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Abstract

Afunction minimization algorithm such that asolution is updated based on derivative

information approximated with sample points is proposed. The algorithm generates sample

points with Gaussian white noise, and approximates derivatives based on stochastic sensitivity

analysis. Unlike standard trust region methods which calculate gradients with $n$ or more
sample points, where $n$ is the number of variables, the proposed algorithm allows the number

of sample points $M$ to be less than $n$ . Furthermore, it ignores small amounts of noise within

atrust region. This paper addresses the following two questions: To what extent does the

derivative approximation become worse when the number of sample points is small? Does the

algorithm converge to agood solution with inexact derivative information when the objective

landscape is noisy? Through intensive numerical experiments using quadratic functions, the

algorithm is shown to be able to approximate derivatives when $M$ is about $n/10$ or more.
The experiments using aformulation of the traveling salesman problem (TSP) shows that

the algorithm can find reasonably good solutions for noisy objective landscapes with inexact

derivatives.

1. Introduction
Optimization problems that seek for minimization (or equivalently maximization) of

an objective function have practical importance in various areas. Once atask is modeled

as an optimization problem, general optimization techniques become applicable; e.g.,

linear programming, gradient methods, etc. One may encounter difficulties, however,

in applying these techniques when the objective function is non-differentiable or it is

defined as aprocedure. The example problem considered in this paper involving such

afunction is aparametric local search for the traveling salesman problem (TSP), $\mathrm{a}$

representative combinatorial optimization problem, in which an objective function of a
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parameter vector is defined as aheuristic procedure. Another example, which has been
studied by the authors [7] but which is not covered in this paper, is amodel involving a
step function. For both cases, the associated objective landscapes are noisy in the sense
that they include many non-differentiable points and many local minima.

In this paper, an unconstrained function minimization algorithm such that asolution
is updated based on derivative approximated by random sampling is proposed for such
noisy landscapes. The assumption of this study is that the number of sample points
may be less than the dimension $n$ of the objective function. Note that standard trust
region methods require $n$ or more sample points (see [1,2,3,4,5] and references therein).
For example, direct search methods $[2,3]$ maintain $n+1$ non-degenerate points within
atrust region, and search methods that use quadratic polynomial interpolation require
$(n+1)(n+2)/2$ non-degenerate points. The questions arising here are:. To what extent does the derivative approximation become worse when the number

of sample points is small?. Does the algorithm converge to agood solution with inexact derivative information
when the objective landscape is noisy?

This paper aims to answer these questions through numerical experiments.
The optimization algorithm proposed in this paper assumes that the objective function

is scaled such that an area formed by the Gaussian distribution of unit variance can be
used as atrust region, and uses stochastic sensitivity analysis to approximate derivatives.
The method is to inject Gaussian white noise into each of the variables in the current
solution, and apply Novikov’s theorem [6] to obtain sensitivities (i.e., gradients) of the
variables.

The paper is organized as follows: In Section 2, the optimization algorithm is described,
and anew simple derivation of Novikov’s theorem is presented. Section 3shows numerical
experiments to answer the first question. In Section 4, the algorithm is applied to the
TSP which has anoisy objective landscape to answer the second question. Finally,
Section 5summarizes the paper.

2. Stochastic gradient method
Consider an unconstrained optimization problem

minimize $f(x)\in \mathrm{R}$

(1)subject to $x\in \mathrm{R}^{n}$ .
Gradient methods iteratively update the current solution x as

x $arrow x+\mu\frac{\delta x}{|\delta x|}$ , $\delta x=-\nabla f(x)$ , (2)
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where $\mu$ is astep width determined by line search, $\delta x$ is adescent direction, and $\nabla f(x)$

is agradient vector defined by

$\nabla f(x)=(\frac{\partial f(x)}{\partial x_{1}},\frac{\partial f(x)}{\partial x_{2}},\ldots,\frac{\partial f(x)}{\partial x_{n}})^{T}$ (3)

To avoid the exact gradient calculation of (3), and to cope with noisy objective land-

scapes, Koda and Okano proposed anoise-based gradient method for artificial neural

network learning [7], and further’ modified the method for function minimization [8].

The algorithm, called stochastic noise reaction (SNR), injects aGaussian white noise

sequence with zero mean and unit variance, $\xi_{i}\in N(0,1)$ , into avariable $x$:as
$x_{i}^{j}=x_{i}+\xi_{i}^{j}$ , (4)

where $\xi_{i}^{j}$ denotes the $j$-th noise in the noise sequence injected into the $i$-th variable.

