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Abstract: The CNN Problem is akind of aone server problem in which arequest moves on the
two dimensional plane. If the request appears at position $(i,j)$ , the server does not have to move to the
place $(i,j)$ itself but has only to move somewhere given by $(i, l)$ or $(k,j)$ . Namely it is enough to move
either to the same row or to the same column. The goal is to minimize the total moving distance of the
server. This problem has been quite popular for the last several years but it is still open whether or not
there is acompetitive algorithm, i.e., an algorithm whose competitive ratio is bounded by aconstant. In
this paper we consider anatural restriction of the problem, namely, the server can move only on the X-axis
and Y-axis, which can be viewed as aone-dimensional version of the original problem. It is shown that
there is an online algorithm for this “axis-bound CNN” whose competitive ratio is at most 9.0.

1Introduction
Imagine amesh-like city like Manhattan, where “scenae” occur at different places one after another, or we
can also think that ascene moves from place to place in the city. Acamera crew (of CNN) wishes to shoot
the scene by following its move. Suppose that the scene is now at the crossroad of $i$-th street and j-th
avenue. Then the crew does not have to go to the exact crossroad but only has to go somewhere on the t-th
street or somewhere on the $j$-th avenue. The goal is to minimize the total moving distance of the crew. For
example, one possible strategy for the crew is to move just on the first street back and forth. However, it
is easy to see that this strategy is not competitive: If the scene moves back and forth on the second street,
then the crew also has to move similarity back and forth on the first street. One can easily see, however,
that if the crew moves to the second street at the beginning, then it does not have to move at all after that.

Due to [KTOO], this problem was first proposed by Saks and Burley and its name was suggested
by Woeginger. The problem was mentioned several times including at aDagstuhl meeting in 1996 by
Koutsoupias and in the open-problem session at ESA99 by Woeginger. Thus the problem has been quite
popular in the community but it is still open whether or not competitive algorithms, i.e., algorithms of a
constant competitive ratio, exist. The only known result is due to Koutsoupias and Taylor [KTOO] showing
that any algorithm must have acompetitive ratio at least $6+\sqrt{17}$, where the authors look at this problem as
avariant of the $k$-server problem [see, e.g., CKPV91, FRR90, $\mathrm{K}\mathrm{P}94$ , $\mathrm{M}\mathrm{M}\mathrm{S}90$]. Their lower bound of $6+\sqrt{17}$

comes from alower bound for the weighted 2-server problem [FR94]. [KTOO] claims that it is hard to apply
positive results for the $k$-server problem to the CNN problem, but their conjecture was still positive, i.e.,
that there would be acompetitive algorithm.

In this PaPer, we consider anatural restriction of this problem, namely, the crew can move only on
the $X$-axis and $\mathrm{Y}$-axis. For this restricted version, called the axis-bounded CNN, the above conjecture is
true, i.e., we show that there is an online algorithm whose competitive ratio is at most 9.0. (Note that
$9.0<6+\sqrt{17}$, but this is of course not acontradiction.) Our strategy is to follow after the “currently
optimal position” with some delay. The currently optimal position (or the currently optimal solution in
general) means the position such that the optimal offline algorithm should place the crew there if the input
finishes at that moment. (Note that the currently optimal solution, or an optimal offline solution in general,
can be computed easily from the previous input in the case of this problem. Some problems, such as
the list-accessing problem, does not have this property [AHD83, ST85].) It appears that several existing
online algorithms follow this basic scheme. For example, the algorithm for the famous ski-rental problem
[Kar92, BE98] follows the currently optimal solution without delay. The Double Coverage algorithm for the
fc-server problem is another example [CL91] (although the relation might not be so clear). As shown later
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the key issue in this paper is how to choose an appropriate value for the delay.

2CNN Problem and Bind Restriction
The CNN Problem (or CNN for short) consists of the scene and the camera crew (or the crew for short).
The scene appears sequentially on the tw0-dimensional plane, i.e., at $s_{1}=(x_{1}, y_{1})$ , $s_{2}=(x_{2}, y_{2})$ , $\cdots$ , and
$s_{n}=(x_{n}, y_{n})$ , where $x_{i}$ and $y_{i}$ are any real numbers. The sequence $S=s_{1}s_{2}\cdots$ $s_{n}$ is called ascene-sequence
(or an $\mathrm{S}$-seq for short). The camera crew is originally placed at $(0, 0)$ and for agiven $\mathrm{S}$-seq $S$ it is to move
sequentially to $p_{1}=(u_{1}, v_{1})$ , $p_{2}=(u_{2}, v_{2})$ , $\cdots$ , $p_{n}=(u_{n}, v_{n})$ , where the condition that $u_{i}=x_{i}$ or $v_{i}=y_{i}$

has to be met for all $1\leq i\leq n$ . Such asequence $P=p_{1}p_{2}\cdots$ $p_{n}$ is called a(proper) crew-sequence (or C-seq
for short) for the $\mathrm{S}$-seq $S$ . The cost $\sigma(P)$ of the $\mathrm{C}$-seq $P$ is defined as

