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ABSTRACT
Let $\pi(x)$ be a density function proportional to $exp-U(x)$ in $R^{d}$ . The following

diffusion $X(t)$ is often used to sample from $\pi(x)$ .

$dX(t)=-\nabla U(X(t))dt+\sqrt{2}dW(t)$ , $X(0)=x_{0}$ .
To accelerate the convergence, one may consider the following family of diffusions
with $\pi(x)$ as the equilibrium distribution.

$dX(t)=(-\nabla U(X(t)+C(X(t)))dt+\sqrt{2}dW(t), X(0)=x_{0}$ .
Let $L_{c}$ be the corresponding infinitesimal generator. The following criterion is used
to describe the convergence rate.

$\lambda(C)=$ {real part of $\mu:\mu$ is in the spectrum of $L_{C},\mu$ is not zero }.
The smaller the $\lambda(C)$ is the better the convergence rate. Adding an extra drift $\mathrm{C}(\mathrm{x})$

will accelerate the convergence except in some situation that no improvement can
be made. Related problems are also discussed.

1Introduction
High dimensional probability distributions appear ffequently in applications. To
sample from these distributions directly is not feasible in practice. One has to
resort to approximations. AMarkov process with the underlying distribution as its
equilibrium could be used for the approximation. How good the approximation is
depends on the comparison criterion. And regarding aMarkov process as some sort
of conceptual algorithm is useful in the theoretical study as well as in applications.

The underlying distribution $\pi$ is assumed to have adensity proportional to
$\exp-U(x)$ with some smooth condition on $U$ . The following diffusion is used com-
momly for sampling ffom $\pi$ ,

$dX(t)=-\nabla U(X(t))dt+\sqrt{2}dW(t)$ , $X(0)=x_{0}$ , (1)

where $W(t)$ is the Brownian motion in $R^{d}$ .
For using diffusions to sample underlying distributions in real applications, one

may consult [Grenander and Miller 1994], [Miller, Srivastava and Grenander 1995],
[Srivastava 1996] and references therein.

If adiffusion is regarded as atheoretical algorithm, then it is natural to consider
a family of diffusions (algorithms). And within that family one may try to do the
comparison and even tries to find an optimal one
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Afamily of diffusions of the following form is considered:

$dX(t)=-\nabla U(X(t))dt+C(X(t))dt+\sqrt{2}dW(t)$ , $X(0)=x_{0}$ . (2)

Under suitable conditions on $C(x)$ , $\pi$ is their common equilibrium. An specific
example for $C(X)$ is $\mathrm{d}\mathrm{i}\mathrm{v}(C(X)\exp-U(x))=0$ and there is no explosion. We are
interested in the convergence rate of the process, with different choices of $C(X)$ , to

the equilibrium.
The Gaussian diffusion has some satisfactory answers [Hwang, Hwang-Ma and

Sheu 1993]. Once beyond the Gaussian case, the situation is more complicated
even for the very definition of convergence rate. And the related problems are very
challenging.

Let $L_{C}$ denote the infinitesimal generator of $X(t)$ and for $C=0$ , let $L=L\circ\cdot$

Let $\mathrm{T}(\mathrm{t})=e^{tL_{C}}$ denote the corresponding semigroup,

$T(t)f(x)=E_{x}f(X(t))= \int p(t, x, y)f(y)dy$ ,

where $p(t, x, y)$ is the transition density. Note that the index $C$ is suppressed from
$T(t)$ for the sake of brevity.

Now we start to sketch the problem under consideration.
Since $E_{x}f(X(t))arrow\pi(f)$ , it is reasonable to consider the average case formula-

tion, i.e. averaging over the starting point $x$ :

$\int(E_{x}f(X(t))-\pi(f))^{2}\pi(x)dx=||T(t)f-\pi(f)||^{2}\leq \mathrm{c}||f||^{2}e^{2\lambda t}$ , (3)

where $||$ $||$ is the norm in $L^{2}(\pi)$ .
Now consider the worst-case analysis over $f$ , then the spectral radius of $T(1)$ in

the space $\{f\in L^{2}(\pi), \pi(f)=0\}$ is an indicator for the convergence rate of diffusions.
Furthermore the weak spectral mapping theorem holds between $L_{C}$ and $d^{L_{C}}$ [Nagel
1986]. Hence,

$\lambda(C)=$ {real part of $\mu$ : $\mu$ in the spectrum of $Lc$ , $\mu\neq 0$ } $(4)$

is agood candidate to serve as acriterion for the comparison of the convergence
rates.

The main result is $\lambda(C)\leq\lambda(0)$ and the equality holds in some rare situation
which is characterized completely. In other words by adding an extra drift will
accelerate the convergence.

The results are stated in Section 2. The proofs may be found in the forthcoming
paper “Accelerating diffusions” by Chii-Ruey Hwang, Shu-Yin Hwang-Ma, Shuenn-
Jyi Sheu. Section 3is for the related problems and discussions
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2Results
We assume that

C and $\nabla U$ are in $L_{loc}^{2}(\pi)$ . C is in $L^{1}(\pi)$ . For f $\in o_{0}e$ , $\int(C$ . $\nabla f)\pi=0$ .

Then there is no explosion and $\pi$ is the equilibrium distribution of (2) (Stannat
1999). Note that for f $\in T_{0}$ ,

Lf $=-\nabla U$ . $\nabla f+\Delta f$ and $L_{C}f=Lf+C$ . $\nabla f$ .

