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Abstract: Recently binary or real-valued sequences generated by Chebyshev maps are
proposed as spreading sequences in $\mathrm{D}\mathrm{S}/\mathrm{C}\mathrm{D}\mathrm{M}\mathrm{A}$ systems. In this note, we consider sequences
of real-valued functions of bounded variation, which include binary functions, of iterates
generated by Chebyshev maps, and evaluate the rate of mixing of such sequences using the
Perron-Frobenius operator associated with the Chebyshev maps.

1Introduction

During the past decade, binary or real-valued sequences generated by one-dimensional
ergodic maps have been proposed for spreading sequences and its statistical properties
in $\mathrm{D}\mathrm{S}/\mathrm{C}\mathrm{D}\mathrm{M}\mathrm{A}$ system have been studied. In such ergodic maps, especially Chebyshev maps
have been intensively studied in the following.

Binary pseud0-random sequences generated by Chebyshev maps, or briefly referred to as
Chebyshev binary sequences, are firstly proposed in [1], and asufficient condition is derived
for akind of ergordic maps to generate sequences of i.i.d. (independent and identicaly
distributed) binary random variables in [2].

Based on the evaluations of correlation functions of so called Chebyshev binary sequences
in [3], correlational properties of such sequences in $\mathrm{D}\mathrm{S}/\mathrm{C}\mathrm{D}\mathrm{M}\mathrm{A}$ system are particularly
examined, and the ones with exponentialy decaying aut0-correlation are recently proposed
in [4].

On the other hand, some real-valued sequences generated by Chebyshev maps are recently
ly proposed in [5] as optimum spreading sequences in terms of the AIP (average interference
parameter) defined in [6]. Because these sequences are based on alinear combination of
Chebyshev polynomials, correlational properties of such sequences can be evaluated by using
the $N$-th order dependency moments $(N=1,2,3, \cdots)$ of real-valued trajectory generated
by Chebyshev maps, which are already derived in [7].

In this note, we consider sequences of real-valued functions of bounded variation of
iterates generated by Chebyshev maps. First we define the modified Perron-Frobenius
operator associated with the Chebyshev maps, and examine the spectrum of this operator.
Then we evaluate the mixing property of the Chebyshev maps using this operator, and
explicitly obtain the rate of mixing
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2 Perron-Frobenius Operator Associated with Cheby-
shev Map

Consider the Chebyshev map of degree $k$ $(k =2,3, \cdots)$ ,

$T_{k}(\omega)=\cos$ ( $k\cos^{-1}$ ci), $\omega$ $\in[-1,1]$ . (1)

Let $d\omega$ be the Lebesgue measure on $J=[-1,1]$ .

Definition 1. (Perron-Frobenius operator) The Perron-Frobenius operator associated with

the Chebyshev map of degree $k$ , denoted by $P_{T_{k}}$ is defined by the formula

$\int_{J}F(\omega)G(T_{k}(\omega))d\omega=\int_{J}P_{T_{k}}\{F(\omega)\}G(\omega)d\omega$ (2)

for $F\in L^{1}(J,d\omega)$ and $G$ is in bounded almost everywhere measurable functions $L^{\infty}(J,drv)$ .

The inverse of the map $T_{k}$ consists of the following $k$ maps $gi$ : $[$-1, $1] arrow[\cos\frac{(i+1)\pi}{k}$ , $\cos\frac{i\pi}{k}]$

$(i=0,1,2, \cdots, k -1)$ as expressed in [8]:

$g:( \omega)=\cos(\frac{i\pi+\cos^{-1}\{(-1)^{i}\omega\}}{k})$ ,

$i=0,1$ , $\cdots$ , $k$ $-1$ . (3)

Thus $P_{T_{k}}$ can be expressed in the form:

$P_{T_{k}}H( \omega)=\sum_{i=0}^{k-1}|g’\dot{.}(\omega)|H(g\dot{.}(\omega))$ (4)

for $H\in L^{1}(J, d\omega)$ .
Note that anontrivial nonnegative solution of the equation $P_{T_{k}}H=H$ gives the density

function of an absolutely continuous invariant measure for $T_{k}$ . The density function for $T_{k}$ ,

denoted by $f^{*}(\omega)$ , is known to be

$f^{*}( \omega)=\frac{1}{\pi\sqrt{1-\omega^{2}}}$ . (5)