$\sigma(P)=||p_{1}-p_{0}||+||p_{2}-p_{1}||+\cdots+||p_{n}-p_{n-1}||$ ,

where $p_{0}=(0,0)$ and $||p_{i+1}-p_{i}||=\sqrt{(x_{i+1}-x_{i})^{\overline{l}}+(y_{i+1}-y_{i})^{l}}..$ .
CNN is said to be axis-bound if the crew always has to stay on the $X$-axis or $\mathrm{Y}$-axis. Namely, if

$S=(x_{1}, y_{1})$ , $\cdots$ $(x_{n}, y_{n})$ and $P=p_{1}p_{2}\cdots p_{n}$ , then $p_{i}=(\mathrm{x}\mathrm{n}, 0)$ or $(0, y_{i})$ . Such a $\mathrm{C}$-seq is called an axis-bound
$C$-seq. In this paper we mainly discuss axis-bound CNN, and therefore axis-bound $\mathrm{C}$-seqs are simply denoted
by $\mathrm{C}$-seqs without otherwise stated. For an $\mathrm{S}$-seq $S$ , $\Gamma(S)$ denotes aset of all such (proper) $\mathrm{C}$-seqs. For ffiis-
bound CNN we use the $l_{1}$ -norm for calculating the cost, i.e., $||p_{i+1}-p_{i}||$ is defined to be $|x_{i+1}-x_{i}|+|y_{i+1}-y:|$ .
OPt(S) denotes the optimal cost of $\mathrm{C}$-seqs for the $\mathrm{S}$-seq $S$ , i.e., $\mathrm{O}\mathrm{P}\mathrm{T}(S)=\min_{P\in\Gamma(S)}\sigma(P)$ . We also define
OPT $(S)= \min_{P\in\Gamma^{X}(S)}\sigma(P)$ where I $X(S)$ is aset of $\mathrm{C}$-seqs $P^{X}$ whose last position is on the X-axis,
i.e., if $P^{X}=(u_{1}, v_{1})\cdots$ $(u_{n}, v_{n})$ then $v_{n}$ must be 0. OPTy(5) is defined similarly. Obviously OPt(S) $=$

$\min$ (OPT (S), OPT (S)).

Let an $\mathrm{S}$-seq $\mathrm{S}\mathrm{n}-\mathrm{i}=(x_{1}, y_{1})\cdots(x_{n-1}, y_{n-1})$ and $S_{n}=S_{n-1}(x_{n}, y_{n})$ . Several basic lemmas are as
follows:

Lemma 1. OPT $(S_{n})\leq \mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{n})+|x_{n}|+|y_{n}|$ . $\mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{n})\leq \mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{n})+|x_{n}|+|y_{n}|$ .
Proof. Otherwise, we can get asmaller OPT $(S_{n})$ by moving the crew from $(0, y_{n})$ to $(x_{n}, 0)$ . Similarly

for the second statement. I

Lemma 2. OPT $(S_{n})= \min$(OPT $(S_{n-1})+|x_{n}-x_{n-1}|$ , OPT $(S_{n-1})+|y_{n-1}|+|x_{n}|$ ) . $\mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{n})=$

$\min$(OPT $(S_{n-1})+|x_{n-1}|+|y_{n}|$ , 0PT $(S_{n-1})+|y_{n}-y_{n-1}|$ ).

Proof. Obvious by Lemma 1.

Lemma 3. If $x_{n}=x_{n-1}$ , then OPT $(S_{n})=$ OPT $(S_{n-1})$ . If $y_{n}=y_{n-1}$ , then $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{n})=$

OPT $(S_{n-1})$ .
Proof. Since $x_{n}=\mathrm{x}\mathrm{n}-\mathrm{i}$ , OPT $(S_{n})= \min$(OPT $(S_{n-1})$ , OPT $(S_{n-1})+|y_{n-1}|+|x_{n-1}|$ ) by Lemma 2.

Furthermore, since OPT $(S_{n-1})\leq \mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{n-1})+|x_{n-1}|+|y_{n-1}|$ by Lemma 1, it follows that OPT $(S_{n})=$

OPT $(S_{n-1})$ . Similarly for the second statement. 1

Lemma 2means that OPT $(S_{n})$ , $\mathrm{O}\mathrm{P}\mathrm{T}^{y}(S_{n})$ and $\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ can be calculated in polynomial time in $n$ .
Here are some examples for the general and axis-bound CNN.

