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Abstract. We introduce atheoretical test, named weight discrepancy test, on pseudorandom number generators.

This test measures the $\chi^{2}$-discrepancy between the distribution of the number of ones in some specified bits in

the generated sequence and the binomial distribution, under the assumption that the initial value is randomly

selected.
This test can be performed for most generators based on alinear recursion over the two element field F2,

and predicts with high precision for which sample size the generator will be rejected by aclassical statistical test

called the weight distribution test.
This test may be considered as atheoretical version of aone dimensional random walk test. Differently ffom the

empirical tests which can reject only very bad generators, this test assigns aranking to generators. Thus it is useful

to select good generators, similarly to the spectral tests and the $k$-distribution tests. This test rejects practically

all generators linear over F2 that are known to fail in some physical tests although they pass fc-distribution tests.

1Necessity of atheoretical test on weight

Among the numerous pseudorandom number generators available, some are known to be defective, and

some seem to be good.
For more than thirty years, GFSRs[ll] based on three-term relations are known to suffer from sta-

tistical nonsymmetricity between 0and 1and to be rejected by $\chi^{2}$ test on the goodness-0f-fit to the

binomial distribution [12] [6] [3] [18] [16].
However, these warnings were not loud enough to reach the users. These three term GFSRs were

introduced to the computational physics community by [8] suggesting the recursion $Xj=x\mathrm{j}-103$ $\oplus Xj-250$ ,

and became fairly popular. In middle $80’ \mathrm{s}$ , physicists began to find the failure of these generators in

simulations of physical models, such as Ising models [5] [2] [1] and random walks [4]. These physical models
are simplified and proposed as tests of randomness in [23], which we call physical tests here.

In these works some physicists proposed two ways of improving GFSR: one is to increase the degree
of the recurrence (e.g.[2]), and the other is to use five or more-term relations (e.g. [24]). These follow
from an intuitive observation that few-term relations in ashort range should lead to adeviation, and
that increasing the number of terms or the range of the correlation will improve the deviation. These
improvements are shown to be effective in the physical tests.

However, it is not clear which degree will be sufficient, or how many terms are enough for the required
randomness. Five term relations of degree 89 behave well for 10 samples, but are rejected for 10 samples

by arandom walk test [23]. Afive-term relation of degree 1279 passed the test even for 10 samples. Is
this enough? The computational power of the machines is increasing rapidly. Will some defect of such a
generator be revealed in future? Or is it impossible for any future machine?

These physical tests are interesting in that they clearly exhibit the defects of random number genera-
tors in practical computational physics. However, they are not powerful enough to select good generators.
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Actually, these tests reject only (1) thrse term GFSRs, (2) five term GFSRs with small degree, and (3)
linear congruential generators with poor spectral properties. All these generators are known to fail insome simple statistical tests.

We shall introduce a $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ taet on the distribution of 1’ $\mathrm{s}$ and $0’ \mathrm{s}$ in the bits of the sequence,
named weight discrepancy test. This is not an empirical test but afigure of merit defined on the full period
of the generator, like the spectral test(7] or the $k$-distribution test [9]. It predicts with high precision the
sample size for which the generator is rejected by the weight distribution test, which is aclassical empirical
test equivalent to a random-walk test. For example, a generator (MT521) is shown to be quite safe since
it would require 10 samples to reject its output, whereas another generator called $R(11,39,95,218)$
which passed all the physical tests in [24] is shown to be rejected if we take the sample size $>600,000,000$
(see Table 7).

The weight discrepancy test gives an index $\delta$ which is areal number indicating the extent of the
discrepancy between the distribution of the weight of the generated sequence and the ideal binomial
distribution. Thus, smaller $\delta$ means better fit to the theoretical distribution, so we can choose the bestone from aset of generators, even if they pass the physical tests. In this regard, our test is similar, to the
spectral test and the $k$ distribution test.

In the context of this discussion, we would like to point to ahighly reliable random number generator.
As mentioned above, physicists proposed the following improvements: (1) increase the number of terms[24], (2) increase the degree of recursion [2], and (3) use only a part of the sequence (decimation in
[24] or discarding in [14] $)$ . Although these are effective, there is agenerator adopting more advanced
improvements, named Mersenne Twister (MT) [19]. This has period $2^{19937}-1$ , good k-distribution
property, is based on more than 100-term relations, consumes only 624 words memory, passes practically
all reasonable tests, and is very fast. Implementations in $\mathrm{C}$ , Fortran, and other languages are available
from the following URL.
http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ .math.keio. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{o}/\mathrm{e}\mathrm{m}\mathrm{t}$ html

2 $\chi^{2}$ discrepancy

We begin with recalling the well-known $\chi^{2}$-test for $\mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{n}\mathrm{e}\infty \mathrm{o}\mathrm{f}$-fit. Let $Z_{\dot{l}}$ $(i=1,2, \ldots, N)$ be independent
identically distributed random variables conforming to the same discrete distribution such that the value
$k$ $(k=0,1,2, \ldots, \nu)$ is taken with probability $p_{k}$ (thus $p_{k}\geq 0$ and $p_{0}+p_{1}+\cdots+p_{\nu}=1$ ).

