}’$ maps $R_{d}’$ to $R_{d+:}’$ .
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The both gradings come from the Newton polygon of $X(a)$ . The Newton
polygon of $X(a)$ is as follows:

$f$

Here an integral point $(i,j)$ represents the derivation $bf^{:+1}g^{j}\partial/\partial p+cf^{:}g^{j+1}\partial/\partial g$

$(b,c\in K)$ . Since the Newton polygon of type $D_{7}$ is different from the polygon
of type $D_{6}$ in [28], we choose different gradings.

We will determine the polynimial $G$ . Since the highest part $X_{1}$ and $X_{1}’$ are
of weight one, $G$ is at most of weight one in the both degree. Therefore

$G=\lambda fg+\mu$

for some $\lambda,\mu\in K$ .
Step $\ell$. the highest part of F with respect to the first grading

We will consider the highest part of $F$ . Let $F$ be asum of homobeneous
polynomials with respect to the first grading

$F=F_{m’}’+F_{m’+1}+\cdots+F_{1}+\cdots+F_{m}$ . $(m’\leq m)$

$F_{j}\in R_{j}$ , Frpl , $F_{m}\neq 0$ and if $m=m’=0$, $F_{0}\not\in K$ . The homogeneous part of
(33) is

$X_{1}F_{k-1}+X_{0}F_{k}+X_{-2}F_{k+2}=\lambda fgF_{k-1}+\mu F_{k}$ . (33)

Firstly we claim that $F_{m}$ is not divisible by $f$ . If $F_{m}$ is divisible by $f$ , there
exists an integer $k\geq 1$

$F_{m}=Qf^{k}$ , $f\{Q$ , $Q\in K[f,g]$ .

Since
$X_{1}(F_{m})=\lambda fgF_{m}$ ,

we have

$2f^{k+2}g \frac{\partial Q}{\partial f}+tf^{k}\frac{\partial Q}{\partial f}-2f^{k+1}g^{2}\frac{\partial Q}{\partial g}+(2kf^{k+1}g+ktf^{k-1})Q=\lambda gf^{k+1}Q$.

This means $f|Q$ , which is contradiction.
Therefore $m$ is anon-negative and even integer. We set $m=2p$ and

$F_{2p}=g^{p} \sum_{j=0}^{k}b_{j}(f^{2}g+t)^{j}$ ,
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for $b_{0}$ , $b_{1}$ , \ldots ,
$b_{k}\in K$ . Then we have

$X_{1}(F_{2p})=fg^{p+1} \sum_{j=0}^{k}2(j-p)b_{j}(f^{2}g+t)^{j}$ .

Hence we have $\lambda=2(j$ -p) for anon-negative integer j and

$F_{2p}=b(f^{2}g+t)^{p+\lambda/2}g^{p}$ (35)

for $b\in K$ .
When $F$ is an invariant polynomial, $b^{-1}F$ is also an invariant polynomial

for any $b\in K$ . Hence we may assume $b=1$ . Prom now on, we assume $b=1$ in
(35).

Step 3. $\mathrm{F}2\mathrm{p}-\mathrm{i}$ and $\mathrm{F}2\mathrm{p}-2$

We will determine $F_{2p-1}$ and $\mathrm{F}2\mathrm{p}-2$ . By (34), $F_{2p-1}\mathrm{F}2\mathrm{p}-2$ and $\mathrm{F}2\mathrm{p}_{-}3$ satisfy
the equations

$X_{1}(F_{2p-1})+X_{0}(F_{2p})$

$X_{1}(F_{2p-2})+X_{0}(F_{2p-1})$

We can set

$=$ $\lambda fgF_{2p-1}+\mu F_{2p}$ , (36)
$=$ $\lambda fgF_{2p-2}+\mu F_{2p-1}$ . (37)