Example 1. Consider the following algorithm $A_{1}$ for the general CNN:

$(u_{i}, v_{i})=\{$ $(u_{i-1},y_{i})(x_{i}, v_{i-1})$

if $|y_{i}-v_{i-1}|\leq|x_{i}-v_{i-1}|$

otherwise.

Namely, according to this algorithm, the camera crew always moves horizontally or vertically depending
on which is shorter. Unfortunately this algorithm $A_{1}$ , which is atypical greedy algorithm, has apoor
competitive ratio: Consider the input $S_{m}=(1,2)$ , $(2, 2)$ , $(3, 2)$ , $\cdots$ , $(m, 2)$ as shown in Fig. 1. For the firs
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position $(1, 2)$ of the scene, the camera crew moves to the right since it is shorter than moving up. Then the
crew continues to move to the right since it is always shorter than moving up. Thus the cost of this online
algorithm for $\mathrm{S}$-seq $S_{m}$ is $m$ . However one can see that the optimal camera crew should move to $(0, 2)$ at the
first step and to stay there after that. Thus the optimal cost is only two; in other words, the competitive
ratio of $A_{1}$ is at least $m/2$ .

In the case of the axis-bound CNN there are only two possibilities for the next position of the crew,
i.e., staying on the current axis or moving to the other axis. Changing the axis, say from $X$ axis to Y-
axis, usually costs more than simply moving horizontauy or vertically; namely the greedy algorithm is not
competitive for the axis-bound CNN, either.

Example 2. Note that in the previous example, $\mathrm{o}\mathrm{P}\mathrm{T}(S_{1})=1$ , $\mathrm{O}\mathrm{P}\mathrm{T}(S_{2})=2$ at $(2, 0)$ or $(0, 2)$ ,
$\mathrm{O}\mathrm{P}\mathrm{T}(S_{3})=2$ at $(0, 2)$ and so on. Hence, if we always follow the (currently) optimal position (recall that
the optimal position can be calculated in polynomial time), then such an algorithm would move the crew
to $(1, 0)$ , to $(2, 0)$ and then to $(0, 2)$ . This algorithm is thus competitive for the input $S_{m}$ . Unfortunately
again, there is the following adversary: See Fig. 2. The scene first appears at $(k, k)$ . Then the camera crew
is to move $(0, k)$ or (&, 0) both of which are currently-0ptimal. Suppose that it moved to $(0, k)$ . Then the
scene moves to $(k-1, k)$ , $(k-1,k-2)$ , $(k-3, k-2)$ , $(k-3, k)$ , $(k-1, k)$ , and continues to move round on
this square. It is not hard to see that the optimal position is $(0, k)$ or $(k, 0)$ first and then changes between
$(k-1,0)$ and $(0, k-2)$ alternately. Hence the algorithm which follows the optimal position has to move
between those distant two positions, and costs approximately $k$ times as much as the optimal cost which is
achieved by staying on the $\mathrm{Y}$-axis. (Ironically, the greedy algorithm is almost optimal in this case.)

3Competitive Algorithms
3.1 Orthogonal Sequences

Before presenting our algorithm, we need an important preparation, i.e., orthogonalization of $\mathrm{S}$-se $\mathrm{s}$ . Sup-
pose that $S_{n}=(x_{1}, y_{1})\cdots$ $(x_{n}, y_{n})$ is an $\mathrm{S}$-seq. We first define an axis-decomposition of $S_{n}$ , denoted by
$F(S_{n})$ , as follows: Suppose that aline segment $(x:, y:)(x:+1, y:+1)$ intersects with the $X$ axis or the Y-axis,
Then we denote such intersections by $(x_{i}’,y_{}’)$ (i.e., $x_{\dot{l}}’=0$ or $y_{\dot{1}}’$ $=0$, see Fig. 3). $F(S_{n})$ is an $\mathrm{S}$-seq such
that for each interval $(x_{i}, y_{i})(x_{i+1}, y_{i+1})$ in $S_{n}$ , the intersection $(x_{\dot{1}}’, y_{i}’)$ is inserted (if any). Note that aline
segment can intersect with both $X$ axis and $\mathrm{Y}$-axis. Two intersections are inserted in this case.

Lemma 4. $\mathrm{o}\mathrm{P}\mathrm{T}^{X}(S_{n})=\mathrm{O}\mathrm{P}\mathrm{T}^{X}(F(S_{n}))$ and $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{n})=\mathrm{O}\mathrm{P}\mathrm{T}^{Y}(F(S_{n}))$ .
Proof. (By Induction.) If $n=1$ , i.e., $S_{1}=(x_{1}, y_{1})$ is given then $F(S_{1})$ is also $(x_{1},y_{1})$ by definition

and therefore the lemma obviously holds. Suppose that the lemma holds for $S_{i}=(x_{1},y_{1})\cdots(x:, y:)$ , and
now consider $S_{i+1}=(x_{1}, y_{1})\cdots$ $(x_{i}, y_{i})(x_{i+1}, y_{i+1})$ . If there is no intersection with the axis between $(x:,y_{\dot{l}})$

and $(x_{i+1,y:+1})$ , then the lemma obviously holds again. So, suppose that there are intersections. We only
prove the case that the intersection is with the $\mathrm{Y}$-axis only and for $\mathrm{o}\mathrm{P}\mathrm{T}^{X}$ (see Fig. 3again). The other
cases are very similar and omitted.

