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Abstract –In order to create formal tools for designing efficient optimization algorithms, a
new formal model of molecular computing with aparallel mechanism for optimization is
proposed and its corresponding computability, which is equivalent to aTuring machine
and schemes toward global optimum are discussed.
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1. Introduction

From the viewpoint of solving optimization problems using parallel methods,
biologically inspired, unconventional computing methods have received great attention,
owing to the advantages of living systems such as their adaptation, self-0rganization,
evolvability (which here refers to akind of mechanism that enables the living system to
self-adjust its structure). For example, in DNA computing, massively parallel NP problem
solving processes are implemented by the self-assembly of DNA molecules. The following
three characteristics of biological mechanisms motivate us to further explore molecular
computing approaches in order to solve optimization problems using parallel methods:
(1) The mechanism of signal molecules for communication inside cells implies akind of
parallel signal processing principle.
(2) The biological pathways for signal transduction in cells can be formalized as akind of
hypergraph in terms of theoretical computer science.
(3) The living system has aperfect self-regulation structure for energy m而而 zation. The
complexity increases greatly when the interactions of pathways are carried out. This shows
us that we can embed the mechanism of complexity increases into optimum algorithms.

The core of our idea is to operate on large-scale molecule objects in parallel and
efficiently towards the output that we design in optimization, only within the robust shell
of the cells, and to carry out computation by controlled kinase-guided biochemical
reactions in cells (here we select RhO-GTPases and related signaling pathways in cells).
This proposal is inspired by Rho family GTPases[l] and the related functional information
processing mechanism in signaling pathways and cell communications. Here, the
computing reflected in the forms of the pathways’ representation, is carried out by kinases
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enzymes and functional-proteins in cells and controlled by the internal mechanism of cells
in situ. Inputs and outputs of this computing are defined as asubset of the pathways, i.e.,
the subset of hypergraphs or part of pathways. The reasons for selecting pathways in cells
are briefly summarized as:
(1) In essence, cells are excellent natural and all-round latest-tubes” made by nature, which
provide afunctional and powerful frame for acell communication environment in an “in-
situ “way;
(2) To employ pathways as acandidate pool (population) for combinatorial solutions can
adaptively increase the complexity of NP-problem-solving processes themselves;
(3) One of the latest advances in cell signaling systems in cell molecular biology is the
discovery of the signal transduction mechanism of pathways of Rho family GTPases[l],
that plays akey role in cell communication. As direct controllers that regulate the signaling
pathway, the RhO-GTPase and related signaling mechanism in cells are good examples in
the real world for us to study and then to use in designing an optimization algorithm.

We have been studying akinase computing paradigm$[2,3]$ , which was initiated by
us, in aspects such as:
(1) Computability that equals to aTuring machine;
(2) Anon-Turing model of computing that is related to the concept of the super-Turing

machine;
(3) Arobust structure for controlling pathways in kinase computing;
(4) Schemes for large-scale NP problem solving;
(5) Algorithmic and logic units of kinase computing;
(6) The relationship between kinase computing and artificial life (algorithmic chemistry).

2. Formalization of Kinase Computing

In order to conduct theoretical analysis for optimization schemes by molecular
computing with abiological medium of RhO-GTPases, we have worked out aformal
description for the underlying mechanisms. Through formalization we have proven that it
has Turing computability, which is necessary to ensure that asound theoretical foundation
is available for any concrete algorithms. This model can be formalized as the following
construct:

cells $=<\mathrm{V}$, $\mathrm{T}$, $\mathrm{D}$, $\mathrm{V}’$, $\mathrm{E}$, $\mathrm{Y}$, $\mathrm{Z}$, $\mathrm{P}\mathrm{T}\mathrm{s}$ , $\mathrm{Q}>$

where

V–the alphabet set;

T–the terminal set and $\mathrm{T}\subset \mathrm{V}$ ;

D–the set of {0, 1};

$\mathrm{V}’-$-the set of vertexes;

E–the set of edges;
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Y- the set of hypergraphs $<\mathrm{H}\mathrm{E}$ , $\mathrm{V}’>$

in which HE is the set of hyperedges in $\mathrm{Y}$

and the corresponding HR (hyperedge replacement)
and VR (vertex replacement) are defined based on HE;

Z–the set of local concentration and $\mathrm{Z}\subset \mathrm{V}’$ ;

PTs–the set of pathways– the directed graphs that have inputs and outputs in $\mathrm{V}$ and
contain hyperedges in HE with interactions that fall into HE;

It is defined as:
[pathway] $::=[\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{w}\mathrm{a}\mathrm{y}]$

$\mathrm{U}$ [single-hyperedge with two vertexes]

under the operation of $\mathrm{Q}$ ,

$\mathrm{Q}$ -the set of operators for operations on hypergraphs in HE from $\mathrm{V}$ and $\mathrm{E}$,
i.e., the objects in $\mathrm{P}\mathrm{T}\mathrm{s}$ ;

$\mathrm{Q}=$ {Ql, Q2, $\mathrm{Q}3$ , Q4}.

