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Summary
Independent component analysis (ICA) is anew method of extracting inde-
pendent components from multivariate data. It can be applied to various
fields such as vision and auditory signal analysis, communication systems,
and biomedical and brain engineering. There have been proposed anumber
of algorithms. The present article shows that most of them use estimating
functions from the statistical point of view, and give aunified theory, based
on information geometry, to elucidate the efficiency and stability of the al-
gorithms. This gives new efficient adaptive algorithms useful for various
problems.
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1Introduction
Principal component analysis (PCA) has been widely used for decomposing
multivariate statistical signals into independent components. However, PCA
implicitly assumes that signals are subject to multivariate Gaussian distribu-
tions, and uses orthogonal bases to decompose signals. Under the Gaussian
assumption, there are infinitely many independent decompositions, and PCA
chooses one by forcing that the basis should be orthonormal.

In many situations, signals are not Gaussian, and can be decomposed into
(approximately) independent components by using anon-0rthogonal basis
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where non-Gaussianity plays afundamental role. Atypical example is the
separation of voices from individual speakers in the cocktail-party problem,
where voices are linearly mixed and the mixture matrix is not orthogonal so
that anon-0rthogonal transformation is necessary for unmixing.

Similar problems are formulated in the case where independent source
signals are temporally correlated, and in the case where the mixing process
is not instantaneous but convolutive. Image data can also be decomposed in
asuitable basis.

There are anumber of algorithms for ICA [7, 12, 13, 14, 16]. See also
monographs [15, 17, 20]. Some are on-line, but some are in the batch mode,
although most online algorithms can easily be converted to the batch mode
by taking the average. Some algorithms decompose all the components in
parallel, while some extract components one by one sequentially. Intermedi-
ate algorithms extract several components in parallel.

The present article uses the method of estimating functions ([2, 4, 5]) to
provide aunified viewpoint to this problem. Information geometry [11] elu-
cidated the fundamental structure of estimating functions in semiparametric
statistical models which includes unknown functions as parameters [10]. We
show most existing methods are derived from estimating functions, and their
differences are only in the choices of estimating functions.

We then give error analysis and stability analysis in terms of estimating
functions. This makes it possible to design various adaptive methods for
choosing unknown parameters included in estimating functions, which control
accuracy and stability. The article is based on aseries of works ([7, 2, 3, 4,
5, 6, 7, 8, 9]) by the author including recent unpublished works.

2Statements of the Problems and Methods
Let $\mathrm{x}(\mathrm{i})=[x_{1}(t), \cdots, x_{n}(t)]^{T}$, $t=1,2$ , $\cdots$ , be $n$-dimensional multivariate
signals observed at time $t$ , where $T$ denotes transposition of avector or
matrix. We assume that they are instantaneous mixtures of $m$ independent
signals $\mathrm{s}(t)=(s_{1}(t), \cdots,s_{m}(t))^{T}$ generated at time $t$ , as

$\mathrm{x}(t)=\mathrm{H}\mathrm{s}(t)$ , (1)

where H is an $n\cross m$ unknown matrix. Here, $s_{i}$ and $s_{j}$ (i $\neq j)$ are independent,
but each signal may have temporal correlations
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Let $\mathrm{W}$ be an $m\cross n$ matrix, which is acandidate of unmixing $\mathrm{x}(t)$ by

$\mathrm{y}(t)=\mathrm{W}\mathrm{x}(t)$ (2)

such that $y_{i}(t)$ , $i=1$ , $\cdots$ , $m$ , are original independent random variables, or
arescaled and permuted version of the original source signals $s_{i}(t)$ , that is,

$y_{i}(t)=c_{i’}s_{i’}(t)$ (3)

where $(1’, \cdots, m’)$ is apermutation of $($ 1, $\cdots$ , $m)$ and $c_{i}$ are constants.
An on-line learning method uses acandidate matrix $\mathrm{W}_{t}$ at time $t$ , and

calculates
$\mathrm{y}(t)=\mathrm{W}_{t}\mathrm{x}(t)$ , (4)

which is hoped to be the original independent source signals. Then, the
candidate $\mathrm{W}_{t}$ is updated by

$\mathrm{W}_{t+1}=\mathrm{W}_{t}-\eta \mathrm{F}(\mathrm{x}(t), \mathrm{W}_{t})$ , (5)

where $\eta$ is alearning constant (which may depend on $t$ ) and $\mathrm{F}$ is amatrix-
valued function, such that $\mathrm{W}_{t}$ converges to the true solution.

There have been proposed various $\mathrm{F}$ , which are derived in many cases
(but not in all cases) as the gradients of cost functions to be minimized. The
cost functions are, for example, higher-0rder cumulants, entropy, negative
$\log$ likelihood and others. In many cases, algorithms include free parame-
ters, sometimes free functions, to be chosen adequately or to be determined
adaptively. Since the probability density functions of the source signals are
unknown, there are no way to avoid such parameters.