Let $X_{1}=(x:, 0)$ , $X_{2}=(x_{\dot{\iota}+1},0)$ , $X_{3}=(x_{\dot{2}}’, 0)=(0,0)$ , $\mathrm{Y}_{1}=(0, y:)$ , $\mathrm{Y}_{2}=(0, y:+1)$ and $\mathrm{Y}_{3}=(0, y_{\dot{l}}’)$ .
Then using Lemma 2twice we can claim that OPT $(F(S_{\dot{\iota}+1}))$ is the minimum of the following four values,
where $d\zeta z_{1}$ , $z_{2}$)-denotes the $l_{1}$-distance between point $z_{1}$ and point $z_{2}$ .

(i) $\mathrm{o}\mathrm{P}\mathrm{T}^{x_{(S_{i})+d(X_{1},X_{3})+\mathrm{d}\{\mathrm{z}\mathrm{i},X_{2})}}$ ,
(ii) $\mathrm{o}\mathrm{P}\mathrm{T}^{X}(S\dot{.})+\mathrm{d}\{\mathrm{z}\mathrm{i},$ $\mathrm{Y}_{3})+d(\mathrm{Y}_{3},X_{2})$ ,
(iii) $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{i})+\mathrm{d}\{\mathrm{z}\mathrm{i},$ $X_{3})+d(X_{3},X_{2})$ ,
(iv) $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{i})+\mathrm{d}\{\mathrm{z}\mathrm{i},$

$\mathrm{Y}_{3})+\mathrm{d}\{\mathrm{z}\mathrm{i},$ $X_{2})$ .

It is not hard to see (i) $\leq(\mathrm{i}\mathrm{i})$ and (iii) $\leq(\mathrm{i}\mathrm{v})$ always hold. Also obviously
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$d(X_{1}, X_{3})+d(X_{3}, X_{2})\ovalbox{\tt\small REJECT}$ $d(X_{1}, X_{2})$ ,
$d(Y\mathit{1}, X_{3})$ A. $d(X_{3}, X_{2})\ovalbox{\tt\small REJECT}$ $d(Y.,$ $X_{2}\ovalbox{\tt\small REJECT}$ .

Thus we can write that

OPT $(F(S_{i+1}))= \min(\mathrm{o}\mathrm{P}\mathrm{T}^{X}(S_{i})+d(X_{1}, X_{2}),$ OPT $(S_{i})+d(\mathrm{Y}_{1}, X_{2}))$ .

The righthand side is equal to OPT $(S_{i+1})$ by definition and the lemma holds. 1

We then define an orthogonal-decomposition of $F(S_{n})$ , denoted by $\delta(S_{n})$ , as follows: Let $F(S_{n})=$

$(x_{1}, y_{1})\cdots(x_{m}, y_{m})$ . Then $\delta(S_{n})$ is written as

$\delta(S_{n})=(x_{1}, y_{1})(x_{1}’, y_{1}’)(x_{2}, y_{2})\cdots(x_{i}, y_{i})(x_{i}’, y_{i}’)(x_{i+1}, y_{i+1})\cdots(x_{m-1}, y_{m-1})(x_{m-1}’, y_{m-1}’)(x_{m}, y_{m})$ ,

where $x_{i}’$ and $y_{i}’$ are determined as follows (recall that $(x_{i}, y_{i})$ and $(x_{i+1}, y_{i+1}.)$ axe in the same quadrant
including on the border):

(i) $x_{i}’=x_{i+1}$ and $y_{i}’=y_{i}$ if $|x_{i+1}|<|x_{i}|$ .
(ii) $x_{i}’=x_{i}$ and $y_{i}’=y_{i+1}$ otherwise.
Namely, if point $(x_{i+1}, y_{i+1})$ is closer to the $\mathrm{Y}$-axis than $(x_{i}, y_{i})$ , then the movement of the scene from

$(x_{i}, y_{i})$ to $(x_{i+1}, y_{i+1})$ is decomposed into the horizontal movement followed by the vertical movement (see
Fig. 4). Otherwise, the vertical movement comes first.