Let $p$ be aprime number. We have

Lemma 1. [7] For aChebyshev polynomial of degree $n(n=1,2, \cdots)$ , the Perron-Frobenius
operator associated with the Chebyshev map of degree $p$ satisfies

$P_{T_{\mathrm{p}}}\{T_{n}(\omega)f^{*}(\omega)\}=\{$

$T_{\frac{n}{\mathrm{p}}}(\omega)f^{*}(\omega)$ for $p|n$

0for $p\parallel n$ .
(6)
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3 Modified Perron-Frobenius Operator Associated wi
Chebyshev Map

To evaluate the mixing property of the Chebyshev maps with respect to the measure
$f^{*}(\omega)d\omega$ , we introduce

Definition 2. (Modified Perron-Frobenius operator) The modified Perron-Frobenius opera-
tor associated with the Chebyshev map of degree $k$ $(k=2,3, \cdots)$ , denoted by $\hat{P}_{T_{k}}$ is defined
by the formula

$\int_{J}F(\omega)G(T_{k}(\omega))f^{*}(\omega)d\omega$

$= \int_{J}\hat{P}_{T_{k}}\{F(\omega)\}G(\omega)f^{*}(\omega)d\omega$ (7)

for F $\in L^{1}(J,d\omega)$ and G $\in \mathrm{L}1\{\mathrm{J}$,du).

We can express $\hat{P}_{T_{k}}$ in the form:

$\hat{P}_{T_{k}}H(\omega)=\frac{1}{k}\dot{.}\sum_{=0}^{k-1}H(g.\cdot(\omega))$. (8)

Note that
$P_{T_{k}}f^{*}(\omega)=f^{*}(\omega)$ (9)

becomes
$\hat{P}_{T_{k}}1=1$ . (10)

Let p be aprime number. From lemma 1and definition 2, we immediately have

Lemma 2. For agiven Chebyshev polynomial of degree $n$ $(n=1,2, \cdots)$ , the modified P-F
operator associated with the Chebyshev map of degree $p$ satisfies

$\hat{P}_{T_{\mathrm{p}}}T_{n}(\omega)=\{$

$T_{\frac{n}{\mathrm{p}}}(\omega)$ for $p|n$

0for $p\parallel n$ .
(10)

The following theorem is already derived in [9].

Theorem 1. Assume that $\tau$ is apiecewise $C^{1}$-map of an interval onto itself which is not
monotone. Let)\in C and $|\lambda|<1$ . Then Ais an eigenvalue of the Perron-Frobenius oper-
ator associated with $\tau$ with infinite multiplicity
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Now let us consider the space $L^{2}(J, f’((\cdot/)$ L|. It follows from le mma 2that the
$L^{2}(J, f’(w)$ dw) is an invariant subspace of $P_{T_{p}}$ . We will restrict $P_{T}$ to the subspace

$p$

$L^{2}(J, f^{\ovalbox{\tt\small REJECT}}’(,.\ovalbox{\tt\small REJECT})d\mathrm{u})$ . axtd we denote it by $P_{T_{p}}|_{L^{\ovalbox{\tt\small REJECT}}}$ We have

$\hat{P}_{T_{p}}|_{L^{2}}1=1$ , (12)

which implies 1is an eigenvalue of $\hat{P}_{T_{\mathrm{p}}}|_{L^{2}}$ . Let us consider the eigenvalues of $\hat{P}_{T_{\mathrm{p}}}|_{L^{2}}$ except

1. Then we have

Theorem 2. Let A $(\in C)$ be an eigenvalue of $\hat{P}_{T_{\mathrm{p}}}|_{L^{2}}$ . Assume A $\neq 1$ , then $|\lambda|<1$ , and it

has infinite multiplicity.

Proof. See Appendix A.

