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Abstract : This paper describes simple design methods of chaotic binary sequences with
prescribed aut0-correlation properties including higher-0rder statistics. We employ one-
dimensional piecewise linear onto maps and simple threshold functions for generating such
sequences. Some examples of such designs are also given. Furthermore, bounds on such
statistics are discussed and compared to the result for general binary random variables.

1Introduction
Simple deterministic systems can exhibit very complex and random behavior called chaos.
Such phenomena are very interesting in both of theoretical and engineering point of view.
One of the most useful applications of chaos is arandom number generator which is re-
quired in several engineering applications such as Monte Carlo simulations, spread spec-
trum communications, and cryptosystems. In many kinds of pseudorandom numbers,
binary sequences are most useful in such digital communication systems. The best known
class of binary sequences is the s0-called linear feedback shift register (LFSR) sequences
such as $\mathrm{M}$-sequences, Gold sequences, and Kasami sequences [1].

As quite different methods from LFSR sequences, there have been several attempts to
use chaotic sequences which are generated by one-dimensional nonlinear maps. Though
achaotic sequence itself is real-valued, it can be easily transformed into binary sequences
by appropriate threshold functions. In applications of such chaotic sequences, theoretical
evaluation and design of statistical properties of such sequences are very important be-
cause there are many kinds of chaotic sequences with various properties which depend on
their deterministic systems.

Design of many chaotic sequences of $i.i.d$. (independent and identically distributed)
binary random variables from asingle chaotic real-valued sequence generated by aclass of
one-dimensional maps has been established [2]. Ageneralized version of such design has
also been given [3]. Sequences of i.i.d. binary random variables are very useful as random
numbers. However non-i.i.d. sequences, which have some correlations dependent on the
chaotic maps and quantization functions, are also useful in some applications. Actually, it
has been shown that sequences with exponentially vanishing aut0-correlations have better
performance in asynchronous $\mathrm{D}\mathrm{S}/\mathrm{C}\mathrm{D}\mathrm{M}\mathrm{A}$ systems than i.i.d. sequences $[4],[5]$ . Thus, it is
very important to design chaotic sequences with prescribed statistical properties
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Design of chaotic real-valued orbits with prescribed statistical properties have b $\mathrm{e}\mathrm{e}\mathrm{n}$

discussed in [6]. Also, design of dynamical systems which generates an arbitrarily pre-

scribed tree source by using piecewise linear maps has been given [7]. We also remark that

Kalman already gave aprocedure for embedding aMarkov chain into chaotic dynamics

of piecewise linear maps $[8],[9]$ .
In this paper, we present simple design methods to obtain chaotic binary sequences

with prescribed aut0-correlation properties, including higher-0rder statistics, based on

piecewise linear onto maps with auniform invariant measure [10]-[12]. We also use a

simple threshold function for generating chaotic binary sequences from areal-valued one.

2One-Dimensional Maps and Chaotic Binary Sequences

One-dimensional nonlinear difference equation

$x_{n+1}=\tau(x_{n})$ , $x_{n}\in I=[d, e]$ , $n=0,1,2$ , $\cdots$ , (1)

can produce achaotic sequence $\{x_{n}\}_{n=0}^{\infty}$ , where $x_{n}=\tau^{n}(x_{0})$ . The ensemble-average

defined by
$\langle G\rangle=\int_{I}G(x)f^{*}(x)dx$ (2)

is very useful in evaluating statistics of $\{G(\tau^{n}(x))\}_{n=0}^{\infty}$ under the assumption that $\tau(\cdot)$

is mixing on I with respect to an absolutely continuous invariant measure, denoted by
$\mathrm{g}\mathrm{i}(\mathrm{x})dx$ . In this paper, we employ piecewise monotonic onto maps with $N_{\tau}$ subintervals.

We now define the Perron-Frobenius (PF) operator $P_{\tau}$ of the map $\tau$ with an interval
$I=[d, e]$ by

$P_{\tau}G(x)= \frac{d}{dx}\int_{\tau^{-1}([d,x])}G(y)dy$ (3)

which can be rewritten as

$P_{\tau}G(x)= \sum_{i=1}^{N_{\mathcal{T}}}|g_{i}’(x)|G(g_{i}(x))$ (4)

for piecewise monotonic onto maps, where $g_{i}(x)$ is the $i$-th preimage of the map $\tau(\cdot)[13]$ .