Lemma 5. OPT $(S_{n})=\mathrm{o}\mathrm{P}\mathrm{T}^{X}(\delta(S_{n}))$ and $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{n})=\mathrm{O}\mathrm{P}\mathrm{T}^{Y}(\delta(S_{n}))$ .
Proof. The proof is by induction and is similar to the previous lemma. The base case for the induction

is omitted and suppose that the lemma is true for S{. Again we only consider the case that $|x_{i+1}|<|x_{i}|$ and
$|y_{i+1}|>|y_{i}|$ as shown in Fig. 4and only for optx. OPT $(\delta(S_{i+1}))$ is the minimum among the following
four values:

(i) OPT (Si)+d(Xu $X_{2}$ ) $+d(X_{2}, X_{2})$ ,
(ii) OPT (Si)+d(Xu $\mathrm{Y}_{1}$ ) $+d(\mathrm{Y}_{1}, X_{2})$ ,
(iii) OPT $(S_{i})+d(\mathrm{Y}_{1}, X_{2})+d(X_{2}, X_{2})$ ,
(iv) $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{i})+d(\mathrm{Y}_{1}, \mathrm{Y}_{2})+d(\mathrm{Y}_{2}, X_{2})$ .

One can see that (i) $\leq$ $(\mathrm{i}\mathrm{i})$ and (iii) $\leq$ $(\mathrm{i}\mathrm{v})$ always hold and $d(X_{2}, X_{2})=0$ . So, OPT $(\delta(S_{i+1}))=$

$\min(\mathrm{o}\mathrm{P}\mathrm{T}^{X}(S_{i})+\mathrm{d}$ ( $\mathrm{X}\mathrm{u}$ X2), OPT $(\mathrm{S}\mathrm{i})+d(\mathrm{Y}_{1}, \mathrm{X}2),$ , which is equal to OPT $(S_{i+1})$ by definition. 1

3.2 Algorithm OptFollow and Its Competitiveness

The two examples given in Sec. 2suggest the following: (i) If the camera crew is now on the $X$-axis and $\mathrm{o}\mathrm{P}\mathrm{T}^{X}$

is getting larger than OPTy, then the camera crew must move to the position on the $\mathrm{Y}$-axis ultimately, (ii)
However, the camera crew should not make such an axis-change move too often. Namely, it should postpone
the axis-change move until OPT $-\mathrm{O}\mathrm{P}\mathrm{T}^{Y}$ (or vice versa) becomes greater than some value $d$ . Note that the
cost for an axis-change move is usually higher than an axis-keep move, i.e., the former needs some extra
cost than the latter.

The problem is of course how we select this value $d$ . In the following algorithm, called OptFollow, this
value $d$ is related to the next position of the scene. Since this position is related to the (extra) moving cost
the camera crew has to Pay when changing the axis, it is also true that $d$ is related to this extra cost. We
say that an $\mathrm{S}$-seq $S_{n}=(x_{1}, y_{1})\cdots$ $(x_{n}, y_{n})$ is orthogonal if $x_{i}=x_{i+1}$ or $y_{/}$

. $=yi+1$ holds for all $1\leq i\leq n-1$ .
We first define the operation of OptFollow for an orthogonal $\mathrm{S}$-seq $S_{n}$ :

Algorithm OptFollow (for orthogonal S-seqs
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(i) For the first position $(x_{1}, y_{1})$ of the scene, the crew moves to $(x_{1},0)$ if $|x_{1}|\leq|y_{1}|$ and to $(0, y_{1})$

otherwise.
(ii) Note that the crew must be at $(x, 0)$ or at $(0, y:)$ after the scene has appeared at $(x_{\dot{l}}, y:)$ . Suppose

that the crew is at $(x_{\dot{1}}, 0)$ . Then, for the next position $(x:+1, y_{\dot{|}+1})$ of the scene, (a) the crew stays at $(x:,0)$
if $x:+1=\mathrm{x}${. Otherwise (i.e., if $y:+1=y_{i}$), (b) it moves to $(x:+1,0)$ if $\mathrm{o}\mathrm{P}\mathrm{T}^{X}(S_{i+1})-\mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{i+1})\leq|y_{i+1}|$

and (c) it moves to $(0, y:+1)$ otherwise. (see Fig. 5for (b) and (c))
(iii) Suppose that the crew is at $(0, y:)$ . Then for $(x:+1,y:+1)$ , (a) it stays at $(0, y:)$ if $y_{\dot{|}+1}=y$:and

otherwise, (b) it moves to $(0, y:+1)$ if $\mathrm{O}\mathrm{P}\mathrm{T}^{y}(S_{\dot{|}+1})-\mathrm{O}\mathrm{P}\mathrm{T}^{x}(S_{i+1})\leq|X:+1|$ and (c) to $(x_{\dot{l}+1},0)$ otherwise.
Now we define OptFollow for ageneral $\mathrm{S}$-seq $S_{n}=(x_{1},y_{1})\cdots$ $(x_{n}, y_{n})$ . Roughly speaking, the crew

moves exactly the same as the crew would move for $\delta(S_{n})$ . In more detail:
Algorithm OptFollow (for general S-seqs)