Next, let us consider the space $BV=BV(J)$ of all functions with bounded variation on
$J$ . It follows from (3) and (8) that the $BV$ is an invariant subspace of $\hat{P}\tau_{\mathrm{p}}$ . We will restrict
$\hat{P}_{T_{\mathrm{p}}}$ to the subspace $BV$ , and we denote it by $\hat{P}_{T_{\mathrm{p}}}|_{BV}$ . We have

$\hat{P}_{T_{\mathrm{p}}}|_{BV}1=1$ , (13)

which implies 1is an eigenvalue of $\hat{P}_{T_{\mathrm{p}}}|_{BV}$ . Let us consider the eigenvalues of $\hat{P}_{T_{\mathrm{p}}}|_{BV}$ except

1. Then we have

Theorem 3. Let $\lambda(\in C)$ be an eigenvalue of $\hat{P}_{T_{p}}|_{BV}$ . Assume $\mathrm{A}\neq 1$ , then $| \lambda|\leq\frac{1}{p}$ .

Proof. See Appendix B.

4Mixing Property of Chebyshev Maps

The following theorem is already derived in [10].

Theorem 4. The Chebyshev maps $T_{k}$ are mixing with respect to the measure $f^{*}(\omega)d\omega$ , that

is

$\lim_{narrow\infty}\int_{J}F(\omega)G(T_{k}^{n}(\omega))f^{*}(\omega)d\omega$

$= \int_{J}F(\omega)f^{*}(\omega)d\omega\cdot\int_{J}G(\omega)f^{*}(\omega)d\omega$ (14)

for $F$, $G\in L^{2}(J, f^{*}(\omega)d\omega)$ .

This theorem, however, is not in practical use because there exists some function $F$

which results in (14) converging not uniformly. So we restrict the condition of the function
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F then we get

Theorem 5. Let $p$ be aprime number. Let $F\in BV(J)$ , then we have

$| \int_{J}F(\omega)G(T_{p}^{n}(\omega))f^{*}(\omega)d\omega$

$- \int_{J}F(\omega)f^{*}(\omega)d\omega\cdot\int_{J}G(\omega)f^{*}(\omega)d\omega|$

$\leq\frac{1}{ff^{\iota}}\frac{1}{\sqrt{3}}V_{F}||G||$ (15)

for $G\in L^{2}(J, f^{*}(\omega)d\omega)$ .

Proof. See Appendix C.

5Concluding Remarks
In this note, we consider sequences of real-valued functions of bounded variation of iterates
generated by Chebyshev maps, and evaluate explicitly the rate of mixing of such sequences
by defining the modified Perron-Frobenius operator associated with the Chebyshev maps.
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AProof of Theorem 2

Let G $(\in L^{2}(J, f^{*}(\omega)d\omega))$ be an eigenfunction of $\hat{P}_{T_{\mathrm{p}}}$ corresponding to the eigenvalue $\lambda$ .
The Chebyshev expansion of G has the form

$G( \omega)=g_{0}+\sqrt{2}\sum_{n=1}^{\infty}g_{n}T_{n}(\omega)$ a.e. $\omega\in J$, (16)

where
$g_{0}= \int_{-1}^{1}G(\omega)f^{*}(\omega)d\omega$ , (17)

and

$g_{n}= \sqrt{2}\int_{-1}^{1}T_{\mathrm{n}}(\omega)G(\omega)f^{*}(\omega)d\omega$ ,

$n=1,2$ , $\cdots$ . (18)

We can express G as follows

$G(\omega)=g_{0}$ $+$ $\sqrt{2}\sum_{n=0}^{\infty}g_{p^{n}}T_{p^{n}}(\omega)$

$+$ $\sqrt{2}\sum_{n=0}^{\infty}g_{2p^{n}}T_{2p^{n}}(\omega)+\cdots$

$+$ $\sqrt{2}\sum_{n=0}^{\infty}g_{(p-1)p^{n}}T_{(p-1)p^{n}}(\omega)$
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$+$ $\sqrt{2}\sum g_{(p+1)p^{n}}T_{(p+1)p^{n}}(\omega)+\infty\cdots$

$n=0$

$=g_{0}$ $+$ $\sqrt{2}\sum_{m=1}^{\infty}\sum_{n=0}^{\infty}g_{mp^{n}}T_{mp^{n}}(\omega)$

$P\gamma_{m}$

$\mathrm{a}.\mathrm{e}$ . $\omega$ $\in J$. (19)

From the equation
$\hat{P}_{T_{\mathrm{p}}}G(\omega)=\lambda G(\omega)$ , A $\neq 0$ (20)

and (19), we have

$\mathit{9}0$ $=$ $0$ , (21)
$g_{mp^{n+1}}$ $=$ $\lambda g_{mp^{n}}$ for $m\neq 0$ , $p\parallel m$ . (22)