There are conditions which the function $\mathrm{F}$ should satisfy. If the algorithm
using $\mathrm{F}$ converges to the true solution $\mathrm{W}$ , $\mathrm{W}$ should be an equilibrium
of dynamics (5). Since this is astochastic difference equation, we use its
continuous time version for mathematical analysis,

$\frac{d}{dt}\mathrm{W}(t)=-\eta \mathrm{F}\{\mathrm{x}(t), \mathrm{W}(t)\}$ . (6)

Its expected version is

$\frac{d}{dt}\mathrm{W}(t)=-\eta E[\mathrm{F}\{\mathrm{x}(t),\mathrm{W}(t)\}]$ (7)
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where expectation E is taken with respect to $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(t)$ . The condition that the
true solution W is an equilibrium of (7) is given by

$E[\mathrm{F}(\mathrm{x},\mathrm{W})]=0$ , (8)

where $\mathrm{x}=\mathrm{H}\mathrm{s}$ , except for indeterminacy due to permutations and rescaling.
Afunction $\mathrm{F}(\mathrm{x}, \mathrm{W})$ satisfying (8) for the true $\mathrm{W}$ is called the estimating

function in semiparametric statistical model, as is shown in the next section.

3Semiparametric Statistical Model and Es-
timating Function

We formulate the problem in the statistical framework. Let $r_{a}(s_{a})$ be the
probability density function of $s_{a}$ . joint probability density of $\mathrm{s}$ is written
as

$r( \mathrm{s})=\prod_{a=1}^{n}r_{a}(s_{a})$ (9)

since they are independent. The observation vector x is alinear function of
s, so that its probability density function is given in terms of W $=\mathrm{H}^{-1}$ by

$px(\mathrm{x};$ W,$r)=\det|\mathrm{W}|r(\mathrm{W}\mathrm{x})$ , (10)

where we assumed n $=m$ and $\mathrm{H}^{-1}$ exists for simplicity. We also assume

E $[s_{a}]=0$ . (11)

Since we do not know $r$ except that it is aproduct form (9), the probability
model of $\mathrm{x}$ includes two parameters, $\mathrm{W}$ called the “parameter of interest”
which we want to estimate, and the unknown function $r=r_{1}\cdots$ $r_{n}$ which is
called the “nuisance parameter (function)” and which we do not care. Such
astatistical model is called asemiparametric model and estimation of the
parameter of interest is in general adifficult problem because of the existence
of unknown functions.

Amethod of estimating functions has been developed for semiparametric
statistical models in the framework of information geometry (Amari and
Kawanabe [10]; Amari and Nagaoka [11] as for information geometry)
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An estimating function in the present case is amatrix-valued function
$\mathrm{F}(\mathrm{x}, \mathrm{W})=\{F_{ab}(\mathrm{x}, \mathrm{W})\}$ of $\mathrm{x}$ and $\mathrm{W}$ not including the nuisance parameter
$r$ , that satisfies

1) $E_{\mathrm{W},r}[\mathrm{F}(\mathrm{x},\mathrm{W})]=0$ , (12)

Here, suffices $a$ , $b$ , $c$ , $\cdots$ represent components of the original source signals
or recovered signals, $\mathrm{s}$ or $\mathrm{y}$ , $E_{\mathrm{W},r}$ denotes expectation with respect to prob-
ability distribution given by (10), and it is required that (12) holds for all $r$

of the form (9). In order to avoid atrivial $\mathrm{F}$ such as $\mathrm{F}=0$ , we require that

2) $\mathrm{L}=E_{\mathrm{W},r}[\frac{\partial}{\partial \mathrm{W}}\mathrm{F}(\mathrm{x},\mathrm{W})]$ . (13)

is non-degenerate. This guarantees that

$E_{\mathrm{W},r}[\mathrm{F}(\mathrm{x},\mathrm{W}’)]\neq 0$ (14)

for $\mathrm{W}’\neq \mathrm{W}$ at least locally. It should be noted that $\mathrm{L}$ is amatrix-by-matrix
linear operator that maps amatrix to amatrix. The components of $\mathrm{L}$ are

$L_{ab,ci}=E_{\mathrm{W},r}[ \frac{\partial}{\partial W_{ci}}F_{ab}(\mathrm{x},\mathrm{W})]$ , (15)

where $Wci$ denote elements of $\mathrm{W}$ , and suffices $i,j$ , $k$ , etc. representing com-
ponents of observed signals $\mathrm{x}$ . It is convenient to use capital indices $A$ , $B$ , $\cdots$

to represent apair $(a, b)$ , $(c, i)$ and so on of indices. Then, for $A=(a, b)$ ,
$B=(c, i)$ , $\mathrm{L}$ has amatrix representation $\mathrm{L}=(L_{AB})$ that operates on
$(W_{B})=(W_{ci})$ as

$\mathrm{L}\mathrm{W}=\sum_{B}L_{AB}W_{B}=\mathrm{I}^{L_{ab,ci}W_{ci}}$
. (16)

The inverse of $\mathrm{L}$ is defined by the inverse matrix of $\mathrm{L}=(L_{AB})$ .
When an estimating function $\mathrm{F}(\mathrm{x},\mathrm{W})$ is found, given observed data

$\mathrm{x}(1)$ , $\cdots,\mathrm{x}(t)$ , we have the estimating equation

$\sum_{i=1}^{t}\mathrm{F}\{\mathrm{x}(i),\mathrm{W}\}=0$ , (17)

of which the solution gives an estimator W. This is derived by replacing the
expectation in (12) by the empirical sum of observations. An on-line learning
algorithm is given by (5). These equations work without making use of the
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unknown $r$ . The problem is how to find a“good” estimating function $\mathrm{F}$ if
there are some.