Each component of aderivative is approximated without explicitly differentiating the

objective function by using

$\langle\frac{\partial f(x)}{\partial x_{}}\rangle=\frac{1}{M}\sum_{j=1}^{M}f(x^{j})\xi_{\dot{1}}^{j}$ , (5)

where $\langle\cdot\rangle$ denotes the expectation operator, and $M$ is aloop count for taking the average.
Note that, in Eq. (5), all the components in the gradient $\nabla f(x)$ , i.e., $\frac{\partial f(x)}{\partial x_{*}}.$ , $i=1,2$ , $\ldots$ , $n$ ,
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are computed at the same time, which means the gradient approximation requires the
objective function to be evaluated $M$ times, so that the dimension $n$ does not explicitly
dominate the computational overhead. The value of $M$ was set to 100 in all of the
numerical experiments here.

In this paper, SNR is used within the algorithm framework described in Fig. 1. A
noise sequence $\xi_{\dot{l}}$ for each variable $x$:is formally generated in Step 6, while, in actual
implementations, all the noise sequences should be generated and normalized in advance
to ensure $\langle\xi_{\dot{l}}\rangle=0$ . In Step 11, the next solution is searched for using line search by
sampling, in which the maximum displacement of the sampling point farthest from the
current solution is 1. When more than two solutions on the line $x+0.01s \frac{\delta x}{w}$ , $s=$
$1$ , 2, $\ldots$ , 100, share the same minimum value, the one with larger value of $s$ is selected
so that the search does not stay within asmall region.

2.1. Novikov’s theorem
Equation (5) relies on the following identity (Novikov’s theorem [6]):

$\langle\frac{\delta H(\xi)}{\delta\xi_{\dot{1}}}\rangle=\langle H(\xi)\xi_{\dot{1}}\rangle$ , (6)

where $H(\xi)$ is an arbitrary function of Gaussian stochastic sequences $\xi_{\dot{1}}$ , $i=1,2$ , $\ldots$ , $n$ ,
and $\lrcorner\delta H\xi 1\delta\xi$ denotes the functional derivative [9]. $\xi_{\dot{l}}$ is aGaussian white noise with zero
mean and unit variance; i.e.,

$\langle\xi_{\dot{1}}\rangle=0$, $\langle\xi_{\dot{l}}^{t}\xi_{j}^{s}\rangle=\delta_{\dot{|}j}\delta_{ts}$ , (7)

where $\delta_{\dot{\iota}j}$ and $\delta_{ts}$ denote the Kronecker delta, and $\xi_{\dot{1}}^{t}$ denotes the $t$-th noise in the noise
sequence injected into the $i$-th variable.

The derivation of the theorem given in [6] is lengthly, but the same result is obtained
using integration by parts as follows:

$\langle\frac{\delta H(\xi)}{\delta\xi}.\cdot\rangle$ $=$ $\int\frac{\delta H(\xi)}{\delta\xi}.\cdot G(\xi)d\xi$

$=$ $- \int H(\xi)\frac{\delta G(\xi)}{\delta\xi}.\cdot d\xi+\int\frac{\delta}{\delta\xi}.\cdot\{H(\xi)G(\xi)\}\not\in$

$=$ $\frac{1}{\sigma_{}^{2}}\int H(\xi)\xi_{\dot{1}}G(\xi)d\xi$

(8)

$=$ $\frac{1}{\sigma^{2}}.\cdot\langle H(\xi)\xi_{\dot{1}}\rangle$ ,

where $H(\xi)$ is areal valued smooth functional with polynomial growth at infinity, and
the Gaussian kernel $G(\xi)$ is defined as

$G( \xi)=\frac{\exp(-\int_{-\infty}+\infty\sum_{\dot{l}}-\epsilon_{2\vec{\sigma}}^{2}ds^{(t)}t)}{\langle\exp(-\int_{-\infty}^{+\infty}\sum_{\dot{1}}\frac{\xi_{*}^{2}(i)}{2\sigma^{2}}dt)\rangle}\cdot.\cdot$. (9)
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Note that $cX_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ 1 is assumed in Eqns. (5) and (6). Instead of using plain integration

by parts formula (8), we may note that the analogous result can be derived using the

integration by parts of the Malliavin calculus ( $\ovalbox{\tt\small REJECT} \mathrm{g}.\mathrm{t}$ see the article by Kohatsu-Higa in

this report).