(i) For the first $(x_{1}, y_{1})$ , the crew moves the same as before.
(ii) Suppose that the crew is at $(x:,0)$ for $(x:,y_{\dot{\iota}})$ . Then for the next scene position $(x:+1,y:+1)$ , it

translates the path from $(X:, y_{i})$ to $(X:+1, y_{\dot{l}+1})$ into the orthogonal path $\delta(F((x:,y:)(x:+1,y:+1)))$ ae illus-
trated in Fig. 6. Then the crew simulates its movement for $\delta(F((x:, y_{\dot{1}})(x_{\dot{|}+1y:+1},)))$ completely.

(iii) Similarly for the case that the crew is at $(0, y:)$ and omitted.
It should be noted that the crew may make astrange movement as illustrated in Fig. 7. This kind of

movement can be avoided by slightly changing the algorithm (i.e., computing the shortest path in advance),
but we do not do so in the following analysis.

Lemma 6. If OptFollow achieves acompetitive ratio of $r$ for orthogonal $\mathrm{S}$-seqs, then it achieves $r$ for
general inputs.

Proof. For ageneral $\mathrm{S}$-seqs $S_{n}$ , let OPT(Sn) and $A(S_{n})$ be the optimal cost and the cost of OptFollow,
respectively. One can see that $\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ $=\mathrm{O}\mathrm{P}\mathrm{T}(\delta(S_{n}))$ by Lemma 5and that $A(Sn)=\mathrm{A}(\mathrm{S}(\mathrm{S}\mathrm{n}))$ by the
definition of OptFollow. 1

By this lemma, we can concentrate upon only orthogonal inputs. From now on, we assume that
all $\mathrm{S}$-seqs are orthogonal. Also for convenience of the following argument, we divide agiven $\mathrm{S}$-seq $S=$
$(x_{1},y_{1})\cdots(x_{n}, y_{n})$ into phases. Phase $i(\geq 1)$ consists of asubsequence $(x_{p:},y_{p}.\cdot)(x_{p:+1},y_{p\mathrm{c}+1})\cdots(x_{p:+q:},y_{p.+q\iota}.)$

of $S$ , such that: (i) OptFollow has made the $\mathrm{i}$-th axis-change when the scene appeared at $(x_{p}y_{p}:’.\cdot)$ . (The
first movement from $(0, 0)$ to $(x_{1}, y_{1})$ is defined to be the Oth uis- hange.) (ii) No axis-change is made
at $(x_{p:+1}, y_{p.+1})$ , $\cdots$ , or at $(x_{p:+q:}, y_{p_{j}+q:})$ . (iii) OptFollow again makes (the $(i+1)\mathrm{s}\mathrm{t}$) axis change for
$(x_{p_{j}+q:+1}, y_{p.+q:+1})(=(x_{p:+1}, y_{p.+1}.))$ or $(x_{p:+q:}, y_{p.\dagger q:}.)$ is the last position of $S$ . Thus the crew stays on the
same axis during aphase, which is called an $X$-phase($\mathrm{Y}$-phase, resp.) if the camera crew stays on X-axis
( $\mathrm{Y}$-axis, resp.). Note that phases are well-defined since OptFollow is adeterministic algorithm. Now we
prove that OPT must increase at least by $|x_{pi}|$ or $|y_{p_{i}}|$ , depending on whether it is an $X$-phase or aY-phase,
during this phase, which plays akey role in our analysis.

Lemma 7. Suppose that $(x_{p:}, y_{p}.\cdot)\cdots$ $(x_{p:+q:}, y_{p.+q:}.)$ is an $X$-phase where $(x_{p:},y_{p_{l}})$ is not the first
appearance (i.e., $p_{\dot{l}}>1$ ) and $(x_{p:+q:}, y_{p:+q:})$ is not the last one. Also let $\mathrm{o}\mathrm{P}\mathrm{T}_{\dot{1}}$ $=\mathrm{O}\mathrm{P}\mathrm{T}(\mathrm{S}\mathrm{n})$ and $\mathrm{o}\mathrm{P}\mathrm{T}:+1=$

$\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}\cdot+1}.)(=\mathrm{O}\mathrm{P}\mathrm{T}(S_{p.+q:+1}.))$ . Then $\mathrm{O}\mathrm{P}\mathrm{T}:+\mathrm{I}$ $-\mathrm{O}\mathrm{P}\mathrm{T}:\geq|x_{p:}|$ . As adual case, if $(x_{p:},y_{p}.\cdot)\cdots(x_{p+q:}‘’ y_{p\dot{.}+q:})$ is
a $\mathrm{Y}$ phase, then $\mathrm{O}\mathrm{P}\mathrm{T}:+1-\mathrm{O}\mathrm{P}\mathrm{T}:\geq|y_{p}.\cdot|$.