Let $b_{1}$ , $b_{2}$ , $\ldots$ , $b_{N}\in\{0,1, \ldots, \nu\}$ be asequence, computed from apseudo random sequence, to mimic
asample sequence conforming to the random variables $Z_{1}$ , $Z_{2}$ , $\ldots$ , $Z_{N}$ . Our question is whether the null
hypothesis $H_{0}$ that this sample comes from the random variables is justified or not.

We count the number of $k$ among $b_{1}$ , $\ldots$ , $b_{N}$ , and let it be $\mathrm{Y}_{k}$ for $0\leq k\leq\nu$ :
$\mathrm{Y}_{k}:=\mathrm{t}\mathrm{h}\mathrm{e}$ number of $i$ $(i=1,2, \ldots, N)$ with $b_{:}=k$ . (1)

These are random variables which conform to binomial distribution $B(N,p_{k})$ under the null hypothesis
$H_{0}$ . We compute the $\chi^{2}$ value $\mathcal{X}$ by

$\mathcal{X}:=\sum_{k=0}^{\nu}(\mathrm{Y}_{k}-Np_{k})^{2}/Np_{k}$ , (2)

which measures akind of discrepancy between the observed numbers $\mathrm{Y}_{k}$ and the expected value $Np_{k}$ .
Under the null hypothesis, it is known that this ais arandom variable which approximately conforms
to the $\chi^{2}$ distribution with $\nu$ degrees of freedom, regardless of $p_{k}$ .

Let $\mathcal{X}_{b}$ be the realization of $\mathcal{X}$ for an observed sample $b:=$ $(b_{1}, \ldots, b_{N})$ , and let $\chi_{\nu}^{2}$ denote the random
variable which conforms to the above $\chi^{2}$-distribution. We compute the probability value

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(\chi_{\nu}^{2}<\mathcal{X}_{b})$ . (3)
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If this value is, say, $>.99$ , then such alarge value of $\mathcal{X}_{b}$ appears with probability $<.01$ , thus the null

hypothesis on the distribution of $b_{1}$ , $\ldots$ , $b_{N}$ is suspicious: the observed distribution is too far from the

hypothetical distribution pk- If this value is, say, .75, then such $\chi_{b}$ appears with amoderate probability,
so we do not reject the hypothesis.

Assume that our method to mimic $Z_{i}$ has some deviation, and the probability to observe $k$ in a
trial is $qk$ , not $pk$ (independence is still assumed). We call this assumption the nonnull assumption. Then,
$(b_{1}, b_{2}, \ldots, b_{N})$ is asample conforming to the distribution $q_{k}$ , so $\mathrm{Y}_{k}$ in (1) is a random variable conforming

to the binomial distribution $B(N, q_{k})$ with expectation $E(\mathrm{Y}_{k})=Nq_{k}$ and variance $E(\mathrm{Y}_{k}^{2})-E(\mathrm{Y}_{k})^{2}=$

$Nq_{k}(1-q_{k})$ .
Under this nonnull assumption, $\mathcal{X}$ in (2) approximately conforms to anoncentral $\chi^{2}$ distribution

Recall its definition (see [21]). If $U_{1}$ , $U_{2}$ , $\ldots$ , $U_{\nu}$ are $\nu$ independently normally distributed random variables,

each having zero mean and unit standard deviation, and if $\mathrm{a}\mathrm{i}$ , a2, $\ldots$ , $a_{\nu}$ are $\nu$ constants, then

$\chi^{\prime 2}:=\sum_{i=1}^{\nu}(U_{i}+a_{i})^{2}$

is called anoncentral $\chi^{2}$ -variate having $\nu$ degrees of freedom with noncentrality parameter $\lambda:=\sum_{\iota=1}^{\nu}a_{t}^{2}$ .

It is easy to check $E(\chi^{\prime^{2}})=\nu+\lambda$ .
It is known ( $\mathrm{c}.\mathrm{f}$ . [21, P.279]) that the above aapproximately conforms to the noncentral $\chi^{2}$-distribution

having $\nu$ degrees of freedom with noncentrality parameter $\mathrm{A}=N\delta$ , where $\delta$ is the $\chi^{2}$-discrepancy defined
below.

