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1. INTRODUCTION

In the theory of dynamical systems the concept of recurrence is one of the important
topics of research. Henri Poincare observed that an orbit of agiven transformation defined
on aphase space returns to aneighborhood of astarting point infinitely many times with
probability 1with some suitable conditions imposed on $T$ . This problem is related to
stability of planetary systems in the universe, etc. In this paper we investigate the speed

of recurrence when the error of recurrence is given. The origin of the problem was M.
Boshernitzan’s paper[3] and we obtain new results based on his fundamental theorems.

First, we briefly introduce terminology and notation. Let $A$ be aa-algebra on aset $X$ .
Amapping is said to be measure preserving if $\mu(T^{-1}A)=\mu(A)$ for $A\in A$ . By ameasure
preserving system $(X, A, \mu, T)$ we mean aprobability space $(X, A, \mu)$ together with a
measure preserving map $T:Xarrow X$ . The map $T$ is usually called atransformation and
is not necessarily one-t0-0ne. By ametric measure preserving system $(X, A, \mu, d, T)$ we
mean ameasure preserving dynamical system $(X, A, \mu, T)$ together with ametric $d$ on
$X$ such that the $\sigma$-algebraA is the Borel a-algebra generated by the metric $d$ .

Let $(X, d)$ be ametric space and $A$ be the Borel $\mathrm{c}\mathrm{r}$-algebra. For $A\subset X$ , $\epsilon$ $>0$ , let

$H_{\alpha,\epsilon}(A)= \inf\sum \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(U_{\dot{1}})^{a}$ ,

where the infimum is taken over all countable coverings of $A$ by subsets $U_{\dot{*}}$ with diameters
diam(U ) $<\epsilon$ . The Hausdorff $\alpha$-measure on $X$ is defined by

$H_{\alpha}(A)= \lim_{\epsilon\downarrow 0}H_{\alpha,\epsilon}(A)=\lim_{\epsilon\downarrow}\sup_{0}H_{\alpha,\epsilon}(A)$
.

Then it is an outer measure. It is said to be a-finite on $A$ if $A$ is acountable union of

sets $A_{i}$ with $H_{\alpha}(A_{i})<\infty$ . In this case, the metric space $(X, d)$ has acountable base.
There exists aunique value for $\alpha$ such that if $s<\alpha$ then $H_{s}(X)=\infty$ and if $s>\alpha$ then
$H_{s}(X)=0$ . Such ais called the Hausdorff dimension of $(X, d)$ . For an introduction to

Hausdorff measures, consult $[2],[6]$ .
Boshernitzan[3] proved the following fact.
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FIGURE 1. y $=R_{k}(x)\epsilon_{k}(x)$ for Tx $=x+\theta$ (mod 1) with $\theta=\pi-3$ .

Fact 1.1. Let $(X, A, \mu, d, T)$ be a metric measure preserving system. Assume that for
some $\mathit{0}t>0$ , the Hausdorff $\alpha$ measure $H_{a}$ agrees with the measure $\mu$ on the $\sigma$-algebra $A$ .
Then for $\mu$-almost all $x\in X$ we have

$\lim_{narrow}\inf_{\infty}n^{\beta}\cdot$ $d\{T’ x$ , $x$) $\leq 1$ , with $\beta=\frac{1}{\alpha}$ .
For X $=[0,$ 1] the Lebesgue measure $\mu$ coincides with the Hausdorff 1-measure $H_{1}$ on

X. Hence Boshernitzan obtained the following corollary.

Fact 1.2. Let $X=[0,1]$ . If $T:Xarrow X$ is a Lebesgue measure preserving transformation,
then, for $a.e$ . $x$ ,

$\lim_{narrow}\inf_{\infty}n\cdot|T^{n}x-x|\leq 1$ .

The optimal value for the constant on the right hand side is not known. Probably
the right hand side is bounded by asmaller constant depending on the transformation.
See the simulations. The generalization of Fact 1.2 to absolutely continuous invariant
measures is proved in Theorem 1.6. For the proofs and more simulations including com-
putational techniques see $[4],[5]$ .

Definition 1.3. Let $(X, d)$ be ametric space. The &-th first return time $R_{k}(x)$ is defined
by

$R_{k}(x)= \min\{s\geq 1 : d(T^{s}x,x) \leq\frac{1}{2^{k}}\}$ .
The $k$-th recurrence error $\epsilon_{k}(x)$ is defined by

$\epsilon_{k}(x)=d(T^{R_{k}(x)}x, x)$ .