Proof. Fig. 8illustrates how the values of OPT $(S_{p.+j}.)$ and $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{p.+j}.)$ changes for $j=0,1$ , $\cdots$ .
We can make the following observations:

(1) At the beginning of this phase, $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{p}.\cdot)-\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}.\cdot)\geq|x_{p:}|$ since OptFollow has just moved
the crew from the $\mathrm{Y}$-axis to the X-axis.

(2) While OPT $(S_{p.+j})\geq \mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p_{j}+j})$ , the value of $\mathrm{o}\mathrm{P}\mathrm{T}^{X}$ increases monotonically and eventuall
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catches up the value of OPT within this phase. We assume that this happens at point $W$ in the Fig. 8.
Also, without loss of generality we can assume that $W$ exactly corresponds to some appearance of the scene.
(Otherwise, i.e., if this happens between $(x_{p_{i}+j}, y_{p_{i}+j})$ and $(x_{p_{i}+j+1}, y_{p_{i}+j+1})$ , then we can insert anew
appearance without changing the cost of Opt or the cost of OptFollow.) Since OPT $=\mathrm{O}\mathrm{P}\mathrm{T}^{Y}=\mathrm{O}\mathrm{P}\mathrm{T}$ at $W$ ,
$\mathrm{O}\mathrm{P}\mathrm{T}i+1$ is at least as large as this value (note that OPT does not decrease).

From these facts, (1) and (2), we are done if we can show that for any $j$ the value of OPT $(S_{p.+j}.)$ is at
least as large as OPT $(S_{p:})+|x_{p:}|$ . Suppose contrarily that OPT $(S_{p.+j}.)<\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}.)+|x_{p:}|$ for some $j\geq 1$ .
Such situation could only happen when the value of OPT decrease, since OPT $(S_{p}\dot{.})\geq \mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}.\cdot)+|x_{p:}|$

where $j=0$ .
OPT can decrease by the movement of the scene as shown in Fig. 9. Namely, $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{p.+j-1}.)+d_{1}>$

OPT $(S_{p.+j})+d_{2}$ , where $d_{1}$ and $d_{2}$ are the distances of the crew’s movements from $(0, y_{p.+j-1}.)$ to $(0, y_{p.+j}.)$

and from $(x_{p_{*}+j}, 0)$ to $(0, y_{p.+j}.)$ , respectively. Thus one can see that
OPT $(S_{p\dot{.}+j})\geq \mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p\dot{.}+j})+d_{2}\geq \mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p.+j}.)+|x_{p:+j}|$ .

Since we have assumed that OPT $(S_{p\dot{.}+j})<\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}.\cdot)+|x_{p}.\cdot|$ , it follows that OPT $(S_{p}.\cdot)+|x_{p:}|>\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p\mathrm{s}+j})$

$+|x_{p:+j}|$ or equivalently
OPT $(S_{p:+j})-\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p:})<|x_{p}.|-|x_{p:+j}|$ .

However, this is acontradiction since the crew must move at least the distance of $|x_{p}.|-|x_{p:+j}|$ on the
$X$-axis and OPT must increase at least by this value. 1

Lemma 8. Under the same condition as Lemma 7except that $(x_{p}.\cdot, y_{p}.\cdot)$ may be $(x_{1}, y_{1})$ , let $A_{\dot{\iota}}=$

$A(S_{p}.\cdot)$ and $A_{i+1}=A(S_{p.+1}.)$ . Then $A_{i+1}\leq A_{i}+2(\mathrm{o}\mathrm{P}\mathrm{T}i+1-\mathrm{O}\mathrm{P}\mathrm{T}i)+|x_{p:}|+3|y_{\mathrm{P}\cdot+1}|$ . As adqal case, if the
phase $(x_{p:}, y_{p_{i}})\cdots(x_{p.+q:}, y_{p.+q}.\dot{.})$ is a $\mathrm{Y}$-phase, then $A_{i+1}\leq A_{i}+2(\mathrm{o}\mathrm{P}\mathrm{T}_{i+1}-\mathrm{O}\mathrm{P}\mathrm{T}_{i})+|y_{p}.\cdot|+3|x_{p:+1}|$.