This operator is very useful in evaluating the correlation functions because it has the

following important property:

$\int_{I}G(x)P_{\tau}\{H(x)\}dx=\int_{I}G(\tau(x))H(x)dx$. (5)

Areal-valued chaotic sequence generated by such amap is easily transformed into a

binary sequence by athreshold function defined by

$\Theta_{t}(x)=\{$
0 $(x<t)$ (6)
1 $(x\geq t)$ .

We will discuss statistical properties of abinary sequence $\{\Theta_{t}(\tau^{n}(x))\}_{n=0}^{\infty}$ generated by

the threshold function
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3 Chaotic Binary Sequences with Prescribed AutO-
Correlation Properties

3.1 $2\mathrm{n}\mathrm{d}$-Order AutO-Correlation
Firstly, we define the $2\mathrm{n}\mathrm{d}$-order aut0-correlation function of asequence $\{G(\tau^{n}(x))\}_{n=0}^{\infty}$ by

$\rho(\ell;G)=\int_{I}(G(x)-\langle G\rangle)(G(\tau^{\ell}(x))-\langle G\rangle)f^{*}(x)dx$ . (7)

For an i.i.d. binary sequence $\{B(\tau^{n}(x))\}_{n=0}^{\infty}$ as given in [2], we have

$\rho(\ell;B)=(\langle B\rangle-\langle B\rangle^{2})\delta(\ell)$ , (8)
where $8(0)=1$ and $\delta(\ell)=0$ for $\ell>1$ .

Now, we consider piecewise linear (PL) onto maps whose mapping function $\tau_{i}(\cdot)$ in
each subinterval $I_{i}(i=1,2, \cdots, N_{\tau})$ is given by

$\tau_{i}(x)=a_{i}x+b_{i}$ , $|a_{i}|>1$ , $\tau_{i}$ : $I_{i}arrow I$ (onto). (9)
Without any loss of generality, we assume $I=[0,1]$ . For such maps, the invariant density
function $f^{*}(x)$ is constant such that $\int_{I}f^{*}(x)dx=1$ , that is, $f^{*}(x)=1$ . We call eq.(9) the
onto condition through this paper. Thus, we can obtain the following lemma.
Lemma 1: For the piecewise linear onto maps given by (9), we can get

$P_{\tau} \{(\Theta_{t}(x)-\langle\Theta_{t}\rangle)f^{*}(x)\}=\frac{1}{a_{r}}(\Theta_{\tau(t)}(x)-\langle\Theta_{\tau(t)}\rangle)f^{*}(x)$ (10)

where $t\in I_{r}$ .
By using the above lemma, we can obtain the following theorem.

Theorem 1: Let $c$ be afixed point of the map satisfying $\tau(c)=c$ . If we employ the
threshold $c(\in I_{r})$ , we have

$\rho(\ell;\Theta_{c})=\frac{\rho(0,\Theta_{c})}{a_{r}^{\ell}}.=\frac{\langle\Theta_{c}\rangle-\langle\Theta_{c}\rangle^{2}}{a_{r}^{\ell}}$ . (11)

It should be noted that eq.(ll) is independent of the mapping functions $\tau_{i}(\cdot)(i\neq r)$ .
Thus, we can control the aut0-correlation property of the chaotic binary sequence by $c$

and $a_{r}$ , where we can use arbitrary values of $a_{r}$ whose absolute value is greater than 1.
Example 1: Define apiecewise linear onto map with $I=[0,1]$ by

$\tau(x)=\{$

$\frac{2|a|}{ax-1-|a}1\frac{a-11^{x+}}{2}$

$(0 \leq x<\frac{1}{2}-\frac{1}{2|a|})$

$( \frac{1}{2}-\frac{1}{2|a|}\leq x<\frac{1}{2}+\frac{1}{2|a|})$

$\frac{2|a|}{1-|a|}(x-1)$ $( \frac{1}{2}+\frac{1}{2|a|}\leq x\leq 1)$

$|a|>1$ . (12)

