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Abstract: Recently binary or real-valued sequences generated by Chebyshev maps are
proposed as spreading sequences in DS/CDMA systems. In this note, we consider sequences
of real-valued functions of bounded variation, which include binary functions, of iterates
generated by Chebyshev maps, and evaluate the rate of mixing of such sequences using the
Perron-Frobenius operator associated with the Chebyshev maps.

1 Introduction

During the past decade, binary or real-valued sequences generated by one-dimensional
ergodic maps have been proposed for spreading sequences and its statistical properties
in DS/CDMA system have been studied. In such ergodic maps, especially Chebyshev maps
have been intensively studied in the following.

Binary pseudo-random sequences generated by Chebyshev maps, or briefly referred to as
Chebyshev binary sequences, are firstly proposed in [1], and a sufficient condition is derived
for a kind of ergordic maps to generate sequences of i.i.d. (independent and identically
distributed) binary random variables in [2].

Based on the evaluations of correlation functions of so called Chebyshev binary sequences
in [3], correlational properties of such sequences in DS/CDMA system are particularly
examined, and the ones with exponentially decaying auto-correlation are recently proposed
in [4].

On the other hand, some real-valued sequences generated by Chebyshev maps are recent-
ly proposed in [5] as optimum spreading sequences in terms of the AIP (average interference
parameter) defined in [6]. Because these sequences are based on a linear combination of
Chebyshev polynomials, correlational properties of such sequences can be evaluated by using
the N-th order dependency moments (N = 1,2,3,:--) of real-valued trajectory generated
by Chebyshev maps, which are already derived in [7].

In this note, we consider sequences of real-valued functions of bounded variation of
iterates generated by Chebyshev maps. First we define the modified Perron-Frobenius
operator associated with the Chebyshev maps, and examine the spectrum of this operator.
Then we evaluate the mixing property of the Chebyshev maps using this operator, and
explicitly obtain the rate of mixing.
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2 Perron-Frobenius Operator Associated with Cheby-
shev Map | |

Consider the Chebyshev map of degree k (k =2,3,---),
Ti(w) = cos(kcos™'w), w e [-1,1]. | (1)

Let dw be the Lebesgue measure on J = [-1,1].

Definition 1. (Perron-Frobenius operator) The Perron-Frobenius operator associated with
the Chebyshev map of degree k, denoted by Pr, is defined by the formula

| F)G(Tuw)dw = [ o {F()} Gw)do 2)

for F € L'(J,dw) and G is in all bounded almost everywhere measurable functions L (J,dw).

The inverse of the map T} consists of the following k maps g; : [-1,1] — [cos (—Z—+T1-)£, cos %r
(:6=0,1,2,--+,k — 1) as expressed in [8]:
; —1f(_1)
4:(w) = cos (m + cos k{( 1) w}) ’
i=0,1,---,k— 1L (3)
Thus Pr, can be expressed in the form:
k-1
Pr H(w) = Y_ |g:(w)|H (g:(w)) (4)

i=0
for H € L'(J, dw).

Note that a nontrivial nonnegative solution of the equation Pr, H = H gives the density
function of an absolutely continuous invariant measure for Ti. The density function for Tk,
denoted by f*(w), is known to be

f@) = —— 5)
/1 —w?

Let p be a prime number. We have

Lemma 1. [7] For a Chebyshev polynomial of degree n (n = 1,2,---), the Perron-Frobenius
operator associated with the Chebyshev map of degree p satisfies

T3()f'@) forpln

0 for p f n. ©)

Pr,{Ta(w)f*(w)} = {
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3 Modified Perron-Frobenius Operator Associated wi
Chebyshev Map

To evaluate the mixing property of the Chebyshev maps with respect to the measure
J*(w)dw, we introduce

Definition 2. (Modified Perron-Frobenius operator) The modified Perron-Frobenius opera-
tor associated with the Chebyshev map of degree k (k = 2,3, - - ), denoted by Pr, is defined
by the formula

[ F)G(Tw)) £ (w)dw
= [ PrAF ()} G@)f (@)dw | ™

for F € L'(J,dw) and G € L*(J, dw).

We can express Pr, in the form:

k-1
PrH(w) = ¢ 3 H(o(w). ®
Note that
Pr, f*(w) = f*(w) 9)
becomes
Pr1=1. (10)

Let p be a prime number. From lemma 1 and definition 2, we immediately have

Lemma 2. For a given Chebyshev polynomial of degree n (n = 1,2, ---), the modified P-F
operator associated with the Chebyshev map of degree p satisfies

Tz(w) forp|n

0 forp [ n. (D

ISTPT,,(w) = {

The following theorem is already derived in [9].

Theorem 1. Assume that 7 is a piecewise C'-map of an interval onto itself which is not
monotone. Let A € C and [A| < 1. Then X is an eigenvalue of the Perron-Frobenius oper-
ator associated with 7 with infinite multiplicity.
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Now let us consider the space L%(J, f*(w)dw). It follows from lemma 2 that the
L*(J, f*(w)dw) is an invariant subspace of ISTP. We will restrict ISTP to the subspace
L2(J, f*(w)dw). and we denote it by Pr,|;.. We have

Pr|.1=1, (12)

which implies 1 is an eigenvalue of ISTP| ;2- Let us consider the eigenvalues of PT,‘ 2 except
1. Then we have

Theorem 2. Let A (€ C) be an eigenvalue of PTpl 2. Assume A # 1, then [A] < 1, and it
has infinite multiplicity.