Example 1.4 (Translation by 0). Let $Tx=x+\theta \mathrm{m}\mathrm{o}\mathrm{d} 1$ with $0<\theta<1$ irrational.
The invariant measure is the Lebesgue measure and its entropy equals 0. Define ametric
on $X=[0,1)$ by $||x-y||$ where $||t||= \min\{|t-n| : n\in \mathbb{Z}\}$ . For $0<x<1$ we have
$\lim\inf_{narrow\infty}n\cdot$ $||T^{n}x-x||= \lim\inf_{narrow\infty}n\cdot$ $|T^{n}x-x|$ . Note that $R_{k}$ is constant since

$\lim_{narrow}\inf_{\infty}n\cdot$ $|T^{\mathfrak{n}}x-x|= \lim_{narrow}\inf_{\infty}n\cdot||n\theta||$ .

Let $p_{k}/q_{k}$ be the $k$-th convergent in the continued fraction expansion of 0. Then

$| \theta-\frac{p_{k}}{q_{k}}|\leq\frac{1}{q_{k^{2}}}$,

hence $q_{k}\cdot||q_{k}\theta||\leq 1$ . By choosing asubsequence of $p_{k}/q_{k}$ , we may have asmaller upper
bound. With $\theta=(\sqrt{5}-1)/2$ we have $\lim\inf_{narrow\infty}n\cdot$ $||n\theta||\leq 1/\sqrt{5}$ . For more details,
consult [8]. Figure 1displays the plot for $(k, R_{k}\epsilon_{k})$ for $\theta=\pi-3$ . The range of $k$ is from
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Let $(X, A, \mu, T)$ be ameasure preserving system. The transformation $T$ is said to be
ergodic if $T^{-1}(A)=A$ modulo measure zero sets only if $\mu(A)=0$ or 1. Take $A\in A$ with
positive measure. Define the first return time on $A$ by

$R_{A}(x)= \min\{j\geq 1 : T^{j}x\in A\}$

for $x\in A$ . It is not defined at $x$ if the orbit of $x$ does not return to $A$ . The Poincar\’e

Recurrence Theorem implies that it is finite for $\mathrm{a}.\mathrm{e}$ . $x\in X$ . The following fundamental
fact was proved by M. Kac[7].

Fact 1.5 (Kac’s Lemma). Let $T$ be an ergodic transformation on a probability space
$(X, A, \mu)$ . If $\mu(A)>0$ , then

$\int_{A}R_{A}(x)d\mu_{A}=\frac{1}{\mu(A)}$ ,

where $\mu_{A}$ is the conditional measure on A defined by $\mu_{A}(E)=\mu(E)/\mu(A)$ for $E\subset A$ .

Let $(X, A, \mu, d, T)$ be ametric measure preserving system. Consider aball $A$ of radius
$1/2^{k}$ centered at $x_{0}$ . Then $R_{A}=R_{k}$ and in view of Kac’s Lemma we expect that $R_{k}(x_{0})$

is approximately equal to $1/\mu(A)$ in some sense. For ageneral introduction to ergodic
theory, consult [9],[10].

For $X=[0,1]$ ameasure $\mu$ is said to absolutely continuous if $d\mu=\rho(x)dx$ for an
integrable function $\rho(x)\geq 0$ . We call $\rho(x)$ the invariant density. We generalize Fact 1.2
for transformations on $X=[0,1]$ with absolutely continuous invariant measures. First
we observe the following: Let $\rho(x)>0$ be an integrable function on $X=[0,1]$ . Define
$d:X\cross Xarrow \mathbb{R}$ by

$d(x, y)=| \int_{x}^{y}\rho(t)dt|$

for $x$ , $y\in X$ . Then (i) $d$ is ametric on $X$ , and (ii) $\mu$ coincides with the Hausdorff
1-measure $H_{1}$ on $X$ .

Theorem 1.6. Let $X=[0,1]$ and let $\rho(x)dx$ , $\rho(x)>0$ , be an absolutely continuous
probability measure on X. Let $T$ : $Xarrow X$ be an ergodic transformation that preserves
$\rho(x)dx$ . Then

$\lim_{narrow}\inf_{\infty}n\cdot|T^{n}x-x|\leq\frac{1}{\rho(x)}$

and
.

$\lim_{karrow}\inf_{\infty}R_{k}(x)\epsilon_{k}(x)\leq\frac{2}{\rho(x)}$ .
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FIGURE 2. (x, Rk(x)ek(x)) and $(\mathrm{x},\mathrm{e}\mathrm{k}(\mathrm{x})\cdot 2^{k})$ for k $=8$ and Tx $=3x$ (mod 1)

2. SIMULATIONS FOR THEOREM 1.6

In investigating the behavior of $R_{k}(x)\epsilon_{k}(x)$ as $karrow\infty$ we use the subsequence $n_{1}=$

$R_{1}(x)$ , $n_{2}=R_{2}(x)$ , $n_{3}=R_{3}(x)$ , $\cdots$ since it is practically impossible to consider the
whole sequence 1, 2, 3, $\cdots$ in finding the limit infimum. Computer experiments are done
using the mathematical software Maple $\mathrm{V}$ , which allows us to use up to 10,000 significant
decimal digits. In computing the first return time it is crucial to take asufficient number
of significant digits.