Definition 1. We define the $\chi^{2}$-discrepancy $\delta$ between the true distribution $q_{k}$ and the expected distri-

bution $p_{k}$ by

$\delta:=\sum_{k=0}^{\nu}(q_{k}-p_{k})^{2}/p_{k}$ .

(The term $\chi^{2}$-discrepancy appears in model selection theory, e.g. in [13].)
The expectation of $\mathcal{X}$ in (2) under the nonnull hypothesis is approximated by $\delta$ as follows.

Proposition 1. $E(\mathcal{X})\sim\nu+N\delta$. $Here\sim means$ that the absolute value of the difference is

$|E( \mathcal{X})-(\nu+N\delta)|\leq\nu_{k}\max_{=0,\ldots,\nu}|1-\frac{q_{k}}{p_{k}}|$ ,

and hence the error is negligible $if|1-q_{\frac{k}{k}1}p<<1$ for every $k$ .

The first formula is implied by $E(\chi^{\prime 2})=\nu+\lambda$ and $\mathrm{A}=N\delta$ as stated above, but we show it by the
following direct computation:

$E(\mathcal{X})=\mathrm{I}$ $\frac{E((\mathrm{Y}_{k}-Np_{k})^{2})}{Np_{k}}=\sum_{k=0}^{\nu}\frac{E(\mathrm{Y}_{k}^{2})-2E(\mathrm{Y}_{k})Np_{k}+(Np_{k})^{2}}{Np_{k}}$

$=\mathrm{I}$
$\frac{E(\mathrm{Y}_{k}^{2})-E(\mathrm{Y}_{k})^{2}+(E(\mathrm{Y}_{k})-Np_{k})^{2}}{Np_{k}}$

.

$=\mathrm{I}$ $\frac{q_{k}(1-q_{k})}{p_{k}}+N\sum_{k=0}^{\nu}\frac{(q_{k}-p_{k})^{2}}{p_{k}}\simeq\sum_{k=0}^{\nu}(1-q_{k})+N\delta=\nu+N\delta$ .

This supports the obvious fact that $\chi^{2}$-test reveals the deviation if both $\chi^{2}$-discrepancy $\delta$ and the sample
size N are large
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The $\mathrm{p}^{\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{s}}$
${}^{\mathrm{t}}\mathrm{h}^{\mathrm{a}\mathrm{t}}$ a more quantitative analysis $\mathrm{i}^{\mathrm{S}}$

possible. For $0<p<1$ , $A^{\ovalbox{\tt\small REJECT}}$. satisfying Prob(|2 $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}<$

,p) $\ovalbox{\tt\small REJECT}$ P is approximated for large v by the formula1

$\mathcal{X}_{p}=\nu+\sqrt{2\nu}x_{p}+\frac{2}{3}(x_{p}^{2}-1)+o(\nu^{-\})$, (4)

where $x_{p}=2.33$ for $p=.99$ and $x=0.6p74$ for $p=.75$ , (see e.g. [7]). Comparison of this with Proposition 1yields the following

Theorem 1. Let $\nu$ be modemtely large, say $\nu\geq 5$ . (For $\nu<5$ , we need to consult a table of $\chi^{2}rightarrow$

distribution

1. (Accepting sample size.) If the sample size N is small so that

N $\leq\frac{\sqrt{2\nu}x_{p}+\frac{2}{3}(x_{p}^{2}-1)}{\delta}$ for $x_{p}=0.674$ ,

then aPProximately $E(\mathcal{X})$ falls in the area with probability p $\leq.75$ , and the $\chi^{2}$ -test will not reject thesequence.
2. (Rejecting sample size.) If the sample size N is large so that

N $\geq\frac{\sqrt{2\nu}x_{p}+\frac{2}{3}(x_{p}^{2}-1)}{\delta}$ for $x_{p}=2.33$ ,

then approximately $\mathrm{E}(\mathrm{X})$ falls in the area with probability $p>.99$ , and the $\chi^{2}$ test ill reject thesequence.

Thus, the $\chi^{2}- \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{y}\delta$ provides us with aguess at the sample size for which $\chi^{2}$-test reveals thedefect of the generator, as well as the size for which it does not.

Definition 2. A $\chi^{2}$-discrepancy test means to obtain the $\chi^{2}$-discrepancy5for the simulation of therandom variables $Z_{\dot{l}}$ by apseudorandom number generator.

This test is similar to the spectral taet(e.g. [7]) or to the $k$-distribution(e.g. [9]), in the sense thatit deals with the full-period behavior of the Pseudorandom number generator, that it is not empirical,and that it gives anumerical estimate of the quality of the generator, differently from the statistical tests.The latter yield only probability values, which are sometimes confusing if they are on the border 0f.95or 0.05, and differ every time we choose anew initial value.