Intuitively $L_{C}$ is aperturbation of asymmetric operator $L$ by an anti-symmetric
operator $C$ . V. And we are interested in how the spectrum changes. The spaces
considered are real vector spaces of real functions. However for spectral analysis,
one has to consider the complex vector spaces. We will make the distinction when
it is necessary.

Moreover we assume that

$1/2|\nabla U(x)|^{2}-\Delta U(x)arrow\infty$ as |x $|arrow\infty$ .

Lemmal.(Reed and Simmon $1978,\mathrm{p}.249$)
Under the above assumptions, $L$ has compact resolvents and moreover it has purely
discrete spectrum and acomplete orthonormal base consisting of eigenfunctions.

Define
$\epsilon^{0}(f, g)=\int(\nabla f\cdot\nabla g)\pi$ , $f,g\in o_{0}e$ .

$\epsilon^{0}$ is closable in $L^{2}(\pi)$ . Let $D(\cdot)$ denotes “the domain of.

Lemma2. (Stannat $1999,\mathrm{p}.124$ )
Let f $\in D(L_{C})$ , then

f $\in D(\epsilon^{0})$ and $\epsilon^{0}(f, f)\leq-\int(L_{C}f)f\pi$ .

Lemma3.
$L_{c}$ does not have continuous spectrum
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Lemma4.
If there exists asequence of eigenvalues {an $+ib_{n}$ } of $L_{C}$ such that

$a_{n}<\lambda(0)$ , $a_{n}arrow\lambda(0)$ , $b_{n}arrow \mathrm{o}\mathrm{o}$ (or $b_{n}arrow-\infty$),

then $\lambda(0)$ is the real part of an eigenvalue of $L_{C}$ . The same assertion holds for the

residual spectrum.

Lemma5.
If Ais the real part of an eigenvalue (or an element in the residual spectrum) of $L_{c}$ ,

then A $\leq\lambda(0)$ . Equality holds if and only if $C\cdot\nabla$ maps anonzero subspace of the

eigenspace with eigenvalue $\lambda(0)$ of $L$ into itself.

Theorem.
The diffusion (1) with the gradient drift has the worst convergence rate. By adding

an extra drift $C$ , the diffusion (2) does accelerate the convergence to the equilibrium
$\pi$ except in the case decsribed in Lemma5 that no improvement can be made.

3Discussions and Related Problems

The main theorem gives only ageneral and qualitative answer. It does not shed any
light on how the rate depends on $C$ . Each $C$ corresponds to adiffusion (algorithm).

Then what is the best algorithm within acertain family? E.g. let $\mathrm{G}$ and $\mathrm{S}$ denote

the family of $C$ satisfying general conditions described in the previous section and
$C=S(\nabla U)$ for any antisymmetric matrix $S$ respectively. And we are interested in

1) $\inf_{C}\lambda(C)$ , $C\in \mathrm{G}$ .
2) $\inf_{C}\lambda(C)$ , $C\in \mathrm{S}$ .

For 1) we even do not know if $\inf_{C}\lambda(C)\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{s}-\infty$ . 2) is open in general. For the

Gaussian case 2) has asatisfactory answer, the optimal structure is known [Hwang,

Hwang-Ma, Sheu 1993]. If an independent diffusion is added to the original one to

form a $d+1$ dimensional diffusion and consider the original $d$ dimensional projection
of the corresponding optimal $d+1$ dimensional diffusion, then the projection is still
Gaussian and the convergence rate can be speeded up to infinity theoretically. This is
closely related to the Swensen-and-Wang algorithm in spirit. Alot is still unknown.

Basically the above formulation is to find the best ” spectral gap” in a family of
differential operators. On compact Riemannian manifolds, we may consider similar
problems. Here is ageneric case: on two dimensional torus consider
3) $\inf_{C}\lambda(C)$ , $L_{C}=\triangle+c\cdot\nabla$ , $C$ is divergence free.
Again, is this quantity $-\infty$?

From amore probabilistic point of view we consider

$[$ $|p(t, x, y)-\pi(y)|dy\leq M(x)e^{\rho t}$ .
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Note that
$\int|p(t, x, y)-\pi(y)|dy=2\sup_{A}(P(t, x, A)-\pi(A))$ ,

which is twice the variational norm between the transition probability and the equi-
librium. This is the worse-case analysis of the difference of those two probabilities on
sets. $M(x)\in L^{1}(\pi)$ means averaging over the initials. Let $\rho(C)$ denote the infimum
over all $\rho’ \mathrm{s}$ . How do we compare $\rho(C)$ and $\lambda(C)$?Is there any inconsistency for
these two comparison criteria?

One may consider the dependence of the convergence rate on the initial point.
In the Ornstein-Uhlenbeck processes, i.e.2), if the mean is known, say mean 0, then
the process starting at 0has amuch faster convergence. Now an essential question
is: how to use the known information to choose the process? E. $\mathrm{g}$ . the mean and
covariance or some eigenfunctions of the corresponding operators are known.

The formulation of afixed self-adjoint operator perturbed by afamily of anti-
symmetric operators, can be considered as asort of dual problem of stability of linear
system [Bellman 1960, KransoseFskij et a11989]. The continuous time approach for
sampling shares some similar spirit with the works of [Chu 1992, 1995, Chu and
Driessel 1990] in numerical analysis. All of these deserve further investigation.

One may consider other criteria. We remark that in formula (3), if the constant
is taken to be one, then the rate depends only on the behavior around time 0and
remains the same for different $C$ ’s [Chen 1992].
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