Anumber of heuristic estimating functions have been proposed including
Jutten and Herault [16]; Bell and Sejnowski [12]; Amari, Cichocki and Yang
[8]; Cardoso and Laheld [13]; Oja [21]. Estimating function $\mathrm{F}$ is better than

$\mathrm{F}’$ , when the expected error of estimator $\hat{\mathrm{W}}$ derived by $\mathrm{F}$ is smaller than
that by $\mathrm{F}’$ . However, it may happen that $\mathrm{F}$ is better than $\mathrm{F}’$ when the true
(unknown) distribution is $r(\mathrm{s})$ but $\mathrm{F}’$ is better when it is $r’$ . Hence, they
are in general not comparable. Afamily of estimating functions is said to
be admissible, when, given any estimator, an equivalent or better estimating
function can be found in the family. Moreover, this class includes the best
estimator (that is, the Fisher efficient estimator) in the sense that it satisfies
the extended Cram\’er-Rao bound asymptotically.

Amari and Cardoso [5] used the general theory of Amari and Kawanabe
[10] to prove that functions of the form

$\mathrm{F}(\mathrm{x},\mathrm{W})=\varphi(\mathrm{y})\mathrm{y}^{T}-\mathrm{I}$ , (18)

or
$F_{ab}(\mathrm{x},\mathrm{W})=\varphi_{a}(y_{a})y_{b}-\delta_{ab}$

in component form, where

$\varphi(\mathrm{y})=[\varphi_{1}(y_{1}), \cdots,\varphi_{n}(y_{n})]^{T}$

consists of arbitrary non-trivial functions $\varphi_{a}$ , are estimating functions. They
together with their linear concomitants, give aset of admissible estimating
functions. This (18) is an estimating function as is easily shown. Indeed,
when $\mathrm{W}$ is the true solution, $y_{a}$ and $y_{b}$ are independent. Therefore, whatever
$r$ is,

$E_{r,\mathrm{W}}[\varphi_{a}(y_{a})y_{b}]=E[\varphi_{a}(y_{a})]E[y_{b}]=0$ , $a\neq b$ . (19)

However, when W is not the true solution, the above equation does not hold
in general. When a $=6$ , we have

E $[\varphi_{a}(y_{a})y_{a}]=1$ , (20)

which specifies the magnitude of the recovered signal. Since the magnitude
may be arbitrary, we may put the diagonal terms $F_{aa}$ arbitrarily
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We give typical examples of estimating functions. Let

$q( \mathrm{s})=\prod_{a=1}^{m}q_{a}(s_{a})$ (21)

be a(possibly misspecified) joint probability density function of $\mathrm{s}$ , which
might be different from the unknown true one

$r( \mathrm{s})=\prod r_{a}(s_{a})$ . (22)

The negative $\log$ likelihood of $\mathrm{x}$ derived therefrom is

$l( \mathrm{x},\mathrm{W})=\det|\mathrm{W}|+\sum_{i=1}^{n}\log q_{a}(y_{a})$ , (23)

where $y_{a}$ is the $a$-th component of $\mathrm{y}=\mathrm{W}\mathrm{x}$ , depending on both $\mathrm{x}$ and W.
The criterion of minimizing $l$ is interpreted as maximization of the entropy,
or maximization of the likelihood, although it includes unknown functions
$q_{a}(y_{a})$ . Let us put

$\varphi_{a}(y_{a})=-\frac{d}{dy_{a}}\log q_{a}(y_{a})$ . (24)

The gradient of 1gives an estimating function

$\tilde{\mathrm{F}}(\mathrm{x},\mathrm{W})=\frac{\partial l(\mathrm{x},\mathrm{W})}{\partial \mathrm{W}}=\mathrm{W}^{-T}-\varphi(\mathrm{y})\mathrm{x}^{T}$, (25)

where $\mathrm{W}^{-T}$ is the transpose of the inverse of $\mathrm{W}$ and $\varphi=[\varphi_{1}, \cdots, \varphi_{n}]^{T}$

We can prove that this $\tilde{\mathrm{F}}$ is an estimating function. However, when $\tilde{\mathrm{F}}$ is an
estimating function,

$\mathrm{F}(\mathrm{y})=\tilde{\mathrm{F}}(\mathrm{x},\mathrm{W})\mathrm{W}^{T}\mathrm{W}=\{I$ $-\varphi(\mathrm{y})\mathrm{y}^{T}\}\mathrm{W}$ (26)

is also an estimating function and vice versa. It is easy to prove that

$E[\mathrm{F}(\mathrm{y})]=0$ (27)

and
$E[\tilde{\mathrm{F}}(\mathrm{x}, \mathrm{W})]=0$ (28)

are equivalent
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When the true distributions are $r_{a}$ , the best choice of $\varphi_{a}$ is

$\varphi_{a}(s)=-\frac{d}{ds}\log r_{a}(s)$ . (29)

This gives the maximum likelihood estimator (Pham and Garat [22]). How-
ever, even when we use adifferent $\varphi_{a}$ , the estimating equation (17) gives
a $\sqrt{t}$-consistent estimator, that is, the estimation error converges to 0in
probability in the order of $1/\sqrt{t}$ as $t$ goes to infinity.

It is easy to show that similar estimating functions are derived from the
criterion of maximizing higher-0rder cumulants and others. The algorithms
given by Cardoso, Jutten-Herault, Oja etc use respective estimating func-
tions.