3 Weight discrepancy test

3.1 Weight discrepancy test for $\mathrm{F}_{2}$-generators

We shall introduce a $\chi^{2}$-discrepancy test on the distribution of l’s in the bits of the generated $\Re \mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{a}\mathrm{e}$,named aweight discrepancy test.
Let $\mathrm{x}_{0\prime}\mathrm{x}_{1}$ , $\mathrm{x}_{2}$ , $\ldots$ be a pseudorandom sequence of $w$-bit integers generated by an F2-1inear generator.Here, by an F2-1inear generator we mean amachine (automaton) that has the $p$-bit state space $\mathrm{F}_{2}^{p}$ ,the linear state transition map $f$ : F5 $arrow \mathrm{F}_{2}^{p}$ , and the linear output function $b$ : $\mathrm{F}_{2}^{p}arrow \mathrm{F}_{2}^{w}$ . Thus, wechoose an initial seed $X_{0}\in \mathrm{F}_{2}^{p}$ , then generates asequence of state vectors $X_{0}$ , $X_{1}$ , $X_{2}$ , $\ldots$ by the recursion

1 Knuth [7] praeents this approximation for $\nu>30$ . An explicit computation shows that the maximal error ratio ofthis approximation for $p=99\%$ and $\nu\geq 5$ is attained when $\nu=5$ , with true value 15.32 and the approximation15.09. The error for p=75% is even smaUer. Thus, to guaes the $\mathrm{s}\mathrm{a}\mathrm{f}\mathrm{e}/\mathrm{d}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{s}$ sample sizes as in Theorem 1,
$\nu\geq 5$ would suffice
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$X_{j+1}:=f(X_{j})$ , and generate an output sequence of $w$-bit integers by $\mathrm{x}_{j}:=b(X_{j})$ . This class of generators
covers Tausworthe generators, $M$-sequences, GFSR, Combined Tausworthe, Twisted GFSR, Mersenne
Twisters, and several other types.

We focus only on some bits of $\mathrm{x}$ . For simplicity, we assume them to be the most significant $s$ bits of
$\mathrm{x}$ , denoted by $\mathrm{x}^{(s)}$ , although the following discussion makes sense for any choice of bits. We also fix a
positive integer $\mu$ , and consider the distribution of the consecutive $\mu$ words of the sequence.

We shall count the number $W$ ( $\mathrm{W}$ for weight) of l’s appearing in the $m:=s\cross\mu$ bits in $\mathrm{x}_{0}^{(s)}$ , $\mathrm{x}_{1}^{(s)}$ , $\ldots$ , $\mathrm{x}_{\mu-1}^{(s)}$ .
We assume that the initial seed is randomly uniformly chosen from the state space, consider $W$ as a
random variable, and look at the discrepancy between the distribution of $W$ and the ideal binomial dis-
tribution. The term weight comes from coding theory where the (Hamming) weight $wt(\mathrm{x})$ of avector
$\mathrm{x}\in \mathrm{F}_{2}^{m}$ is defined as the number of 1’s in the $m$ components of $\mathrm{x}$ .

We want to know the true distribution $q_{k}$ of the weight $W$ obtained from apseudorandom number
generator by the random selection of the initial seed. The exhaustive check of the seeds is intractable for
generators with large state space, but for $\mathrm{F}_{2}$-generators one can compute $qk$ under some condition.

Assume that the generator is F2-1inear. The mapping Ifrom the state space to the $m:=s\cross\mu$ bits
in the output is F2-1inear, so the image $C\subset \mathrm{F}_{2}^{m}$ is alinear subspace. In coding theory we call $C$ alinear
code, and have the following terminology.

Definition 3. Let $A_{\ell}$ be the number of the vectors in $C$ with weight $\ell(0\leq\ell\leq m)$ , which is called the
$\ell$-th weight enumeration of $C$ . We define the weight enumerator polynomial of $C$ in indeterminates $x$ , $y$

by
$Wc\{x,$ $y):=A_{0}x^{m}+A_{1}x^{m-1}y+\cdots+A_{i}x^{m-i}y^{i}+\cdots+A_{m}y^{m}$ .