$F_{2p-1}$ $=$ $g^{p}f \sum_{j=0}^{k_{1}}d_{j}L^{j}$ ,

$F_{2p-2}$ $=$ $g^{p-1} \sum_{j=0}^{k_{2}}e_{j}L^{j}$ ,

for $d_{j}$ , $e_{j}\in K$ and $L=f^{2}g+t$ . By (35) we have

$\mu F_{2p}$ -Xl $( \mathrm{F}2\mathrm{p})=(\mu+\frac{a\lambda}{2})L^{p+\frac{\lambda}{2}}g^{p}-(a+1)t(p+\frac{\lambda}{2})L^{p+\frac{\lambda}{2}-1}g^{p}$ . (38)

Moreover we have

$X_{1}(F_{2p-1})-\lambda fgF_{2p-1}$

$=g^{p} \sum_{j=0}^{k}d_{j}[(2-\lambda-2p+2j)L^{j+1}+(\lambda-1+2p-2j)tL^{j}]$ .
(39)

Comparing (38) and (39), we have $k=p+\lambda/2-1$ . But in this case the coefficient
of $L^{p+\lambda/2-1}g^{p}$ of $X_{1}(F_{2p-1})-\mathrm{X}\mathrm{f}\mathrm{g}\mathrm{F}2\mathrm{p}-\mathrm{i}$ becomes zero. Hence we have

$\mu+\frac{a\lambda}{2}=0$ . (40)

Moreover we have

$4=0$, $d_{1}=0$ , $\ldots$ , $d_{k-1}=0$ , $d_{k}=-(a+1)(p+ \frac{\lambda}{2})$ .
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Finally we have

$F_{2p-1}=- \frac{1}{2}(a+1)(2p+\lambda)g^{p}f(f^{2}g+t)^{p+\lambda/2-1}$ .

In the same way we obtain

$F_{2p-2}=- \frac{1}{8}(a+1)^{2}(2p+\lambda-2)(2p+\lambda)tg^{p-1}(f^{2}g+t)^{p+\lambda/2-2}$,

from (37).

Step 4. The highest part of $F$ with respect to the second grading

Let us decompose $F$ with respect to the second grading

$F=F_{n}’,$ $+F_{n+1}’,+\cdots+F_{1}’+\cdots+F_{n}’$ . $(n’\leq n)$

$F_{j}’\in R_{j}’$ , $F_{n}’,$ , $F_{n}’\neq 0$ and if $n=n’=0$, $F_{0}’\not\in K$ .
In the same way $F_{n}’$ is not divisible by $g$ and $n$ is an even integer $2q$ . There

exists anon-negative integer $k$ such that A $=2(q-k)$ and

$F_{2q}’=c( \frac{1}{2}+fg^{2})^{q-\lambda/2}f^{q}$ (41)

for $c\in K$ .
The Newton polygon of $F$ has the following figure:

$f$

The side $AC$ represents $F_{2p}$ and the side $BC$ represents $F_{2q}’$ . Therefore the
coordinates of $A$ , $B$ are $(0,p)$ , $(q, 0)$ and the coordinates of $C$ are

($2p+\lambda$ , $2p+ \frac{1}{2}\lambda)=(2q-\frac{1}{2}\lambda,$ $2q-\lambda)$ .

Namely

$p+ \frac{3}{4}\lambda=q$ . (42)

Step 5. $F_{2q-1}’$ and $F_{2q-2}’$

We can calculate $F_{2q-1}’$ and $F_{2q-2}’$ in the same way as the Step 3:

$F_{2q-1}’= \frac{1}{2}a(\lambda-2q)f^{q}g(fg^{2}+\frac{1}{2})^{q-\lambda/2-1}$ ,
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$F_{2q-2}’=- \frac{1}{16}a^{2}(\lambda-2q)(\lambda-2q+2)f^{q-1}(fg^{2}+\frac{1}{2})^{q-\lambda/2-2}$

We will compare $\mathrm{F}2\mathrm{P}-\mathrm{i}$ and $F_{2q-1}’$ . From (42) we have

$f^{2p+\lambda-1}g^{2p+\lambda/2-1}=f^{2q-\lambda/2-1}g^{2q-\lambda-1}$ .