Examples of the above map are shown in Fig.1. According to Theorem 2, the aut0-
correlation function of abinary sequence $\{\ominus\frac{1}{2}(\tau^{n}(x))\}_{n=0}^{\infty}$ obtained by the PL onto map
of eq. (12) is given by

$\rho(\ell;\Theta_{\frac{1}{2}})=\frac{1}{4a^{\ell}}$. (13)
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(a) $a>0$ (b) $a<0$

Figure 1: Examples of the PL onto map of eq.(12)

Figure 2shows examples of theoretical and empirical correlation values of $\{\Theta_{\frac{1}{2}}(\tau^{n}(x))\}_{n=0}^{\infty}$

generated by PL onto maps of eq.(12), where empirical values are obtained by acomputer.

We can find that the theoretical and empirical values are in good agreement with each

other.

3.2 Run-Probability

When $B(\cdot)$ is abinary ({0, 1}-valued)function, the probability of $m$ successive l’s in the
binary sequence $\{B(\tau^{n}(x))\}_{n=0}^{\infty}$ is given by

$P_{m}(B)= \int_{I}B(x)B(\tau(x))\cdots B(\tau^{m-1}(x))f^{*}(x)dx$, (14)

which is one of higher-0rder statistics and is also useful for some statistical tests [14].

We call this probability run-probability. Of course, if the sequence is i.i.d., we have
$P_{m}(B)=\langle B\rangle^{m}$ .

Here, again, consider the piecewise linear onto maps given by (9). We give the following

theorem.
Theorem 3: Let $t$ be avalue such that $t<\tau(t)$ , $t<\tau^{2}(t)$ , $\cdots$ , $t<\tau^{p-1}(t)$ and $t\geq\tau^{p}(t)$ .

Then, for the piecewise linear onto maps given by (9), we have

$P_{m}( \Theta_{t})=(\prod_{i=0}^{p-1}\frac{1}{a^{(i)}})P_{m-p}(\Theta_{t})+\sum_{j=1}^{p}(\prod_{i=0}^{j-2}\frac{1}{a^{(i)}})(\langle\Theta_{\tau^{f1}(t)}-\rangle-\frac{\langle\Theta_{\tau^{j}(t)}\rangle}{a^{(j-1)}})P_{m-j}(\Theta_{t})$ (15)

where $a^{(i)}$ is the slope of the mapping function of the subinterval in which $\tau^{i}(t)$ exists.
Proof: Using eq.(10), we can write

$P_{m}( \Theta_{t})=\int_{I}P_{t}(x)f^{*}(x)\}\Theta_{t}(x)\cdot\Theta_{t}(\tau^{m-2}(x))dx=\int_{I}\{\frac{\tau\{\Theta 1}{a^{(0)}}(\Theta_{\tau(t)}(x)-\langle\Theta_{\tau(t)}\rangle)f^{*}(x)\}\Theta_{t}(x)\cdots\Theta_{t}(\tau^{m-2}(x))dx$
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time delay

(a) $a=1.2$ (theoretical) (b) $a=1.2$ (empirical)

(c) $a=-1.2$ (theoretical) (d) $a=-1.2$ (empirical)

Figure 2: onto correlation functions of $\{\Theta_{\frac{1}{2}}(\tau^{n}(x))\}_{n=0}^{\infty}$ generated by PL onto maps with
$a=\pm 1.2$ .

$= \frac{1}{a^{(0)}}\int_{I}\Theta_{\tau(t)}(x)\Theta_{t}(\tau(x))\cdots\Theta_{t}(\tau^{m-2}(x))f^{*}(x)dx$

$+( \langle\ominus_{t}\rangle-\frac{\langle\Theta_{\tau(t)}\rangle}{a^{(0)}})P_{m-1}(\Theta_{t})$ (16)

and thus by induction we have eq.(15).
Remark: For maps with the EDP, $P_{m}(\ominus_{t})$ as in Theorem 3is obtained by substituting
$a^{(i)}=s((\tau^{i})’(t))N_{\tau}$ into eq.(15).