Let $r$ be the dimension of $C$ . Since the mapping (i) : $\mathrm{F}_{2}^{p}arrow \mathrm{F}_{2}^{m}$ is linear, every vector in $C:=\mathrm{I}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{e}$ of $\Phi$

equally likely occurs under arandom selection of the initial seed. Thus, the probability $Q\ell$ that we have

weight $\ell$ in the $m$-bits is given by
$Q_{\ell}=A_{\ell}/2^{r}$ , (5)

where the desired probability $P\ell$ of binomial distribution is

$P_{\ell}=(\begin{array}{l}m\ell\end{array})$ $/2^{m}$ . (6)

The problem is that the weight enumerations of $C$ are in general intractable since it is an NP-complete
problem [22]. So we use afundamental theorem[15] in coding theory. Let us define an inner product on
$\mathrm{F}_{2}^{m}$ by

$\mathrm{y}\cdot \mathrm{x}=(y_{1}, \ldots, y_{m})\cdot(x_{1}, \ldots, x_{m})=y_{1}x_{1}+\cdots+y_{m}x_{m}\in \mathrm{F}_{2}$ , (7)

and let $C^{[perp]}\subset \mathrm{F}_{2}^{m}$ be the orthogonal dual to $C$ , i.e. the subspace consisting of the vectors whose inner
product with any vector in $C$ is zero.

Theorem 2. (MacWilliams identity) Let r be the dimension of C $\subset \mathrm{F}_{2}^{m}$ . Then we have

$W_{C}(x, y)= \frac{1}{2^{m-\mathrm{r}}}W_{C}[perp](x+y,$x-y).

Thus, if we have the weight enumerations of $C^{[perp]}$ , we know those of $C$ . If we choose $\mu$ so that $m=\mu \mathrm{x}$ $s$

is only slightly larger than $r$ , then the dimension $m-r$ of $C^{[perp]}$ is small enough that an exhaustive check
fo$\mathrm{r}$

$C^{[perp]}$ is possible. In particular, if $r=m$ or equivalently Iis surjective, the weight enumerations of $C$

coincide with the binomial coefficients, hence the discrepancy $\delta=0$ .
For approximations used in $\chi^{2}\mathrm{x}2\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}$, the expectation $Np_{k}$ for each $k$ should not be too small, say at

least five. For this, we need to group some low weights together, as well as high ones. We choose the
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following categorization:

$S_{0}=\{0,1, \ldots, s_{0}\}$ ,
$S_{k}=\{s_{0}+k\}$ $(1\leq k\leq m-2s_{0}-1)$ ,
$S_{\nu}=\{m-s_{0}, m-s_{0}+1, \ldots, m\}$ (8)

for suitably chosen $s_{0}$ , where $\nu:=m-2\mathrm{s}\mathrm{o}-$

Let $W$ be the random variable from the pseudorandom number generator as above. We define a
random variable $Z$ that takes the value $k$ if $W$ falls in $S_{k}(0\leq k\leq\nu)$ , and compute the $\chi^{2}$ discrepancy
for $Z$ as in 52.

Prom (5) and (6), we have

$q_{k}:= \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(W\in S_{k})=\sum_{\ell\in S_{k}}A_{\ell}/2^{\mathrm{r}}$
, (9)

$p_{k}:= \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(W’\in S_{k})=\sum_{\ell\in S_{k}}$

.
$(\begin{array}{l}m\ell\end{array})/2^{m}$ , (10)

where $W’$ is the random variable when the sequence is truly random. We choose $s_{0}$ so that Npo $=Np_{\nu}$

is not less than 1000.

3.2 Description of weight discrepancy test

Now we shall summarize the design of the weight discrepancy test.
1. Fix an $\mathrm{F}_{2}$-generator to test.
2. Determine which bits to test in each output word, say, $s$ most significant bits.
3. Determine $\mu$ , for which we test the distribution of the $s$ bits in consecutive $\mu$ words. Put $m:=s\cross\mu$ .
4. Take alinear basis $\{\sigma 1, \ldots, \sigma_{p}\}$ of the initial seed space. For each $\sigma:$ , initialize the generator with seed

$\sigma_{}$ and generate $\mu$ words of the corresponding output. Let $\Sigma_{\dot{1}}$ be the $m$-dimensional vectors consisting
of m-bits in the output sequence. Let $C$ $\subset \mathrm{F}_{9,\sim}^{m}$, be the span by $\Sigma_{\dot{l}}(1\leq i\leq p)$ , and $r$ be its dimension.

5. Compute abasis of the dual space $C^{[perp]}$ of $C$ . Obtain the weight enumerations Bo, $B_{1}$ , $\ldots$ , $B_{m}$ of $C^{[perp]}$

by exhaustive enumeration. If the dimension $m-r$ of $C^{[perp]}$ is too large to do an exhaustive check, then
make $\mu$ smaller. If it is too small, then the power of the test is weaker, so make $\mu$ larger. Note that
often $r=p$, so we can make aguess that the dimension of $C^{[perp]}$ is $\mu s-p$ .