We have shown that $\tilde{\mathrm{F}}(\mathrm{x}, \mathrm{W})$ and $\mathrm{F}(\mathrm{y})$ are equivalent estimating func-
tions, because they are linearly related. More generally, let $\mathrm{R}(\mathrm{W})$ be an
arbitrary nonsingular linear operator acting on matrices. When $\mathrm{F}(\mathrm{x};\mathrm{W})$ is
an estimating function matrix, $\mathrm{R}(\mathrm{W})\mathrm{F}(\mathrm{x};\mathrm{W})$ is also an estimating function
matrix because

$E\mathrm{w}_{t},[\mathrm{R}(\mathrm{W})\mathrm{F}(\mathrm{x};\mathrm{W})]$

$=$ $\mathrm{R}(\mathrm{W})E_{\mathrm{W},r}[\mathrm{F}(\mathrm{x};\mathrm{W})]=0$ . (30)

Moreover, $\mathrm{F}$ and RF are equivalent in the sense that the derived batch
estimators are exactly the same, because the two estimating equations

$\sum \mathrm{F}\{\mathrm{x}(i);\mathrm{W}\}=0$

$\sum \mathrm{R}(\mathrm{W})\mathrm{F}\{\mathrm{x}(i);\mathrm{W}\}$ $=0$

give the same solution $\hat{\mathrm{W}}_{t}$ . This defines an equivalent class of estimating
functions which are essentially the same in batch estimation.

However, two equivalent estimating functions $\mathrm{F}(\mathrm{x},\mathrm{W})$ and $\mathrm{R}(\mathrm{W})\mathrm{F}(\mathrm{x}, \mathrm{W})$

give different dynamical properties in on-line learning. That is, the dynami-
cal properties of on-line learning algorithms

$\mathrm{W}_{t+1}$ $=$ $\mathrm{W}_{t}-\eta \mathrm{F}\{\mathrm{x}(t), \mathrm{W}_{t}\}$ (31)
$\mathrm{W}_{t+1}$ $=$ $\mathrm{W}_{t}-\eta \mathrm{R}(\mathrm{W})\mathrm{F}\{\mathrm{x}(t), \mathrm{W}_{t}\}$ (32)

are completely different. Therefore, instead of the form (18), we need to
consider an enlarged type of estimating functions of the form $\mathrm{R}(\mathrm{W})\mathrm{F}$ to
derive agood on-line estimator
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4 Stability of Estimating Functions
In order to show the dynamical properties of on-line learning by using $\mathrm{F}$

or $\mathrm{R}\mathrm{F}$ , we first study the stability of the algorithm at the true solution $\mathrm{W}$ ,
which is an equilibrium of the dynamics. The stability of dynamics (7) at the
equilibrium is given by studying the eigenvalues of its Hessian. See Amari,
Chen and Cichocki [6]. For the stability analysis, let us put

$\mathrm{W}(t)=\mathrm{W}+\delta \mathrm{W}(t)$ , (33)

where $\delta \mathrm{W}(t)$ is asmall deviation from the true W. Then, (7) is rewritten as

$\frac{d}{dt}\delta \mathrm{W}(t)=-\eta E[\mathrm{F}\{\mathrm{x},\mathrm{W}+\delta \mathrm{W}(t)\}]$ . (34)

It is convenient to use the non-holonomic variables

$\delta \mathrm{X}=\delta \mathrm{W}\mathrm{W}^{-1}$ , (35)

and rewrit $\mathrm{e}$ the dynamics in the neighborhood of the true solution as

$\frac{d}{dt}\delta \mathrm{X}(t)=-\eta E[\mathrm{F}(\mathrm{x}, \mathrm{W}+\delta \mathrm{X}\mathrm{W})]\mathrm{W}^{-1}$ . (36)

By Taylor expansion, we have

$\frac{d}{dt}\delta \mathrm{X}(t)=-\eta \mathrm{K}(\mathrm{W})\delta \mathrm{X}(t)$ , (37)

where
$\mathrm{K}(\mathrm{W})=\frac{\partial E[\mathrm{F}(\mathrm{x},\mathrm{W})\mathrm{W}^{-1}]}{\partial \mathrm{X}}=\frac{\partial E[\mathrm{F}(\mathrm{x},\mathrm{W})]}{\partial \mathrm{W}}$ (38)

is alinear operater which maps amatrix to matrix. Since both $\mathrm{F}=(36)$

and $\mathrm{X}=(X_{cd})$ are matrices, $\mathrm{K}$ has four indices $I\acute{\mathrm{t}}_{ab,cd}$

$K_{ab,cd}= \frac{\partial F_{ab}}{\partial X_{cd}}$ (39)

in the component form. At the true value $\mathrm{W}$ where $y_{a}=s_{a}$ is recovered, for
$\mathrm{F}$ given by (18), $\mathrm{K}$ is calculated as

$K_{ab,cd}=E[\varphi_{a}’(s_{a})s_{b}^{2}]\delta_{bd}\delta_{ac}+\delta_{ad}\delta_{bc}$ , (40)
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where $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}^{\mathrm{I}}$ denotes the derivative of $\ovalbox{\tt\small REJECT} 2$ . We derive the above result in the
following.