3. Performance of derivative approximation
Figure 2shows the curve of $f(x)=x^{2}+10\cos(10x)$ and its derivatives approximated

using Novikov’s theorem. The second term of the function, 10 $\cos(10x)$ , is meant to

be noise. The figure shows that the derivative $2x$ is approximated while the noise is

ignored. Note that the finite $\mathrm{d}\mathrm{i}$ fference method is not usable when noise exists. Figure

3shows derivatives of the same function approximated by amethod based on Simulated
Annealing (SA) [10]. Simulated annealing, as well as SNR, is astochastic method, and

is able to escape from local minima; i.e., it can cope with noise. The method used in Fig.

3approximates derivatives such that it performs a10-step random walk from acurrent
solution $x$ to obtain $\tilde{x}$ , and calculates $(f(\tilde{x})-f(x))/(\tilde{x}-x)$ . In the random walk, uphill

moves from $x$ to $\mathrm{x}’$ , $d=f(x’)-f(x)>0$ , are accepted with probability $\exp(-d/T)$ ,

where apseudo temperature parameter $T$ is set to $-1.0/\log(0.5)$ . The figure shows

the SA-based method can ignore the noise and approximate derivatives as well as the

method using Novikov’s theorem. (This is only true for objective functions having few
dimensions.)

Figure 4shows the maximum, the average, and the minimum values of inner angles

between approximated derivatives and exact values for the $n$ dimensional quadratic func-

thon $f(x)=(1/n) \sum_{\dot{*}=1}^{n}x_{i}^{2}$ at $x:=10.0$ over 100 trials. The figure shows the angles are
less than 45’ on the average when $n<M$ , i.e., the number of sample points (length of

the noise sequence) $M=1\mathrm{O}\mathrm{O}$ is greater than the dimension $n$ , and they approach 90’ as
$n$ increases. Note that random vectors may have values greater than $90^{\mathrm{o}}$ (Fig. 7), and

the result in Fig. 4is significantly better than random vectors.
Figure 5shows the same plot as in Fig. 4but using the method based on SA with a

100 step random walk. The figure shows the method fails to approximate the derivatives

when $n>10$ , which is less than the number of random walk steps. This implies that

SA’s performance is not acceptable when the dimension is high, and, given the same
number of sample points and random walk steps, the derivative approximation using

Novikov’s theorem performs better than SA. Figure 6shows the same plot as in Fig.

4using amethod based on the direct search method $[2,3]$ , in which $M=1\mathrm{O}\mathrm{O}$ points

are sampled using Gaussian white noise, and the gradient direction is approximated by

$x_{\max}-x_{ave}$ with the maximum point $x_{\max}$ and their average $x_{ave}$ . The performance of
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Figure 2. Derivative aPProximation for
aone- imensional quadratic function
with noise using Novikov’s theorem.
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Figure 4. Derivative approximation for a
multi-dimensional quadratic function
using Novikov’s theorem.

$\hat{\circ \mathrm{P}\xi}$

$\check{\mathrm{a}>\mathrm{g}}$

$\epsilon \mathrm{x}\varpi\Phi$

$\frac{arrow\Phi}{5\otimes}e\in$

Figure 6. Derivative approximation for a
multi-dimensional quadratic function
using adirect search method.
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Figure 3. Derivative approximation for
a one-dimensional quadratic function
with noise using simulated annealing.
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Figure 5. Derivative approximation for a
multi-dimensional quadratic function
using simulated annealing.
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Figure 7. Difference between derivatives of
amulti-dimensional quadratic func-
tion and random vectors
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this method is similar to but not better than one using Novikov’s theorem (Fig. 4).

The numerical experiments in this section show that when the number of sample points

generated at each iteration is less than $n$ , or when the objective landscape is noisy, the

derivative approximation using Novikov’s theorem is areasonable choice. Adrawback

of this algorithm, however, is that it requires generating all the sample points at each

iteration, while other trust region methods allow retaining the sample points within a
trust region and reusing them. To overcome this drawback, new stochastic sensitivity

analysis techniques should be developed.

4. Application to combinatorial optimization
In this section, aTSP formulation based on an addition heuristic is proposed, and

SNR is applied to it. The formulation involves aprocedure, so that the derivative is not

available. Moreover, no subgradient for this formulation has yet been identified.