6. By the MacWilliams identity, obtain the weight enumeration $A_{\ell}$ of $C$ . Compute $q_{k}$ , $p_{k}$ by (9), (10),
then the $\chi^{2}- \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{y}\delta$ as in Definition 1. We obtain the safe and dangerous sample sizes by
Theorem 1.
An explicit formula for $\delta$ is given as:

$\delta=\frac{[\sum_{j-1}^{m}-(\sum_{\ell-0}^{s_{\mathrm{O}}}-M_{\ell j})}{2^{m}\sum_{\ell=0}^{s_{\mathrm{O}}}(\begin{array}{l}m\ell\end{array})}B_{\mathrm{j}}]^{2}+\sum_{\ell=s\mathrm{o}+1}^{m-s_{\mathrm{O}}-1}\frac{[\sum_{j-1}^{m}-M_{\ell \mathrm{j}}B_{j}]^{2}}{2^{m}(\begin{array}{l}m\ell\end{array})}$

$+ \frac{[\sum_{j_{-}^{-}1}^{m}(\sum_{\ell_{-}^{-}m-s_{0}}^{m}M_{\ell j})}{2^{m}\sum_{\ell=m-s\mathrm{o}}^{m}(\begin{array}{l}m\ell\end{array})}B_{j}]^{2}$, (11)

where $M_{\dot{|}j}$ is defined by

$(x+y)^{m-j}(x-y)^{j}= \sum_{\dot{\iota}=0}^{m}M_{\dot{\iota}j}x^{m-\dot{*}}y^{:}$ . (12)

Here we mention that in the case of s $=1$ , the use of the weight of the dual space is introduced by [6].
Our method generalizes this concept and combines it with the $\chi^{2}$-discrepancy to obtain astatistical test
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3.3 Weight distribution test and random walk

As explained in 52, $\chi^{2}$-discrepancy test is designed to make aprediction on the result of the empirical
$\chi^{2}$-test. In the case of the weight discrepancy test, the corresponding empirical test is aclassical test

sometimes called the weight distribution test $(\mathrm{c}.\mathrm{f}. [16])$ , which we shall briefly recall.
Fix $s$ , $\mu$ , $N$ , $s_{0}$ as in \S 3.1. Choose an initial seed, and generate $\mu$ words of pseudorandom number

sequences. Look the $s$ bits in each words, and let $W_{1}$ be the number of ones in $m=\mu \mathrm{x}$ $s$ bits. Then again

generate $\mu$ words, count the number of ones and let $W_{2}$ be this number. Iterate this $N$ times to obtain
$W_{1}$ , $W_{2}$ , $\ldots$ , $W_{N}$ . If the sequence is truly random, this should conform to the binomial distribution. We

apply the $\chi^{2}$-test to these $N$ samples, using the categories (8). We obtain one value of the $\chi^{2}- \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}$ ,

and the final result is the corresponding probability value.
Aslight difference on the assumption from the weight discrepancy test is that in weight distribution

test we initialize the generator only once, not on every $\mu$-th generations. This seems not significant,

because the state of ausual pseudorandom number generator transits as if the next state is uniformly

randomly selected. This expectation is confirmed by experiments in the next section. We will see that the

results of the weight distribution tests are in close accordance with the forecasts obtained by the weight

discrepancy tests.
Note that this test is nothing but aone dimensional random walk test for $s=1$ , where amoving point

starts at the origin of the real line, moves to the right or left by one according to the most significant bit

of the generated number is 1or 0, respectively. After $m=\mu$ steps, the final position is $W-2m$ where
$W$ is the weight of the collection of the most significant bits in the $m$ consecutive words. This tyPe of

simple random-walk test is an essence of all physical tests including Ising models, as explained in [24].

4The result of tests

4.1 GFSRs

The first example is a3-term GFSR of degree 89, based on the recursion $Xj+89:=xj+38+xj$ over $\mathrm{F}_{2}$ ,

whose period attains the maximal $2^{89}-1$ . We look only at the most significant bit, i.e., put $s=1$ , and

look at the $m=94=89+5$ consecutive words. For $s=1$ , $r=m$ holds if $m\leq p$ and $r=p$ holds if

$m>p$ . Thus the dimension of $C^{[perp]}$ is $m-r=5$ , and the exhaustive check of $C^{[perp]}$ is easy. The result of the

weight discrepancy test is shown in Table 1, where $\nu=30$ denotes the degree of freedom, from which the
categorizing parameter $s_{0}$ in (8) can be computed by $\nu=m-2s_{0}$ (i.e. $s_{0}=32$). The column $\delta$ shows

the $\chi^{2}$-discrepancy, the column “safe,” “risky” respectively shows the safe, risky sample size implied by

Theorem 1. Thus if the sample size is less than 25,000 then the sequence will not be rejected in average,
but if it is more than 120,000 then the sequence will be rejected with significance level 0.99 in average.