In order to calculate the gradient of F with respect to X, we put

$d\mathrm{F}(\mathrm{x},$ W) $=$ $\mathrm{F}(\mathrm{x},\mathrm{W}+d\mathrm{W})-\mathrm{F}(\mathrm{x},$ W) (41)
$=$ $\mathrm{F}(\mathrm{x},\mathrm{W}+d\mathrm{X}\mathrm{W})-\mathrm{F}(\mathrm{x},$W), (42)

where $d\mathrm{F}$ denotes the increment of $\mathrm{F}$ due to change $m$ of $\mathrm{W}$ , and expand
it in the form

$dF_{ab}( \mathrm{x},\mathrm{W})=\sum Kab,cd(x,\mathrm{W})dX_{cd}$. (43)

We have then
$K_{ab,cd}= \frac{\partial F_{ab}}{\partial X_{cd}}$ (44)

and its expectation gives $K_{ab,cd}$ .
For $\mathrm{F}=(F_{ab})$ given by (18)

$F_{ab}=\varphi(y_{a})y_{b}-\delta_{ab}$ , (45)

we have

$dF_{ab}$ $=$ $d\varphi(y_{a})y_{b}+\varphi(y_{a})dy_{b}$ (46)
$=\varphi’(y_{a})dy_{a}y_{b}+\varphi(y_{a})dy_{b}$ . (47)

From
dy $=d\mathrm{W}\mathrm{x}=d\mathrm{W}\mathrm{W}^{-1}\mathrm{W}\mathrm{x}=d\mathrm{X}\mathrm{y}$, (48)

we have
$dy_{a}= \sum_{d=1}^{n}dX_{ad}y_{d}=\sum_{c,d=1}^{n}y_{d}\delta_{ac}dX_{cd}$ . (49)

Therefore,
$K_{ab,cd}=\varphi’(y_{a})y_{b}y_{d}\delta_{ac}+\varphi(y_{a})y_{b}\delta_{bc}$ . (50)

At the true W, $y_{a}$ and $y_{b}$ are independent for a $\neq b$ . Hence,

$E[\varphi’(y_{a})y_{b}y_{d}]=E[\varphi’(s_{a})y_{b}^{2}]\delta_{ac}\delta_{bd}$ , (51)
$E[\varphi(y_{a})y_{d}]=\delta_{ad}$ . (52)

The diagonal term $F_{aa}$ may be disregarded, because it can be arbitrary
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Many components of $\mathrm{K}$ vanish. For $a\neq b$ ,

$\frac{\partial F_{ab}}{\partial X_{cd}}=0$ , (53)

unless $(a, b)$ $=(c, d)$ or $(a, b)$ $=(d, c)$ . When the pairs $(a, b)$ and $(c, d)$ are
equal (39) gives

$I\mathrm{f}_{ab,ab}$ $=$ $k_{a}\sigma_{b}^{2}$ ,
$I\mathrm{f}_{ab,ba}--1$ ,

where
$k_{a}=E[\varphi’(s_{a})]$ . (54)

and
$\sigma_{a}^{2}=E[y_{a}^{2}]$ . (55)

Let us summarize the above results. To this end, we denote $\mathrm{K}$ in the
pairwise component form of the enlarged matrix $\mathrm{K}=(K_{AB})$ . The results
show that, for $A=(a, b)$ , $a\neq b$ , $K_{AB}=0$ except for $B$ $=(a, b)$ or $B$ $=(b, a)$ .
This shows that $\mathrm{K}$ $=(I\mathrm{f}_{AB})$ is decomposed in the tw0-by-two minor diagonal
matrices of $\partial F_{ab}/\partial X_{ab}$ , $\partial F_{ab}/\partial X_{ba}$ , $\partial F_{ba}/\partial X_{ab}$ and $\partial F_{ba}/\partial X_{ba}$ ,

$\{\begin{array}{ll}I\mathrm{f}_{AA} I\mathrm{f}_{AA’}I\acute{\mathrm{t}}_{A}A I\mathrm{f}_{A}A’\end{array}\}=\{\begin{array}{ll}k_{a}\sigma_{b}^{2} \mathrm{l}\mathrm{l} k_{b}\sigma_{a}^{2}\end{array}\}$ , (56)

where $A$ $=(a, b)$ and $A’–(b, a)$ (see [6], [13], [22]).
The inverse of $\mathrm{K}$ has also the same diagonalized form, for $(A, A’)- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}$ ,

$\{\begin{array}{ll}k_{a}\sigma_{b}^{2} \mathrm{l}\mathrm{l} k_{b}\sigma_{a}^{2}\end{array}\}=c_{ab}$ $\{\begin{array}{ll}k_{b}\sigma_{a}^{2} -\mathrm{l}-\mathrm{l} k_{a}\sigma_{b}^{2}\end{array}\}$ , (57)

where
$c_{ab}= \frac{1}{k_{a}k_{b}\sigma_{a}^{2}\sigma_{b}^{2}-1}$ . (58)

The on-line dynamics is stable at the true solution $\mathrm{W}$ , when $\mathrm{K}=(K_{A,B})$ is
positive definite. Since it is decomposed in the two by two submatrices, it is
positive definite when all the submatrices $If_{AA’}$ are positive definite. Hence,

we have the following stability theorem
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Stability Theorem. Learning dynamics is stable when

$k_{a}k_{b}\sigma_{a}^{2}\sigma_{b}^{2}$ $>$ 1 (59)
$k_{a}\sigma_{b}^{2}+k_{b}\sigma_{a}^{2}$ $>$ 0. (60)

The stability depends on the parameters $k_{a}$ and $\sigma_{a}^{2}$ , which are related to
$\varphi$ and r.