The operation processes carried out by the operator set of $\mathrm{Q}$ is formalized as four rules in
terms of graph rewriting on hypergraphs:

(1) For Ql (the rule of “interaction”):

$\alpha->\chi$ , $\beta->6$ , $\epsilon->\phi$ , $\ldots$ , $\gamma->\eta$

where a,%, $\beta,6$ , $\epsilon$ , $\phi$ , $\ldots$ , $\gamma$ , $\eta$ refer to pathways as we defined in $\mathrm{P}\mathrm{T}\mathrm{s}$ .

(2) For Q2 (the rule of “feedback-making”):

$\varphi->\kappa$ , $\lambda->\mu$

where $\varphi$ , $\kappa$, $\lambda$ , $\mu$ refer to pathways and $\varphi=\mu$ , $\kappa\neq\lambda$ .

(3) For Q3 (\prime\prime addition of new pathways”)

$\mathrm{v}->\pi\Theta$

where $\mathrm{v}$ , $\pi$ and $\Theta$ refer to pathways.

(4) For Q4 (deletion):

$\mathrm{p}->0$

where $\mathrm{p}$ , ct refer to pathways.

So from the above model we can derive the following writing on hypergraphs:
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(1) PTs $(\mathrm{G}\mathrm{h})->\mathrm{P}\mathrm{T}\mathrm{s}$ (Gh’) s.t. rewriting on hypergraphs by Q,

(2) $\mathrm{G}\mathrm{h}’->\mathrm{G}\mathrm{h}$
”’ s.t. rewriting on hypergraphs by Q,

where Gh, Gh’, Gh” and Gh”’ refer to hypergraphs in Y and rewriting is carried out through
executing Q operators.

In the context of biological computing, we define:

$\mathrm{V}$ -used for symbolic representation for all of the chemicals in cells,
e.g., the name of the reactants in biochemical reactions,
which lead to signaling pathways where RhO-GTPases are involved;

D -introduced for digital denotation in tapes of equivalent Turing-machines;

Z -the chemicals in cells;

and

D -the measurement decided by the threshold quantity represented by symbols,
which belong to the set of V.

3. Computability

By imitating biological processes of the information processing mechanism for
biochemical signaling activities activated by Rho GTPases in cells, the result of a
corresponding Turing-machine can be obtained for the string, e.g. “10101111111\prime\prime .

The $\mathrm{b}\mathrm{i}\mathrm{o}$-chemical processes from the RhO-GTPases are equivalent to this computation in
the abstract meaning of computers.
In essence, the core of our work is to convert the pathways defined here – akind of
special directed graphs with constraints -into strings with special representation.
Relevant logical constraints for graphs should also be taken into consideration. All of the
constraints are reflected in the rules of our formal system where the string representation
from “pathways” is defined.
For the string representation of the pathway, we have

Gs $=\mathrm{f}_{1\mathrm{s}}$ (Pathi), $\mathrm{P}\mathrm{a}\mathrm{t}\mathrm{h}_{\mathrm{i}}\in \mathrm{P}\mathrm{T}\mathrm{s}$ and i $=0,1,\ldots$

and

Gs $=\mathrm{f}_{1\mathrm{s}}$ ($\mathrm{f}_{1\mathrm{s}}^{1}$ (Gs)),

where Gs is aGodel number and $\mathrm{P}\mathrm{a}\mathrm{t}\mathrm{h}_{\mathrm{i}}$ is the string representation for the pathways and the
explanation is given below. Uniqueness is thus obtained (injective mapping) and the input$\mathrm{s}$
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and outputs of pathways are never repeated as the same in our domains or in the set of all
the objects. The resulting string takes the form of

“input-Vs $+\mathrm{E}\mathrm{s}+\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$-Vs”,

e.g.

$|\mathrm{E}\mathrm{O}\mathrm{O}$ EO1 ... EOm $||\mathrm{E}\mathrm{h}\mathrm{O},\mathrm{E}\mathrm{h}\mathrm{l},\mathrm{E}\mathrm{h}2,\mathrm{E}\mathrm{h}3,\mathrm{E}\mathrm{h}4\ldots||$ $\mathrm{E}\mathrm{n}\mathrm{O}$ Enl... Enl $|$ ,

i.e.