Table 1. Weight discrepancy test on the generator $Xj+89:=Xj+38+Xj$

We also empirically test the same generator by the weight distribution test with the same parameters,
and show the result in Table 2. We choose five different initial values randomly, and tested the generator
for 3different sample sizes $N$ , namely, 25,000, 120,000, and 500,000. The weight discrepancy test predicts
that $N=25,000$ will pass, but $N=120,000$ will be rejected with probability value.99 in average. Since
Proposition 1shows that $E(\mathcal{X})$ will increase linearly in $N$ , $N=500,000$ will be definitely rejected. The
empirical results of five tests are in good accordance
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Table 2. Weight distribution test on the same GFSR with Table 1

bble 3. Weight discrepancy taet on a5-term GFSR of degree 89

Table 3shows the same result on agenerator based on afive term relation $x_{\mathrm{j}+89}:=x_{\mathrm{j}+57}+x_{j+23}+$

$Xj+15+x_{j}$ with the same period. By comparing Tables 1and 3, we see the effect of increasing the number
of terms as the decrease of 6by afactor of roughly 1/600, and consequently as the increase of the safe
and risky sample sizes by the factor of 600 in this example. Table 4shows the corresponding empirical
weight distribution tests for safe and risky sample sizes, namely $N=16,000$, 000 and 70, 000, 000, which
again show agood accordance with the weight discrepancy test. Next example is same type of generator

Table 4. Weight distribution test on the same GFSR as in Table 3

with degree 521 and period $2^{521}-1\simeq 6.86$ x $10^{156}$ . To see the effect of the number of terms, we searched

Table 5.

Rble 6. Weight distribution taet on the first generator in Table 5

for eight primitive polynomials with 3, 5, 15, 25, 51, 99, 157, 259 terms, raepectively. We apply the weight
discrepancy test on the most significant s $=1$ bit for the consecutive m $=526=521+5$ words. Table 5
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shows the number of terms, the safe sample sizes, the risky sample size, and the minimum weight of the
dual space for these eight generators. Table 6shows the result of the weight distribution tests for the

3-term generator written in the first row in Table 5, confirming the accordance.
This example illustrates the power of weight discrepancy test. The 3-term generator at the first low

will be rejected only if the sample size is more than 107, but it would take time and effort to notice this
by experiments. Some researches reported that 5-term relations with degree 521 seem defectless, but our
result shows that for sample sizes larger than $8\cross 10^{11}$ , it will be rejected. This size seems large enough
for present computers, but may be not in future. On the other hand, it seems very difficult to reject the
15-term generator in near future, since it will require the sample size at least $5\cross 10^{28}$ . To reject 259-term
generators, it requires the sample size $N$ roughly the same order as the period. It is impossible to deduce
this kind of result from empirical tests. Also, it is noteworthy that the ratio between safe and risky sample

sizes is only about four, which seems rather tight.
The above results suggest that the increase of the number of terms implies the exponential decrease

of discrepancy $\delta$ . An intuitive account for this is as follows. According to explicit computations, it seems
that $\Lambda f_{\ell,j}$ in (12) satisfy the convexity

$|M_{\mathit{1},1}|>>|M_{\ell,2}|>>|M_{\ell,3}|>>\cdots<<|M_{\ell,m-2}|<<|M_{\ell,m-1}|<<|M_{\ell,m}|$

for near at the both ends (like $j\leq 5$ and $j\geq m-5$ ), for most of Z. For example, if $m=94$ and
$\ell=20$ , $M_{20,j}=\mathrm{A}f_{20,94-j}$ is $7.76\cross 10^{19},4.36\mathrm{x}107,2.39\cross 10^{19},1.29\mathrm{x}$ $10^{19},6.59\cross 10^{18}$ for $j=1,2,3,4,5$ ,

respectively.
This and (11) imply that the main terms in $\delta$ would come from the first nonzero weight enumeration