From Theorem 3, we find that the run-probability of Is in the sequence is also control-
lable to some extent. Note that eq.(15) is independent of slopes of the mapping functions
of the subintervals in which $\tau(:t)$ does not exist. We give simple design examples based
on piecewise linear onto maps as follows.
Example 2: For $t\geq\tau(t)$ and $t\in I_{r}$ , we have

$P_{m}( \Theta_{t})=(\frac{1-\langle\ominus_{\tau(t)}\rangle}{a_{r}}+\langle\Theta_{t}\rangle)P_{m-1}(\Theta_{t})$ (17)

$=( \frac{1-\langle\Theta_{\tau(t)}\rangle}{a_{r}}+\langle\Theta_{t}\rangle)^{m-1}\cdot\langle\Theta_{t}\rangle$ (18)

Let us design amap with $I=[0,1]$ such that Pi {Qt) $= \langle\ominus_{t}\rangle=\frac{1}{2}$ and P2(&t) $= \frac{2}{5}$ . Firstly
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$x$

Figure 3: An example of PL onto maps satisfying $P_{1}( \Theta_{t})=\frac{1}{2}$ and $P_{2}( \Theta t)=\frac{2}{5}$ .

we set $t= \frac{1}{2}$ in order to realize $\langle\Theta_{t}\rangle=\frac{1}{2}$ . Substituting $\langle\Theta_{t}\rangle=\frac{1}{2}$ into eq.(18), we have

$P_{2}( \Theta_{\frac{1}{2}})=(\frac{1-\langle\Theta_{\tau(t)}\rangle}{a_{r}}+\frac{1}{2})\cdot\frac{1}{2}=\frac{2}{5}$ (19)

which leads us to get $a_{r}= \frac{10}{3}(1-\langle\Theta_{\tau(t)}\rangle)$ . If we set $\tau(\frac{1}{2})=\frac{2}{5}$ in order to satisfy $\frac{1}{2}\geq\tau(\frac{1}{2})$ ,

we have $a_{r}= \frac{4}{3}$ . Hence, we can obtain the mapping function in the subinterval $I_{r}$ as

$\tau_{r}(x)=\frac{4}{3}x-\frac{4}{15}$ (20)

’

Example 3: For $t<\tau(t)$ , $t\geq\tau^{2}(t)$ , $t\in I_{r}$ , and $\mathrm{r}(\mathrm{t})\in I_{s}$ , we have

$P_{m}( \Theta_{t})=(\langle\Theta_{t}\rangle-\frac{\langle\Theta_{\tau(t)}\rangle}{a_{r}})P_{m-1}(\Theta_{t})+\frac{1-\langle\Theta_{\tau^{2}(t)}\rangle+a_{s}\langle\Theta_{\tau(t)}\rangle}{a_{r}a_{s}}P_{m-2}(\Theta_{t})$ (21)

$P_{1}( \Theta_{t})P_{2}(\Theta_{t})==\frac{\langle\Theta_{t}\rangle\langle\Theta_{\tau(t)}\rangle}{a_{r}}(1-\langle\Theta_{t}\rangle)+\langle\Theta_{t}\rangle^{2}$

(22)

(23)

$\mathrm{L}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{s}\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{a}\mathrm{p}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}I=[0, 1]\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}P_{1}(\Theta_{t})=\Theta_{t}\rangle=\frac{1}{2,\mathrm{t}},P_{2}(\Theta_{t})=\frac{1}{6},\mathrm{a}\mathrm{n}\mathrm{d}P_{3}(\Theta_{t})=\frac{\mathrm{s}_{1}\mathrm{i}}{12}.\mathrm{F}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}1\mathrm{y}\mathrm{w}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t}t=\frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{a}1\mathrm{i}\mathrm{z}\mathrm{e}\langle\Theta_{t}\rangle=\frac{1\langle}{2}$

. $\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\langle\Theta_{t}\rangle--\frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{o}$

eq. (23), we have
$P_{2}( \Theta_{\frac{1}{2}})=\frac{\langle\Theta_{\tau(t)}\rangle}{2a_{r}}+\frac{1}{4}=\frac{1}{6}$ (24)

which leads us to get
$a_{r}=-6\langle\Theta_{\tau(t)}\rangle$ . (25)