Vs $0|$ Es 01 $|$ Vs 1with length at least 3,

where

Gs is with the length of all the strings corresponding to sub-hypergraphs.

Structural features show that the above representation is consistent with the notation used
in string rewriting. Rewriting the above strings can be represented as acorresponding
mapping in the domain of the G\"odel number as

$\mathrm{N}arrow \mathrm{N}$.

It is obvious that Godel number $\neq 0$ means that pathways exist and that Godel number $=0$

means that pathways have the meaning of non-existence, which shows that all of the Os in
the Godel number’s representation and the symbol of the empty $\lambda$ in the string have the
same meaning.
Furthermore, uniqueness is guaranteed and the bijection function (mapping) for the
following also exists:

$\mathrm{G}\mathrm{s}rightarrow \mathrm{G}\mathrm{s}’$

Therefore, the whole set of all of the pathways can be covered in the operation carried out
by operators in the $\mathrm{Q}$ set. All of the elements that we got from the Godel numbering fall
into the set described by the predicates of Q. The predicate set includes the predicates of
$\mathrm{Q}1\sim 4$ which correspond to the operations for handling the replacement of components in
the pathways. Here the term “replacement” for input, output, middle, and related
representations is assigned meanings in graph rewriting according to the “replacement” for
the updated two measures (i.e., Godel numbers before and after rewriting in the left and
right side of the rules). The mapping from $\mathrm{N}$ into $\mathrm{N}$ can be obtained by Godelization after
the pathways’ operations executed to all of the objects in the formal system we are
discussing.

With respect to the computability of the model mentioned above, we have the following.

Proposition: Our proposed model of kinase computing is Turing-computable
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4. Outline of the Basic Algorithm

Here we present the scheme for optimization in terms of kinase computing. The
two major points are biologically inspired:
(1) The heterogeneous architecture of biological molecular computers:
(2) The internal structure defined as pathways related to hypergraphs;
We find that the merits of kinase computing for designing optimization algorithms come
from its parallelism, adaptivity, evolvability and emergeability. The parallelism that we
employ is our work on “self-catalysis”, which can be regarded as our effort towards
exploring new theories related to aut0-catalysis. The adaptive mechanism in kinase
computing mainly contributes to the self-adjusting of the parameters in the pathways. The
increasing complexity dynamically related to the internal structure is our consideration in
the area of behavior as related to evolvability. To evollve the internal mechanism to reach
the order of complexity that matches the problem to be solved, is guaranteed by the
population arrangement and evolutionary processes basically in non-parametric
programming, owing to the fact that the population size is not limited in advance.

The basic algorithm of kinase computing for optimization is given as follows:
Step 1: Initialize and set the population with hypergraphs and pathways.

Here the candidates for searching for potential solutions are defined as the vertexes
in the hypergraphs and also the input nodes of the related pathways. The pathway is
made to correspond to provide the output nodes with the value of the object
function and condition constraints.

Step 2: Calculate the outputs
Step 3: If the optimal objects exist, then go to step 7.

Else go to the next step.
Step 4: Execute the $\mathrm{Q}$ operators on the objects in the population.
Step 5: Adjust the pathways and related hypergraphs.
Step 6: Go to step 2.
Step 7: Select the optimal objects as output.

5. Construction of the Schemes toward Global Optimum

According t0[4], the global optimum is formulated in amanifold space with
probabilistic measurement defined. Related notations are listed as follows:

M–the number of the population,
Q–astandard $\Theta$ -generalized normal random matrix $(\mathrm{L}\cross \mathrm{L})$

with the distribution of NUL $(\mathrm{A},\mathrm{Y},\mathrm{C}, \Theta)$,
X–astandard 6 -generalized normal random matrix.

with the distribution of $\mathrm{N}_{\mathrm{L}\mathrm{L}}(\mathrm{S},\mathrm{V},\mathrm{U},\Theta)$ ,
$\mathrm{A},\mathrm{Y},\mathrm{C},\mathrm{S},\mathrm{V}$ and U–matrices,
$\Theta$ –the parameter of the corresponding distribution,
C–the matrix with diagonal non-zero (taken as 1in values) and the rest zeros.