$B_{d}$ , where $d$ is the minimum weight of $C^{[perp]}-\{0\}$ , or the last nonzero $B_{d’}$ . If $C^{[perp]}$ is an “average” subspace,
then $d$ is moderately large and $d’$ is not near to $m$ , as shown in the proof of Shannon’s theorem on the
existence of good codes. Now the definition of the dual and the inner product (7) implies that $C^{[perp]}$ contains
the coefficient vector of the defining relation. That is, if the pseudorandom bit sequence is generated by

the recursion

$x_{j+n}= \sum_{i=0}^{n-1}a_{i}x_{j+i}$,

then an $m$-dimensional vector $(-1, a_{n-1}, a_{\mathfrak{n}-2}, \ldots, a_{1}, a_{0},0, \ldots, 0)$ obtained from the coefficient vector by
supplementing $0’ \mathrm{s}$ at the right (we assume $m>n$ ) lies in $C^{[perp]}$ (also its right-shifts as well). Thus, fc-term
relations imply the existence of weight $k$ vector in $C^{[perp]}$ . For small $k$ , it would be often the case that $k$ is
the minimum weight of $C^{[perp]}$ , and often no very-high weight vector exists in $C^{[perp]}$ . These would imply that
the number of the terms will mostly determine $\delta$ , which agrees with the results of tests. Aquantitative
analysis on this observation is apossible future work.

Next we see the effect of increasing the dimension of $C^{[perp]}$ . Table 7shows the result on the five-term
GFSR $x_{j}:=x_{j-11}+\mathrm{X}\mathrm{j}-\mathrm{u}$ $+x_{j-95}+x_{j-218}$ proposed as $R(11,39,95,218)$ in [24], which is equivalent
to decimation of every 7th output of $x_{j}:=x_{j-11}+x_{j-218}$ . We choose $m=228$ and 238, for which

the dimension of the dual space is 10, 20, respectively. The result says that the latter is more powerful
than the former, and that the risky sample size is 600,000,000 for the latter. Similarly to the above, we
confirmed that the weight distribution test for this risky sample size rejects the generator, although the
result is omitted. This result can be compared to the experiments in [24], where the generator passes his

Table 7. Weight discrepancy test on a-term GFSR of degree 218 with $m=228,238$
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random walk test up to $2\cross 10^{6}$ samples, but is reported to show an error for 10 samples. Note that his
random walk is tw0-dimensional, and consumes much more random numbers in one trial than 238 in our
test. We also tested five term relations of degree 250 and 1279 in [24] which passed all the tests there.
For example, the result of weight discrepancy test for degree 1279 with dual dimension 20 shows that
the risky sample size is $4.38\cross 10^{12}$ , which is larger than those used in [24], explaining the success of this
generator in the tests.

Table 8shows an example where $s=4$ . The first row shows the result on atwisted GFSR generator
named T800 [16]. This generator is known to have a3-term linear relation on the most significant three
bits for 26 consecutive words, although the most significant bit behaves very well [17]. Its period is
$2^{800}-1\simeq 6.67\cross 10^{240}$ . We choose $s=4$ , $\mu=30$ so that $m=120$ . It turns out that $C^{[perp]}$ is 15-dimensi0nal.
We choose $s_{0}=43$ and $\nu=34$ . The first row of Table 8and Table 9show the results of the weight
discrepancy test and the weight distribution test, respectively. This defect was successfully removed in
TT800 by tempering method in [17] (see also [20]). The second row in Table 8shows the result of the
weight discrepancy test on TT800, where $s=4$ and $\mu=204$ . This $\mu=204$ is far larger than the previous
30, but is necessary to have nontrivial $C^{[perp]}$ , which is 16-dimensional in this case. The order of 10 would
be large enough for any future machines, but is not the order of the period which seems best possible
in other examples. The third row of Table 8shows the result of weight discrepancy test on asmall

Table 8. Weight discrepancy test on T800, TT800, and MT521

Table 9. Weight distribution test on T800

Mersenne Twister[19] MT521 with period $2^{521}-1\simeq 6.86\cross$ $10^{156}$ . We choose $s\backslash =4$ , $\mu=134$ , and $C^{[perp]}$

turns to be 1-dimensional. We put $s_{0}=237$ . It shows that MT521 has much better $\delta$ than TT800.
We do not know whether this phenomenon is by chance or not. The fourth row shows the result on a
combined Tausworthe generator TAUS88[10] of period $\simeq 2^{88}\simeq 3.09\mathrm{x}$ $10^{26}$ for $s=4$ and $\mu=26$ with
$m-r=16$, which seems fairly good. We did not test the standard Mersenne Twister MT19937 because
its size $p=19937$ exceeded the ability of Mathematica, but expect to have agood quality similarly to
MT521.

5 Future works

We introduced the weight discrepancy test on specified $m$-bits of the generated sequence, which is closely
related to physical empirical tests, but is more powerful and easier to handle in selecting agood generator.

Some shortcomings of our method are that we do not know which choice of the $m$-bits leads to a
rejection, that $m$ can not be chosen freely, and that the relation to the number of terms in the recursion
is not very clear. It is desirable to obtain an approximation formula on $\delta$ depending only on the numbers
of low weight vectors in $C^{[perp]}$ , not on the medium weight vectors
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