Hence we have
$g_{mp^{n}}=\lambda^{n}g_{m}$ for $m\neq 0$ , $p\parallel m$ . (23)

Thus the eigenfunction of $\hat{P}_{T_{\mathrm{p}}}$ corresponding to the eigenvalue Acan be written in the
form of

$G( \omega)=\sqrt{2}\sum\infty\sum\lambda^{n}g_{m}T_{mp^{\mathfrak{n}}}(\omega)\infty$ . (24)
$m=1n=0$
$p\gamma m$

Since $G\in L^{2}$ , then
$\lim_{narrow\infty}g_{mp^{n}}=0$ , (25)

and hence $|\lambda|<1$ .
Since the following functions

$\sum_{n=0}^{\infty}\lambda^{n}T_{mp^{n}}(\omega)$ , $m=1,2$ , $\cdots$ , $p\parallel$ $m$ (26)

belongs to the kernel {H; $(\hat{P}_{T_{\mathrm{p}}}-\mathrm{X}\mathrm{I})\mathrm{H}=0\}$ , and thus Ahas infinite multiplicity.

B Proof of Theorem 3
We have

Theorem 6. Let $F(\omega)$ be afunction of bounded variation $\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}-1\leq\omega\leq 1$ , and let $f_{m}$ be
the Chebyshev expansion coefficient of $F$ , then

$f_{m} \leq\frac{\sqrt{2}}{m\pi}V_{F}$ for m $\neq 0$ , (27)

where $V_{F}$ is the total variation of F over [-1, 1].
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Proof. See [11] for example.

Let Abe an eigenvalue of $\hat{P}_{T_{\mathrm{p}}}|_{BV}$ , and suppose $|\lambda|>\underline{1}$ .

Let $G(\in BV(J))$ be the eigenfunction
$\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}p$ to A $(\neq 0)$ . Let $g_{m}(m\neq 0$ ,

$p \int$ $m)$ be the Chebyshev expansion coefficient of $G$ . Then, from (23), we have

$p^{n}|g_{mp^{n}}|=p^{n}|\lambda|^{n}|g_{m}|$ . (28)

Since $p|\lambda|>1$ , for the right hand side of (28), we have

$(p|\lambda|)^{n}|g_{m}|arrow\infty$ (29)

as $narrow\infty$ .
On the contrary, ffom theorem 6, for the left hand side of (28), we have

$p^{n}|g_{mp^{n}}| \leq\frac{\sqrt{2}}{m\pi}V_{G}$ (30)

for any $n(n=1,2, \cdots)$ , which contradicts (29) and hence completes the proof.

C Proof of Theorem 5

From lemma 2, for $G\in L^{2}(J, f^{*}(\omega)d\omega)$ , we have

$\int_{J}F(\omega)G(T_{p}^{n}(\omega))f^{*}(\omega)d\omega$

$= \int_{J}\hat{P}_{T_{\mathrm{p}}}^{n}\{F(\omega)\}G(\omega)f^{*}(\omega)d\omega$. (31)

Thus we get

$\int_{J}F(\omega)G(T_{p}^{n}(\omega))f^{*}(\omega)d\omega$

$=f_{0}g_{0}+ \sum_{m=1}^{\infty}f_{p^{n}m}g_{m}$ , (32)

where $f_{m}$ and $g_{m}(m=0,1,2, \cdots)$ are the Chebyshev expansion coefficients of $F$ and $G$

respectively.
The use of Schwartz’s inequality and theorem 6give

$| \int_{J}F(\omega)G(T_{p}^{n}(\omega))f^{*}(\omega)d\omega$

$- \int_{J}F(\omega)f^{*}(\omega)d\omega\cdot\int_{J}G(\omega)f^{*}(\omega)d\omega|$

$\leq(\sum_{m=1}^{\infty}|f_{p^{n}m}|^{2})^{\frac{1}{2}}(\sum_{m=1}^{\infty}|g_{m}|^{2})^{\frac{1}{2}}$

$\leq\frac{1}{p^{n}}\frac{\sqrt{2}}{\pi}V_{F}||G||(\sum_{m=1}^{\infty}\frac{1}{m^{2}})^{\frac{1}{2}}$ (33)

and the conclusion of theorem 5follows
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