4.1. The traveling salesman problem

The traveling salesman problem (TSP) is arepresentative $\mathrm{N}\mathrm{P}$-hard combinatorial op-

timization problem, and is known to have awide range of practical applications. In the

TSP, aset of vertices $V=\{1,2, \ldots, |V|\}$ and adistance between each pair of vertices $i$

and $j$ , $d_{ij}$ , are given, and the problem is to find an ordering $\pi$ of vertices that minimizes

atour length defined by

$h( \pi)=\sum_{\dot{l}=1}^{|V|}d_{\pi(:),\pi(:+1)}$ , (10)

where the index of $\pi$ is defined modulo $|V|$ so that vertex $\pi(|V|)$ is adjacent in the tour to

both $\pi(|V|-1)$ and $\pi(1)$ . Note that here the geometric TSP is assumed, which means the

vertices are mapped on aplane, and the distance is Euclidean. The objective function

of the TSP, i.e., (10), takes adiscrete vector $\pi$ , and thus gradient methods cannot be

applied directly. One of the best known heuristics for the TSP is the $k$-opt heuristic by

Lin and Kernighan (LK) [11] that produces tours whose lengths are 1to 2percent in

excess of optimal. LK is used for comparison in the numerical experiments in Subsection
4.4.

4.2. The addition heuristic

The addition heuristic, starting from asubtour consisting of asingle vertex, inserts

vertices one by one into the place in the subtour that least increases the tour length. An

ordering of vertices, $a(i)$ , $i=1,2$ , $\ldots$ , $|V|$ , to insert into the subtour is called an addition
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(a) (b) (c)
Figure 8. An example of the insertion procedure in the addition heuristic, (a) Asubtour. The next

vertex to be inserted into the subtour is 9. (b) Candidates for insertion positions $-(1,7)$ , $(7, 6)$ ,
$(6, 8)$ , and $(8, 5)$ -are identified, (c) Vertex 9is inserted between vertices 6and 8.

sequence. The offline addition heuristic, to which $a$ is given in advance, is defined as
follows:

Offline addition heuristic $AH(a)$

1. Let $\mathrm{a}(1)$ be asubtour consisting of asingle vertex.
2. For $i=2,3$, $\ldots$ , $|V|$ do begin
3. Let $s$ be the nearest vertex in the subtour from $a(i)$ (Fig. 8(a)).
4. Let $W(s, a(i))$ be aset of vertices in the subtour inside the circle of

radius $2d_{s,a(:)}$ centered at $a(i)$ (Fig. 8(b)).
5. Find the place in the subtour, either before or after $t$ $\in$ $W(s, a(i))$ ,

that least increases the tour length when $a(i)$ is inserted into the
place (Fig. 8(c)).

6. Cut the edge found in Step 5, and insert $a(i)$ at that location.
7. end;
8. Output $\pi(i)$ , $i$ $=$ 1, 2, $\ldots$ , $|V|$ , the ordering of vertices in the resulting

tour.
It is not known that for every TSP instance there always exists at least one addition
sequence with which $AH$ finds an optimal solution, however, we conjecture it is true
for the Euclidean TSP. (When the search radius used in Step 4is $d_{s,a(:)}$ , one can find a
counter example.) In $AH$, local changes in the input addition sequence do not greatly
change the resulting tour. For example, when asubtour consists of $|V|-2$ vertices,
insertions of $a(|V|-1)$ and $a(|V|)$ into the subtour can be performed independently in
most cases. Overall positions (or priorities) of the vertices in $a$ , on the other hand, do
affect the quality of the resulting tour. Based on this observation, we conjecture that
agood tour can be obtained if key vertices which characterize the optimal tour have
higher priorities in the addition sequence.
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Figure 9. Convergence behavior of SNR for the TSP.

4.3. Addition heuristic-based objective function

The addition heuristic $AH(a)$ described in the last subsection cannot be used directly

in gradient methods because it requires adiscrete vector $a$ . To relax the discrete property,

an $n$-dimensional real vector $x$ is introduced where $n=|V|$ . Each component $x_{i}$ specifies

the priority of acorresponding vertex $i$ in an addition sequence; i.e., an addition sequence

is generated by sorting $x$:in decreasing order so that $x_{a(i)}\geq x_{a(:+1)}$ . Then, the addition

heuristic-based formulation is defined as follows:

$\mathrm{f}(\mathrm{x})=h$ ($AH$ (decreasingorder(x))), (11)

where decreasingorder(x) maps the priority vector $x$ to an addition sequence $a$ , $AH(a)$

generates an ordering $\pi$ by using the addition heuristic, and $\mathrm{h}(\mathrm{n})$ computes the corre-
sponding tour length. Note that the objective function of this formulation is normally

defined as asubroutine in acomputer program.