Here we assume $\tau(\frac{1}{2})\in I_{r}$ , that is, $a_{r}--a\mathrm{s}.$ Thus, from eq.(21), we can get

$P_{3}( \Theta_{\frac{1}{2}})=(\frac{1}{2}+\frac{1}{6})\cdot\frac{1}{6}+\frac{1-\langle\Theta_{\tau^{2}(\frac{1}{2})}\rangle+a_{r}\langle\Theta_{\tau(\frac{1}{2})}\rangle}{a_{r}^{2}}\cdot\frac{1}{2}=\frac{1}{12}$. (26)
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$x$

Figure 4: An example of PL onto maps satisfying $P_{1}( \Theta_{t})=\langle\Theta_{t}\rangle=\frac{1}{2}$ , $P_{2}( \ominus_{t})=\frac{1}{6}$ , and
$P_{3}( \Theta_{t})=\frac{1}{12}$ .

Put $\alpha=\tau(\frac{1}{2})$ and $\beta=\tau^{2}(\frac{1}{2})$ . Then we have

$\langle\ominus_{\tau(\frac{1}{2})}\rangle$ $=$ $1-\alpha$ (27)
$\langle\Theta_{\tau^{2}(\frac{1}{2})}\rangle$ $=$ $1-\beta$ (28)

$\tau_{r}(x)$ $=a_{r}(x- \frac{1}{2})+\alpha$ (29)
$\tau_{\gamma}(\alpha)$ $=\beta$ . (30)

Using eq.(25)-(30), we can get each value of the parameters and obtain the mapping
function in the subinterval $I_{r}$ as

$\tau_{r}(x)=3(\sqrt{2}-2)x+3-\sqrt{2}$. (31)

We can also arbitrarily give mapping functions in other subintervals, $\tau_{i}(\cdot)(i\neq r)$ , satis-
fying eq.(9). An example of such maps is shown in Figure 4.

4Discussion of Run-Probability
Now consider the simplest case $p=1$ in eq.(15), that is, the case of eq.(18). Further, we
focus our attention on the case $m=2$. Using $\langle\Theta_{t}\rangle=1-t$ , we have

$P_{2}( \ominus_{t})=(\frac{\tau(t)}{a_{r}}+1-t)(1-t)$ . (32)

We consider bounds on the run-probability $P_{2}(\Theta_{t})$ given by eq.(32). There are three
parameters $t$ , $\tau(t)$ , and $a_{r}$ which determine the value of $P_{2}(\Theta_{t})$ . However, these parameters
are not completely independent each other since the onto condition eq.(9) and $t\geq \mathrm{r}(\mathrm{t})$

must be satisfied as long as eq.(32) is used. Hence, eq.(32) should have some bounds
which are of our main interest in this section. Thus, we theoretically investigate such
bounds for agiven $P_{1}(\ominus_{t})=\langle\ominus_{t}\rangle$ ( $i.e.$ , agiven $t$ ).
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Figure 5: Case 1 $(a_{r}>0)$

To do this, we consider the following cases. Note that each case corresponds to each

of Figures 5-8. In these figures, the coordinate $(t, \mathrm{r}(\mathrm{t})$ , which is one of parameters
determining the mapping function, must be located in shaded area in order to satisfy the

given conditions.
$\bullet$ Case 1: $a_{r}>0(\mathrm{F}\mathrm{i}\mathrm{g}.5)$

In this case, obviously, the minimum value of $P_{2}(\Theta)$ is $(1 -t)^{2}$ to be obtained for

$\mathrm{o}\mathrm{n}P_{2}(\Theta)\tau(t)=0$

,

condition. As shown in Fig.5, the mapping function $\tau_{r}(x)$ is alinear one with $\tau_{r}(t)=\tau(t)$

and Tr(t) $=1$ , whose slope $a_{r}$ is given by

$a_{r}= \frac{1-\tau(t)}{1-t}$ . (33)