The coeffiecient of this monomial in $F$ is

$- \frac{1}{2}(a+1)(2p+\lambda)=\frac{1}{2}a(\lambda-2q)$ .

From (42) we have

$\lambda=-\frac{4p}{a+2}$ . (43)

Step 6. $F_{2p-3}’$

$F_{2p-3}’$ is determined by the equation

$X_{1}(F_{2p-3}’)+X_{0}(F_{2p-2}’)+X_{-2}(F_{2p}’)= \lambda fgF_{2p-3}’-\frac{a\lambda}{2}F_{2p-2}$’

We may assume that $F_{2p-3}’$ has the form

$F_{2p-3}’=f^{p-1}g \sum_{j=0}^{k_{3}}h_{j}M^{j}$ ,

where $M=fg^{2}+1/2$ . Then we have

$\mu F_{2p-2}’-X_{0}(F_{2p-2}’)-X_{-2}(F_{2p}’)=\sum_{j=0}^{3}s_{j}f^{q-1}M^{q-\lambda/2-j}$,

where

$s_{0}=(- \frac{1}{2}\lambda+2q)t$ , $s_{1}=( \frac{1}{4}\lambda-\frac{1}{2}q)t$ , $s_{2}=-al$ , $s_{3}=al(1+ \frac{\lambda}{4}-\frac{q}{2})$ ,

and
$l=- \frac{1}{16}a^{2}(\lambda-2q)(\lambda-2q+2)$ .

For any positive integer $s$ we have

$X_{1}(g^{p-1}M^{q-\lambda/2-\epsilon})-\lambda fg(g^{p-1}M^{q-\lambda/2-\epsilon})$

$=(2s-4)f^{q-1}M^{q-\lambda/2-s+1}+( \frac{3}{2}-s)f^{q-1}M^{q-\lambda/2-s}$ .
(44)

Therefore $k_{3}=q-\lambda/2-1$ . Setting $s=1$ in (44), we have

$X_{1}(g^{p-1}M^{q-\lambda/2-1})-\lambda fg(g^{p-1}M^{q-\lambda/2-1})$

$=-2f^{q-1}M^{q-\lambda/2}+ \frac{1}{2}f^{q-1}M^{q-\lambda/2-1}$ .
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Therefore

$h_{q-\lambda/2-1}=- \frac{s_{0}}{2}$ (45)

Setting $s=2$ in (45), we have

$X_{1}(g^{p-1}M^{q-\lambda/2-2})- \lambda fg(g^{p-1}M^{q-\lambda/2-2})=-\frac{1}{2}f^{q-1}M^{q-\lambda/2-2}$

and the term $f^{q-1}M^{q-\lambda/2-1}$ does not appear. Therefore

$\frac{1}{2}h_{q-\lambda/2-1}=s_{1}$ . (46)

Comparing (45) and (46), we have

$- \frac{s_{0}}{4}=s_{1}$ .

Namely $\lambda=0$ . Hence we have $\mu=0$ and $p=q=0$. This means $F\in K$ . Since
I $\mathrm{C}Karrow$’this is contradiction. $\square$

4.3 Proof of Theorem 4.1
The derivation $X(a)$ satisfies the condition (J) for any $a$ . By Theorem 1.1 in
[27] we see that every transcendental solution of the equation of type $D_{7}$ is
non-classical.

By aquadratic transformation, the third Painleve equation of type $D_{8}$ re-
duces to athird Painlev\’e equation of type $D_{6}$ . The third Painlev\’e equation of
type $D_{8}$

$y’= \frac{1}{y}y^{\prime 2}-\frac{y’}{x}+\frac{\alpha y^{2}+\beta}{x}$

has two algebraic solutions $y=\sqrt{-\beta}/\alpha$ and no transcendental classical solu-
tions.

Thus we classified classical solutions of the third Painleve equation of all
type.
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