5Standardized Estimating Function and New-
ton’s Method

For the learning dynamics

$\Delta \mathrm{W}_{t}=\mathrm{W}_{t+1}-\mathrm{W}_{t}=-\eta \mathrm{F}(\mathrm{x},\mathrm{W}_{t})$ (61)

Newton’s method is given by

$\Delta \mathrm{W}_{t}=-\eta \mathrm{K}(\mathrm{W}_{t})^{-1}\mathrm{F}(\mathrm{x},\mathrm{W}_{t})$ . (62)

Hence, instead of agiven estimating function F, Newton’s method is derived
by using the estimating function

$\mathrm{F}^{*}(\mathrm{x},$ W) $=\mathrm{K}^{-1}(\mathrm{W})\mathrm{F}(\mathrm{x},\mathrm{W})$. (63)

Its convergence is superlinear. Moreover, the true solution $\mathrm{W}$ is always
stable, because the Hessian of $\mathrm{F}^{*}$ is the identity matrix. This is easily shown
from

$\mathrm{K}^{*}=E[\frac{\partial \mathrm{F}^{*}}{\partial \mathrm{X}}]=\frac{\partial \mathrm{K}^{-1}}{\partial \mathrm{X}}E[\mathrm{F}]+\mathrm{K}^{-1}\mathrm{o}\mathrm{K}$ $=\mathrm{I}$ . (61)

We call $\mathrm{F}^{*}$ the standardized estimating function, for which $\mathrm{K}^{*}$ is the identity
operator.

By using (56) or (57), the standardized estimating function matrix $\mathrm{F}^{*}$ is
derived as

$F_{ab}^{*}=c_{ab}\{k_{b}\sigma_{a}^{2}\varphi(y_{a})y_{b}-\varphi(y_{b})y_{a}\}$ , $a\neq b$ . (65)
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6 Adaptive Approach to Newton’s Method
The standardized estimating function $\mathrm{F}^{*}$ uses the parameters $\sigma_{a}^{2}$ and $k_{a}$ ,
which are usually known, because they depend on the statistical properties of
the source signal $s_{a}$ . Therefore, an adaptive method is necessary to estimate
them.

Let $k_{a,t}$ and $\sigma_{a,t}^{2}$ be their estimates at time $t$ . Then, we can use the
following adaptive rule to update them:

$k_{a,t+1}$ $=$ $(1-\epsilon_{1,t})k_{a,t}+\epsilon_{1,t}\varphi_{a}’(y_{a}(t))$ , (66)
$\sigma_{a,t+1}^{2}$ $=$ $(1-\epsilon_{2,t})\sigma_{a,t}^{2}+\epsilon_{2,t}y_{a}^{2}(t)$ , (67)

where $\epsilon_{1,t}$ and $\epsilon_{2,t}$ are learning rates.
We may use the diagonal term of $\mathrm{F}$ to be equal to

$F_{aa}=y_{a}^{2}-1$ . (68)

Then, the recovered signal is normalized to $\sigma_{a}^{2}=1$ , so that $\mathrm{F}^{*}$ is simplified.

7Error Analysis

Let us consider the estimation error in the case of batch estimator $\hat{\mathrm{W}}$ which
is the solution of the estimating equation

$\dot{.}\sum_{=1}^{t}\mathrm{F}(\mathrm{x}(i),\mathrm{W})=0$ . (69)

By using the standard method of statistical analysis, we can calculate the
covariance of estimator $\hat{\mathrm{W}}=\mathrm{W}+\Delta \mathrm{W}$ , where $\Delta \mathrm{W}$ is the error term. It is
easier to calculate $E[\Delta \mathrm{X}\Delta \mathrm{X}]$ in terms of $\Delta \mathrm{X}=\Delta \mathrm{W}\mathrm{W}^{-1}$ .

It should be noted that $\mathrm{F}$ and RF give the same error since the estimating
equations are equivalent. There is abig difference in the case of online
learning, where $\mathrm{F}$ and RF are different in convergence speed and stability.
The covariance matrix is now calculated explicitly. To this end, we put

$l_{a}=E[\varphi_{a}(s_{a})]$ , (70)
$G_{ab,cd}^{*}=E[F_{ab}^{*}(\mathrm{x},\mathrm{W})F_{cd}^{*}(\mathrm{x},\mathrm{W})]$ (71)

by using the standardized estimating function $\mathrm{F}^{*}$ .
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Theorem 2. The covariances of $\Delta X_{ab}^{t}$ are given as

$E[ \Delta X_{ab}^{t}\Delta X_{cd}^{t}]=\frac{1}{t}G_{ab,cd}^{*}+O(\frac{1}{t^{2}})$ , (72)

where $t$ is the number of observations. In particular,

$G_{ac,bc}^{*}=c_{ac}c_{bc}\sigma_{a}^{2}\sigma_{b}^{2}\sigma_{c}^{2}k_{c}^{2}l_{a}l_{b}$ ,
$a\neq b$ , $c\neq a$ , $c\neq b$. (73)

It is possible to evaluate the error by the covariance matrix of the error
$\Delta \mathrm{s}$ in the recovered signals