4.4. Numerical experiments

SNR was applied to arandom instance with $|V|=1\mathrm{O}\mathrm{O}\mathrm{O}$ on aunit square. The initial

solution $x_{i}^{0}$ was set to 0, the number of iterations was set to $N=1\mathrm{O}\mathrm{O}\mathrm{O}$ , and no terminal

condition was set. Figure 9shows the convergence behavior where the horizontal axis

shows iterations, and the vertical axis shows the qualities of solutions as percentage of

those obtained by $\mathrm{L}\mathrm{K}$ . It is observed that the solution goes up and down, and gradually

converges to alocal minimum solution whose quality is 99.5% of the LK value.

SNR was also applied to 50 benchmark instances from TSPLIB [12], whose metric is

Euclidean and whose optimal solutions are known. The sizes $n$ of the instances range

over 51 to 1000. The search was terminated in Step 14 when the best solution $x^{best}$ was
not updated during 100 consecutive iterations. The results obtained by SNR and LK

are shown in Table I. The table shows that the results obtained by SNR have qualities
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TABLE I

APPLICATION TO TSPLIB INSTANCES
(Tour LENGTHS ARE EXPRESSED AS PERCENTAGES $1\mathrm{N}$ excess OF THE OPTIMAL values)

TSPLIB S$\mathrm{N}\mathrm{R}$ LK bier127 100.67 102.87 pr264 $102.5\dot{2}$ 104.45
$\overline{\mathrm{e}\mathrm{i}\mathrm{l}51}$100.23101.41 $\mathrm{c}\mathrm{h}\mathrm{l}30$ 100.33 101.65 a280 101.40 101.51
berlin52 100.00 100.00 pr136 100.41 100.15 pr299 100.75 101.60
st70 100.59 101.04 $\mathrm{p}\mathrm{r}\mathrm{l}44$ 101.29 100.09 Iin318 101.97 101.35
ei176 101.67 100.19 ch150 100.55 100.25 Iinhp318 103.07 103.03
pr76 100.10 100.86 $\mathrm{k}\mathrm{r}\mathrm{o}\mathrm{A}\mathrm{l}50$ 100.16 100.96 rd400 102.74 102.66
rat99 100.50 101.16 kr0B150 100.08 100.92 f1417 100.76 101.70
kr0AlOO 100.05 100.00 pr152 100.18 100.84 $\mathrm{p}\mathrm{r}439$ 105.45 100.82
kr0BlOO 101.01 101.91 u159 101.10 100.00 pcb442 102.39 102.57
kr0ClOO 100.50 104.08 rat195 102.54 101.38 d493 104.93 102.31
kr0DlOO 100.32 101.61 d198 100.30 100.74 u574 101.12 102.11
kr0ElOO 100.42 100.17 kr0A200 100.96 103.97 rat575 102.63 102.51
rdlOO 100.43 100.00 $\mathrm{k}\mathrm{r}\mathrm{o}\mathrm{B}200$ 100.18 102.63 $\mathrm{p}654$ 103.48 102.59
eillOl 100.79 101.27 pr226 100.30 100.05 d657 101.78 102.41
lin105 100.00 104.92 ts225 103.74 100.25 u724 104.59 103.22
pr107 100.00 100.30 tsp225 102.66 100.08 rat783 107.11 102.42
pr124 100.00 100.23 gi1262 100.76 102.61 dsjlOOO 105.27 103.62

$\overline{\underline{\mathrm{A}\mathrm{v}\mathrm{e}.}}$101.50101.59

comparable to those found by LK, and that SNR converges to reasonably good solutions
even when n $>M$ .

5. Conclusion
Anew function minimization algorithm called SNR was proposed and evaluated with

quadratic functions and an objective function for anew TSP formulation based on para-
metric local search. The proposed algorithm is classified as atrust region method, where
derivatives are approximated with sample points around acurrent solution, and atrust
region is defined as aGaussian distribution of unit variance. Aunique property of the
algorithm is that it allows the number of sample points to be smaller than the number
of variables.

Through intensive numerical experiments, it has been shown that the described alg0-
rithm, SNR, has the following characteristics:. It can approximate derivatives with fewer sample points than the dimension of the

objective function
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\yen It can converge to reasonably good solutions with inexact derivative information even

when the objective landscape is noisy.
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