The global optimum is inferred as
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$\mathrm{p}+1$ $\mathrm{p}+1$

II $\ovalbox{\tt\small REJECT} \mathrm{Q}_{\ovalbox{\tt\small REJECT} \mathrm{j}}\mathrm{F}_{\ovalbox{\tt\small REJECT}}\mathrm{F}_{\mathrm{j}}\mathrm{o}_{\ovalbox{\tt\small REJECT} \mathrm{j}}^{2}$
$\ovalbox{\tt\small REJECT}$ 0,

$\ovalbox{\tt\small REJECT} \mathrm{Q}$ j $\ovalbox{\tt\small REJECT}$

$\mathrm{Q}$

where

$\psi_{0\mathrm{j}}=\psi_{\mathrm{i}0}=2/\mathrm{M}$ , $\mathrm{F}_{0}=\alpha_{0\mathrm{j}}=\alpha_{\mathrm{i}0}=1$ ,

and

$\Gamma(1/\Theta)$

$\psi$ ij $=$

$\Gamma(3/\Theta)||(\mathrm{V}\mathrm{V}^{\mathrm{t}})[eggx](\mathrm{U}\mathrm{U}^{\mathrm{t}})||$

where $\mathrm{i}\neq 0$ andj $\neq 0$ .

The condition is

$\mathrm{p}+1$ $\mathrm{p}+1$

I $\mathrm{y}_{\mathrm{i}1}$

$=\mathrm{d}_{\mathrm{i}}\Sigma$ $\mathrm{g}_{1}\partial/\partial \mathrm{x}_{\mathrm{i}}\mathrm{H}_{l}(\mathrm{x})$ ,
$\mathit{1}=1$ $l=1$

$\mathrm{y}_{\mathrm{i}1}=0$ if $\mathrm{p}+1<l\leq \mathrm{L}$,

$\mathrm{E}_{\Theta}[\mathrm{q}_{\mathrm{i}\mathrm{j}^{2}}]=||\mathrm{E}_{\mathrm{w}}\partial \mathrm{i}\partial \mathrm{j}\mathrm{Z}(\mathrm{B}_{l}, \mathrm{W})]||$,

$\mathrm{F}=\mathrm{v}\mathrm{e}\mathrm{c}(\mathrm{X}^{\mathrm{t}})$, i.e., the tangency vector in the statistical manifold 3.

Here the notation of $\mathrm{H}_{\mathrm{i}}$ $($ . $)$ is:

$\mathrm{H}_{0}=\mathrm{t}\mathrm{h}\mathrm{e}$ object function,

$\mathrm{H}_{\mathrm{j}}(\mathrm{i}>0)$ is the condition constraint in the underlying problem,

$\mathrm{B}_{l}$ is the measurement for the goodness or fitness of the individual in the population.

Based on the above forms for global optimum, we must design

$\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{b}\mathrm{l}$

ing
algorithms to “evolve” the population. In the quantity of the above proposition, we

$\mathrm{p}\mathrm{r}\phi \mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}|$

the following scheme to design the searching procedure
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The mapping is made from hypergraph space to the statistical manifold space $S$

mentioned above as

Z $(\mathrm{B}_{l}, \mathrm{W})=\ln$ P $(\mathrm{B}_{l},\mathrm{W})$

where W $=\mathrm{t}\mathrm{h}\mathrm{e}$ set of the probability of all of the operations in the set Q.

Fig. 2The flow chart

And we have that

(1) The set of $\{\mathrm{F}_{\mathrm{i}}(\mathrm{F}_{\mathrm{j}})\}$ is assigned to the hypergraph that denotes the input nodes for the
pathway;

(2) The sets of $\{\psi_{\mathrm{i}\mathrm{j}}\}$ and $\{\alpha_{\mathrm{i}\mathrm{j}}^{2}\}$ are defined as parameters to be estimated by empirical
ways;

(3) The set of {y} is assigned to the pathways for those hypergraphs as their input and is
generated by repeated operations guided by the Q rule in LS-systems
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(4) It is assumed that the forms of the $\mathrm{E}_{\Theta}[\mathrm{q}_{\mathrm{i}\mathrm{j}}^{2}]$ are linear;

(5) The set of $\{\mathrm{q}_{\mathrm{i}\mathrm{j}}\}$ is also assigned by the values in the hyperedges.

The algorithm for searching for the target is carried out in an iterative manner and will stop
until the optimum objects emerge in the population. The objects concerned in the abdve
processes are illustrated in figure 1and abrief description for this algorithm is given in
figure 2.

6. Conclusion

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{t}\mathrm{y}$

$\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{f}\mathrm{k}\mathrm{i}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{g}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{f}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}$

$\mathrm{s}\mathrm{t}\mathrm{m}\mathrm{c}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{r}\mathrm{e}’ \mathrm{s}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{e}\mathrm{v}\mathrm{o}\mathrm{v}\mathrm{e}|$

potential for algorithm designing that is oriented to specific optimization problems.
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