$\mathrm{y}=$ $(\mathrm{W}+\Delta \mathrm{X}\mathrm{W})\mathrm{x}=\mathrm{y}+\Delta \mathrm{s}$ , (74)
$\Delta \mathrm{s}=$ $\Delta \mathrm{X}\mathrm{s}$ . (75)

Let us put
$V_{ab}=E[\Delta s_{a}\Delta s_{b}]$ . (76)

We first calculate, for $a\neq b$ ,

$E[y_{a}(t)y_{b}(t)]$

$=$ $E[ \{s_{a}(t)+\sum_{c}\Delta X_{ac}s_{c}(t)\}$

$\{s_{b}(t)+\sum_{d}\Delta X_{bd}s_{d}(t)\}]$ (77)

$=$
$E[ \Delta s_{a}\Delta s_{b}]=\sum_{c,d}E[\Delta X_{ac}\Delta X_{bd}s_{c}s_{d}]$ (78)

$=$
$\sum_{c,d}E[\Delta X_{ac}\Delta X_{bd}]E[s_{c}s_{d}]$ (79)

$=$
$\sum_{c}E[\Delta X_{ac}\Delta X_{bc}]\sigma_{c}^{2}$ . (80)

Hence, we have

$V_{ab}^{t}$ $=$ $E[\Delta s_{a}\Delta s_{b}]=E[y_{a}(t)y_{b}(t)]$

$=$
$\sum_{c}E[\Delta X_{ac}^{t}\Delta X_{bc}^{t}]\sigma_{c}^{2}$ . (81)

Theorem 3. The covariance matrix $\mathrm{V}_{t}$ of $\Delta \mathrm{s}$ is given by

$V_{ab}^{t}= \frac{1}{t}\sum_{c}G_{ac,bc}^{*}\sigma_{c}^{2}+O(\frac{1}{t^{2}})$ , $(a\neq b)$ . (82)
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The lemma shows that the the covariances $V_{ab}^{t}=E[\Delta s_{a}\Delta s_{b}]=E[y_{a}y_{b}]$

of the recovered signals $y_{a}$ and $y_{b}(a\neq b)$ decrease in the order of $1/t$ .
This fact agrees with ordinary asymptotic statistical analysis, as is expected.
However, we can prove superefficiency [2] implying that the covariance of any
two recovered signals decreases in the order of $1/t^{2}$ under acertain condition.

Theorem 4. Abatch estimator is superefficient when $E[\varphi_{a}(s_{a})]=0$ .
Proof. In this case, we have $l_{a}=0$ , so that $V_{ab}^{t}(a\neq b)$ satisfies

$V_{ab}^{t}=O( \frac{1}{t^{2}})$ . (83)

8Adaptive Choice of $\varphi$ Function
The estimation error depends on the choice of $\mathrm{F}^{*}(\mathrm{x},\mathrm{W})$ , or the functions $\varphi$

in the form of (24). Note that $\mathrm{F}$ and its standardized form $\mathrm{F}^{*}$ have the same
asymptotic error for the batch mode estimation. However, their dynamical
behaviors are different in on-line learning or iterated batch algorithms. The
standardized one coincides with Newton’s method and its convergence is
superlinear. Hence, the adaptive choice of $\mathrm{F}^{*}$ in (66), (67) guarantees agood
convergence, but its error still depends on $\varphi$ .

In order to improve the error, an adaptive choice of $\varphi$ is useful. An
adaptive choice of $\varphi$ is also useful for guaranteeing stability, when we do
not use Newton’s method. When $\varphi$ is derived from the true probability
distributions of the sources, the estimated $\hat{\mathrm{W}}$ is $\mathrm{m}\mathrm{l}\mathrm{e}$, and is efficient in the
sense that the asymptotic error is minimal and is equal to the inverse of
the Fisher information matrix. However, it is highly costful to estimate the
probability density functions of the sources. Instead, we use aparametric
family of $\varphi$ ,

$\varphi_{a}=\varphi_{a}$
$(y; \xi_{a})$ , (84)

for each source $s_{a}$ and update the parameter $\xi_{a}$ by

$\Delta\xi_{a}=-\eta’\frac{\partial l}{\partial\xi_{a}}$ . (85)

The Gaussian mixture was proposed for approximating the source prob-
ability density, which is the parametric family

$q(y; \xi)=\sum v_{i}\exp\{-\frac{(x-\mu_{i})^{2}}{2\sigma_{i}^{2}}\}$ , (86)
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$\xi$ consisting of anumber of $v_{i}$ , $\mu_{i}$ and $\sigma_{i}^{2}$ . The corresponding parametric
$\varphi(y;\xi)$ is derived therefrom. This covers both sub-Gaussian and super-
Gaussian distributions. However, this family is computationally costful.
Zhang et al [23] proposed an exponential family connecting three typical
distributions; Gaussian, super-Gaussian and sub-Gaussian.