Take astarting point $x_{0}=\pi$ $-3$ . It is agood choice as astarting point for an orbit of
atransformation on the unit interval in general for most of simulation. Many statistical
investigations have shown no regularity in the digits of $\pi$ and it seems that they have
prefect randomness as far as practical applications are concerned. See [1] for more on the
randomness of digits of $\pi$ .

Let $Tx=3x\mathrm{m}\mathrm{o}\mathrm{d} 1$ . The invariant measure is the Lebesgue measure. The plot of
$(x, R_{k}(x)\epsilon_{k}(x))$ at $x=T^{j}x_{0},1\leq j\leq 1\mathrm{O}\mathrm{O}\mathrm{O}$ , is given on the left side in Figure 2. We take
$k=8$ and employ 300 significant decimal digits in Maple computations. Note that most
of the points lie below $y=2$ . On the right $(x,\epsilon_{k}(x)\cdot$ $2^{k}$ ) are plotted. The factor $2^{k}$ is
used for normalization. The points seem to be random.

3. CONJECTURES ON THE AVERAGES OF $R_{k}$ , $\epsilon_{k}$ AND $R_{k}\epsilon_{k}$

If $X=[0,1]$ and $d\mu=\rho(x)dx$ for apiecewise continuous $T$-invariant density function
$\rho(x)>0$ , then from extensive simulations it seems reasonable to assume that for suffi-
ciently large $k$ the points $T^{R_{k}(x)}(x)$ , $0<x<1$ , are almost uniformly distributed in the
interval $[x-1/2^{k}, x+1/2^{k}]$ and that the average of the distance $|T^{R_{k}(x)}(x)-x|$ is close to
$1/2^{k+1}$ . In simulations the distribution of $k$-th recurrence error seems to be uniform with
respect to the Lebesgue measure in the interval $[x-1/2^{k},x+1/2^{k}]$ , hence we conjecture
that Ave $[\epsilon_{k}]\approx 1/2^{k+1}$ . Since

$\mu\{$ $[x- \frac{1}{2^{k}}$ , $x+ \frac{1}{2^{k}}])=\int_{x-1/2^{k}}^{x+1/2^{k}}\rho(t)dt\approx\rho(x)\cdot\frac{1}{2^{k-1}}$,

we have the following conjecture for sufficiently large $k$ :

$R_{k}(x) \approx\frac{1}{\mu([x-1/2^{k},x+1/2^{k}])}\approx\frac{2^{k-1}}{\rho(x)}$ ,

$\mathrm{A}\mathrm{v}\mathrm{e}[\mathrm{f}\mathrm{f}_{k}]$ $= \int_{0}^{1}R_{k}(x)\rho(x)dx\approx\int_{0}^{1}\frac{2^{k-1}}{\rho(x)}\rho(x)dx=2^{k-1}$
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and
$\mathrm{A}\mathrm{v}\mathrm{e}[R_{k}\cdot\epsilon_{k}]=\int_{0}^{1}R_{k}(x)\epsilon_{k}(x)\rho(x)dx\approx\int_{0}^{1}\frac{2^{k-1}}{\rho(x)}\frac{1}{2^{k+1}}\rho(x)dx=\frac{1}{4}$ ,

where $‘\approx$ ’denotes ’being approximately equal to in asuitable sense’ and ‘Ave’ denotes
‘the average with respect to the invariant density $\rho(x)’$ .

Note that for irrational translations modulo 1the above conjecture is false, and we
need an additional condition other than ergodicity. See Figure 1. Probably we need a
condition of positive entropy or ‘mixing’ or both. The preceding discussion suggests the
possibility of using $\{R_{k}\}_{k=1}^{\infty}$ to obtain information on the limit infimum in Theorem 1.6.

Aprobability measure $\mu$ on the unit interval is said to be singular if there exists
aLebesgue measure zero subset $X_{0}$ such that $\mu(X_{0})=1$ . For example, a $(p, 1-p)-$

Bernoulli measure is singular continuous if $0<p<1/2$ . For transformation with singular
continuous invariant measures, the limits on the right hand side are all zero for $\mathrm{a}.\mathrm{e}$ . $x$

with respect to the Lebesgue measure in corresponding statements for Theorem 1.6. This
is due to the observation that at the points where asingular continuous measure 72 is
concentrated in acertain sense the density function becomes infinite.
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