Thus, the upper bound is $1-t$ to be obtained for $\tau(t)=t$ . Note that when $\tau(t)=1$ , that

is, $a_{\gamma}=1$ , the map is no longer chaotic. Thus, in this case, we have

$P_{1}(\Theta_{t})^{2}\leq P_{2}(\Theta_{t})<P_{1}(\Theta_{t})$ . (34)

$\bullet$ Case 2-1: $a_{r}<0$ , $t \geq\frac{1}{2}$ , and $\tau(t)>1-t(\mathrm{F}\mathrm{i}\mathrm{g}.6)$

In this case, the upper bound on $P_{2}(\Theta)$ is $(1-t)^{2}$ to be obtained for $a_{r}arrow\infty$ . Next,

consider the most correlated case. As shown in Fig.6, the mapping function $\tau_{r}(x)$ is a

linear one with $\tau_{r}(t)=\tau(t)$ and $\tau_{r}(1)=0$ for the most correlated case where the absolute
value of the slope of $\tau_{r}(x)$ , $|a_{r}|$ , is closest to 1while keeping the onto condition. In this

case, we have
$a_{r}=- \frac{\tau(t)}{1-t}$ . (35)

Substituting eq.(35) into eq.(32), we can get $P_{2}(\Theta_{t})=0$ which is independent of $\tau(t)$ and
is the minimum value in this case. Hence we have

$0\leq P_{2}(\Theta_{t})<P_{1}(\Theta_{t})^{2}$ . (36)

$\bullet$ Case 2-2: $a<0$ , $t \geq\frac{1}{2}$ , and $\tau(t)\leq 1-t(\mathrm{F}\mathrm{i}\mathrm{g}.7)$
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Figure 6: Case 2-1 ( $a_{r}<0$ , $t \geq\frac{1}{2}$ , and $\mathrm{r}(\mathrm{t})>1-t$)

Figure 7: Case 2-2 ($a_{r}<0$ , $t \geq\frac{1}{2}$ , and $\tau(t)\leq 1-t$ )

In this case, the maximum value of $P_{2}(\Theta)$ is also $(1-t)^{2}$ to be obtained for $\mathrm{r}(\mathrm{t})=0$ .
Similarly to Case 2-1, consider the most correlated case. As shown in Fig.7, the mapping
function $\tau_{r}(x)$ is alinear one with $\tau_{r}(t)=\tau(t)$ and $\tau_{r}(0)=1$ for the most correlated case
while keeping the onto condition. The slope $a_{r}$ is given by

$a_{r}=- \frac{1-\tau(t)}{t}$ . (37)

In this case, obviously, the lower bound on P2(&t) is 0to be obtained for $\mathrm{r}(\mathrm{t})=1-t$ .
Note that when $\mathrm{r}(\mathrm{t})=1-t$ , that is, $a_{r}=-1$ , the map is no longer chaotic. Therefore,
we have

$0<P_{2}(\ominus_{t})\leq P_{2}(\ominus_{t})^{2}$ . (38)
$\bullet$ Case 2-3: $a<0$ , $t< \frac{1}{2}$ (Fig.8)

In this case, the maximum value of $P_{2}(\Theta)$ is also $(1-t)^{2}$ to be obtained for $\mathrm{r}(\mathrm{t})=0$ .
Similarly to Case 2-2, consider the most correlated case. As shown in Fig.8, the mapping
function $\tau_{r}(x)$ is alinear one with $\tau_{r}(t)=\tau(t)$ and $\tau_{r}(0)=1$ for the most correlated case
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Figure 8: Case 2-3 ( $a_{r}<0$ and $t< \frac{1}{2}$ )

while keeping the onto condition. In this case, the minimum value of $P_{2}(\Theta_{t})$ is obtained

for $\tau(t)=t$ . For such acase, we have

$a_{r}=- \frac{1-t}{t}$ . (39)

Substituting eq.(39) and $\tau(t)=t$ into eq.(32), we can get $P_{2}(\Theta_{t})=1-2t$ . Hence, we

have
$2P_{1}(\Theta_{t})-1\leq P_{2}(\Theta_{t})\leq P_{2}(\Theta_{t})^{2}$ . (40)

From the above four cases, the bounds on $P_{2}(\Theta_{t})$ can be written as

$2P_{1}( \Theta_{t})-1\leq P_{2}(\Theta_{t})<P_{1}(\Theta_{t})0\leq P_{2}(\Theta_{t})<P_{1}(\Theta_{t})\mathrm{f}\mathrm{o}\mathrm{r}P_{1}(\Theta_{t})\leq\frac \mathrm{f}\mathrm{o}\mathrm{r}P_{1}(\Theta_{t})>\frac{211}{2}\}$ (41)

which corresponds to the result for arbitrary binary random variables (see Appendix) [11].