Proof. See Appendix A.

Next, let us consider the space BV = BV (J) of all functions with bounded variation on
J. Tt follows from (3) and (8) that the BV is an invariant subspace of ﬁrp. We will restrict
PT,; to the subspace BV, and we denote it by PT,,I pv- We have

PT,,'BVl =1, (13)

which implies 1 is an eigenvalue of ISTPI gy Let us consider the eigenvalues of I3Tp| gy except
1. Then we have

. ~ 1
Theorem 8. Let A (€ C) be an eigenvalue of Pr,|g,. Assume A # 1, then || < —.

P
Proof. See Appendix B.
4 Mixing Property of ChebyShev Maps

The following theorem is already derived in [10].

Theorem 4. The Chebyshev maps T} are mixing with respect to the measure f*(w)dw, that
is

Jim [ F@)G(TEw)f* ) ‘-
- /JF(w)ff(w)dw : /JG(w)ff(w)dw B
for F,G € L2(J, f*(w)dw). |

This theorem, however, is not in practical use because there exists some function F
which results in (14) converging not uniformly. So we restrict the condition of the function
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F, then we get

Theorem 5. Let p be a prime number. Let F'€ BV (J), then we have

|/ PG ) £ @)

- [ Fr@do- [ 6w
11

< E%VF”G“ | (15)

for G € L*(J, f*(w)dw).

Proof. See Appendix C.

5 Concluding Remarks

In this note, we consider sequences of real-valued functions of bounded variation of iterates
generated by Chebyshev maps, and evaluate explicitly the rate of mixing of such sequences
by defining the modified Perron-Frobenius operator associated with the Chebyshev maps.
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A Proof of Theorem 2

Let G (€ L2(J, f*(w)dw)) be an eigenfunction of PT, corresponding to the eigenvalue A.
The Chebyshev expansion of G has the form

Gw)=go+ \/ii gnTh(w) ae. wéeJ, (16)
n=1
where .
go = [ Gw)f W)dw, (an
and

b= V2 [ TG W,
n=12"". (18)

We can express G as follows
Gw)=g + \/_2_2 gpn Tpn (W)
n=0

+ V2 Z Gapn Topn(w) + -+

n=0

+ V2 Z 9-p~L(p-1)p" (w)
n=0
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+ ‘/5 Z g(P+1)p"T(p+1)p" (w) +--
n=0

=g + V2 i igmp"Tm"(w)

m=1 n=0
pfm
ae weJ . (19
From the equation
Pr,Gw) =AG(w), A#0 (20)
and (19), we have
Jo = 0, (21)
Gmprtt = Ampn for m#£0, p [ m. (22)
Hence we have
gmpn = A"gm for m#£0, pfm. (23)

Thus the eigenfunction of ISTp corresponding to the eigenvalue A can be written in the
form of

GWw)=v2 Y 3 XgnTmn (). (24)
;ﬁrlz n=0
Since G € L2, then ,
nl_lg.lo mpn = 0, : (25)

and hence |\| < 1.
Since the following functions

D N Tmpn(w), m=1,2,--, p[m (26)
n=0

belongs to the kernel { H; (ISTP —AM)H = 0}, and thus A has infinite multiplicity.

B Proof of Theorem 3

We have

Theorem 6. Let F(w) be a function of bounded variation over —1 fw<1,and let f, be
the Chebyshev expansion coefficient of F, then

fm < %—%Vp for m#0, (27)

where Vp is the total variation of F over [-1,1].
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Proof. See [11] for example.

~ 1
- Let A be an eigenvalue of Pr,|g,,, and suppose |[A| > —.

Let G (¢ BV(J)) be the eigenfunction corresponding to A'(# 0). Let gm (m # 0,
p [ m) be the Chebyshev expansion coefficient of G. Then, from (23), we have

P"|gmpn| = P*|AI*|gm]- (28)
Since p|A| > 1, for the right hand side of (28), we have
(PIA])*gm| — o0 (29)
as n — oo.
On the contrary, from theorem 6, for the left hand side of (28), we have
n V2 |
P"|gmpn| < E—'R—'VG ‘ ‘ (30)

for any n (n = 1,2, ---), which contradicts (29) and hence completes the proof.

C Proof of Theorem 5
From lemma 2, for G € L?(J, f*(w)dw), we have
| F@)G@ ) f (w)dw

= /J P {F(w)}GW)f* (w)dw. (31)
Thus we get |

[ F@)G@ @) f* (@)de
= fogo + i fonmgm, (32)
m=1 .

where fm and gm (m = 0,1,2,---) are the Chebyshev expansion coefficients of Fand G
respectively.

The use of Schwartz’s inequality and theorem 6 give
[ F@)G@ @) f* w)dw
_ /J F(w)f*(w)dw - f, G(w) f*(w)dw‘

1
) 3 e
S (Z lfp"m|2> ( Igmiz
m=1 1

1
12 = 1)\®
< 1= -
S VrllGl (m§=:1 m2) (33)

and the conclusion of theorem 5 follows.