Let us use the following exponential family of distributions

$q_{a}(s, \theta_{a})=\exp\{\theta_{a}\cdot \mathrm{g}(s)-\psi (\theta_{a})\}$ , (87)

where $\theta_{a}$ is the canonical parameters, $\mathrm{g}(s)$ is an adequate vector function
and $\psi$ is the normalization factor. The function $\varphi_{a}$ is derived as

$\varphi_{a}(y)=-\frac{d}{dy}\log q_{a}(y, \theta_{a})=\theta_{a}\cdot \mathrm{g}’(y)$ . (88)

Zhang et al [23] proposed the three-dimensional model,

$\mathrm{g}(y)=(\log$ sesh(y), $-y^{4},$ $-y^{2})^{T}$ (89)

or
$\mathrm{g}’(y)=(\tanh(y),$ $y^{3}$ , $y)^{T}$ , (90)

of which components correspond to the typical $\varphi’\mathrm{s}$ proposed so far. They
are responsible for the super-Gaussian, sub-Gaussian and linear cases, re-
spectively. The $\varphi_{a}(y)$ is their linear combination, covering all the cases. The
parameter $\theta_{a}$ is adaptively determined as

$\theta_{a,t+1}=\theta_{a,t}-\epsilon_{t}\{\mathrm{g}(y_{a}(t))-E[\mathrm{g}(y_{a})]\}$ , (91)

where E[g $(y_{a})]$ may be adaptively estimated.

9Estimating Functions in Noisy Case
Let us analyze the noisy case

$\mathrm{x}=\mathrm{H}\mathrm{s}$ $+\nu$ , (92)

where $\nu$ is anoise vector in the measurement. We assume that $\nu$ is Gaussian
and that their components are uncorrelated. Let

$\sum=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}$ ($\sigma_{1}^{2}$ , $\cdots$ , $\sigma_{n}^{2}$) (88)
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be its covariance matrix. In order to fix the scale, we also assume

$E[s_{i}^{2}]=1$ . (94)

Let $\mathrm{W}=\mathrm{H}^{-1}$ be the true unmixing matrix, and put

$\mathrm{y}=\mathrm{W}\mathrm{x}$ . (95)

Then we have
$\mathrm{y}=\mathrm{s}+\mathrm{W}\nu=\mathrm{s}+\mu$ , (96)

where $\mu=\mathrm{W}\nu$ is anoise vector whose components are correlated.
In the noisy case, functions of the type

$\mathrm{F}=I$ $-\varphi(\mathrm{y})\mathrm{y}^{T}$ (97)

are not in general estimating functions. Indeed,

$E[I$ $-\varphi(\mathrm{y})\mathrm{y}^{T}]\neq 0$ (98)

even when $\mathrm{y}$ is derived from the true $\mathrm{W}$ , because $y_{i}$ and $yj$ are no more
independent even when $\mathrm{W}=\mathrm{H}^{-1}$ . However, estimating functions exist in
the noisy case. Kawanabe and Murata [19] studied afamily of estimating
functions in the noisy case.

For the true $\mathrm{W}=\mathrm{H}^{-1}$ , the noise term is

$\mu=\mathrm{W}\nu$ , (99)

which is Gaussian. Let its covariance matrix be

$\mathrm{V}=E[\mu\mu^{T}]=E[\mathrm{W}\nu\nu^{T}\mathrm{W}^{T}]=\mathrm{W}\sum \mathrm{W}^{T}$ . (100)

Kawanabe and Murata [19] calculated all possible estimating functions. The
following is asimplest estimating function $\mathrm{F}(\mathrm{y}, \mathrm{W})$ whose components are

$F_{ab}(\mathrm{y}, \mathrm{W})=y_{a}^{3}y_{b}-3v_{aa}y_{a}y_{b}-3v_{ab}y_{a}^{2}+3v_{aa}v_{ab}$ , (101)

where $v_{ab}$ are elements of V. We can easily prove that

$E[\mathrm{F}(\mathrm{y},\mathrm{W})]=0$ (102)
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when W $=\mathrm{H}^{-1}$ . Hence,

$\mathrm{W}_{t+1}=\mathrm{W}_{t}-\eta_{t}\mathrm{F}(\mathrm{y}(t), \mathrm{W}_{t})\mathrm{W}_{t}$ (103)

is alearning algorithm effective even under large noise.
When the covariance matrix $\sum$ of the measurement noise is unknown,

we need to estimate it. Factor analysis provides amethod of estimating it
(Ikeda and Toyama [18]). The off-diagonal term can be adaptively estimated
from

$v_{ab}^{t+1}=(1-\epsilon_{t})v_{ab}^{t}+\epsilon_{t}y_{a}(t)y_{b}(t)$ , (104)

where $\epsilon_{t}$ is alearning rate.
The learning algorithm (103) is not necessarily stable. Astable alg0-

rithm is given by the standardized estimating function $\mathrm{F}^{*}$ , which is Newton’s
method. We can obtain $\mathrm{F}^{*}$ explicitly in amethod similar to the noiseless
case.

10 Conclusions
There have been proposed anumber of algorithms for extracting indepen-
dent components from mixtured signals. The method is in general called
Independent Component Analysis, and applied to blind source separation
or extraction. Most of the algorithms use estimating functions implicitly or
explicitly.

The present paper gives aunified approach to ICA based on estimating
functions. The stability analysis and Newton’s method is derived from esti-
mating functions. Estimation error is also analyzed in terms of estimating
functions. Based on these analyses, anew method of ICA is proposed which
uses an adaptive choice of estimating functions.

We have analyzed only the case of instantaneous mixtures, but the same
method is applicable to the case where independent sources have (unknown)
temporal correlations [4] and to the case of convoluted mixture signals [9].
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