5Conclusion
$\mathrm{W}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{e}\mathrm{r}- \mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{L}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}$

.
$\mathrm{U}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{a}\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{p}\mathrm{i}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{o}-$

onto maps, we can control the aut0-correlation property with exponential decay and the

run-probability of l’s in achaotic binary sequence. Furthermore, bounds on such arun-

probability have also been discussed.

Appendix

Bounds on Run-Probability of Length 2for General Binary Ran-

dom Variables

Let $X$ and $\mathrm{Y}$ be binary random variables taking 0 or 1. We denote events $X=1$ , $X=0$,
$\mathrm{Y}=1$ , and $\mathrm{Y}=0$ by $A$ , $\overline{A}$ , $B$ , and $\overline{B}$, respectively. Moreover, probabilities with respec$\mathrm{t}$
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to these events are denoted by

$P(A)$ : probability of $A$

$P(A, B)$ : probability of $A$ and $B$

$P(B|A)$ : conditional probability of $B$ assuming $A$ .
Let us assume $P(A)=P(B)$ . Then, we have $P(A|B)=P(B|A)$ which is easily

obtained from the formula

$P(B|A)= \frac{P(A,B)}{P(A)}=\frac{P(B)P(A|B)}{P(A)}$ . (A1)

Furthermore, by using $P(B|A)+P(\overline{B}|A)=1$ , we have

$P(\overline{B}|A)=P(A|\overline{B})=P(\overline{A}|B)=P(B|\overline{A})$ (A2)

which gives $P(A,\overline{B})=P(\overline{A}, B)$ because

$P(A,\overline{B})$ $=$ $P(\overline{B}|A)P(A)$ (A3)
$P(\overline{A}, B)$ $=$ $P(\overline{A}|B)P(B)$ . (A4)

Now consider bounds on $P(A, B)$ under the assumption that $P(A)=\mathrm{P}(\mathrm{A})$ . We also
assume that $P(B|A)=\delta$ , where $0\leq\delta<1$ . Thus, we have

$P(A, B)=P(B|A)P(A)=\delta P(A)$ (A5)
$P(A,\overline{B})=P(\overline{A}, B)=P(\overline{B}|A)P(A)$

$=(1-\delta)P(A)$ (A6)
$P(\overline{A},\overline{B})=1-(P(A, B)+P(A,\overline{B})+P(\overline{A}, B))$

$=1+\delta P(A)-2P(A)$ . (A7)

Since $0\leq P(\overline{A},\overline{B})\leq 1$ , we have

$\frac{2P(A)-1}{P(A)}\leq\delta<1$ (A8)

which, in conjunction with (A5), gives

$2P(A)-1\leq P(A, B)<1$ . (A9)

However, the probability $P(A, B)$ must satisfy $0\leq P(A, B)\leq 1$ . Therefore, we have

$2P(A)-1\leq P(A,B)<P(A)0\leq P(A,B)<P(A)$ $\mathrm{f}\mathrm{o}\mathrm{r}P(A)>\frac \mathrm{f}\mathrm{o}\mathrm{r}P(A)\leq\frac{1}{221}$

.
$\}$ (A1O)

If we set $X=\Theta_{t}(x_{n})$ and $\mathrm{Y}=\ominus_{t}(x_{n+1})$ , then $P(A, B)$ implies $P_{2}(\Theta_{t})$ and the two
bounds (41) and (A1O) correspond to each other. This means that chaotic binary se-
quences generated by apiecewise linear onto map and athreshold function can mimic
arbitrary binary random variables with respect to run-probability of length 2.
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