Proof. Fig. 10 illustrates how the scene and the crew move during this $x$-phase. It should be noted
that the scene’s last move in this phase from $(x_{p\dot{.}+q:}, y_{p:+qi})$ to $(x_{p\dot{.}+q\dot{.}+1}, y_{p.+q:+1}.)(=(x_{p.+1}., y_{p.+1}))$ must be
horizontal. (Reason: If this move is vertical, then OPT does not change by Lemma 1. So, if OPT $(S_{p.+q\mathrm{c}}.)\leq$

OPT $(S_{p.+q:}.)$ , then OPT increases for this scene’s move. Otherwise if OPT $(S_{p.+q:}.)>\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p.+q:}.)$, then
OPT may decrease but $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{p_{i}+q.+1})$ must not be less than OPT $(S_{p.+q:+1}.)$ . In either case, OptFollow
does not make an axis-change.)

Another fact we should know is that the distance OptFollow moves the crew in this phase until the scene
has appeared at $(x_{p:+q:}, y_{p.+q}.\dot{.})$ (i.e., $=A(S_{p.+q}.\dot{.})-A(S_{p}.\cdot)$ ) is bounded above by OPT $(S_{p.+q:})-\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}.)$ .
The reason is as follows: While $\mathrm{o}\mathrm{P}\mathrm{T}^{X}\leq \mathrm{O}\mathrm{P}\mathrm{T}^{Y}$, the distance OptFollow moves the crew in each step is
exactly the same as the increase of OPT . After OPT becomes greater than OPTy, the amount of increase
(or even decrease) of OPT may be different from the moving distance of the crew ( $=\mathrm{t}\mathrm{h}\mathrm{e}$ horizontal moving
distance of the scene) at that step. Namely, OPT may be equal to the previous $\mathrm{o}\mathrm{P}\mathrm{T}^{Y}+\mathrm{t}\mathrm{h}\mathrm{e}$ distance of an
axis-change. However, this means that OptFollow would also make an axis-change, which does not happen
until $(x_{p.+1}, y_{p.+1}.)$ by the assumption.

Now look at Fig. 10 again. $A_{i+1}$ – $A_{i}$ is the sum of (i) the moving distance of the crew until
$(x_{p:+q:}, y_{p:+q:})$ and (ii) the cost of an axis-change for $(x_{p:+1}, y_{p.+1}.)$ . As shown above, the cost for (i) is
at most OPT $(S_{p.+q}\dot{.})-\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}\dot{.})$. One can also see that the cost for (ii) is at most OPT $(S_{p.+q:}.)$ -

OPT $(S_{p}.\cdot)+|x_{p:}|+|y_{pt+1}|$ . (This is for the case that $|x_{p_{i}+q}.\cdot|\geq|x_{pi}|$ . If $|x_{p\dot{.}+q}\dot{.}|<|x_{p}.|$ , then (ii) is bounded
by amuch smaller value.) By summing up (i) and (ii), we can get

$A_{i+1}-A_{i}\leq 2(\mathrm{o}\mathrm{P}\mathrm{T}^{X}(S_{p.+q:}.)-\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{pi}))+|x_{p_{i}}|+|y_{p\dot{.}+1}|$. $(*)$

Now notice that OPT $(S_{p.+q:}.)-\mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{p.+qi})\leq|y_{p_{i}+q:}|=|y_{pi+1}|$ , since the phase-change did not happen
when the scene has appeared at $(x_{p:+q}\dot{.}, y_{p\dot{.}+q:})$ . Also, one can see that OPT $(S_{p}.\cdot)=\mathrm{O}\mathrm{P}\mathrm{T}_{i}$ and OPT $(S_{p\dot{.}+q:})=$

OPT $(S_{p.+1}.)=\mathrm{o}\mathrm{P}\mathrm{T}\mathrm{i}+1$ . Substituting these three inequalities to $(*)$ , we can get
$A_{i+1}-A_{i}\leq 2(\mathrm{o}\mathrm{P}\mathrm{T}^{Y}(S_{p:+q}.)+|y_{p:+1}|-\mathrm{O}\mathrm{P}\mathrm{T}^{X}(S_{p}\dot{.}))+|x_{p:}|+|y_{p.+1}.|$

$=2(\mathrm{o}\mathrm{P}\mathrm{T}_{i+1}-\mathrm{O}\mathrm{P}\mathrm{T}_{i})+|x_{pi}|+3|y_{p:+1}|$ ,
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which is what we wanted to prove.
It should be noted that $(x_{p:+q:}, y_{p:+q:})$ might not exist, i.e., the scene $\mathrm{m}\mathrm{i}\mathrm{g}$]

to $(x_{p:+1}, y_{p.+1}.)$ directly. In that case, as we did in the previous proof, we can in
corresponding to $(x_{p:+q:}, y_{p.+q}.)$ without giving any effect to all the costs involved $\mathrm{s}\mathrm{u}($

and $A$ .
Theorem 1. $A(S_{n})/\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})\leq 9$ .
Proof. We only consider the following case: (i) For $(x_{1}, y_{1})$ , the crew moves to

(ii) Then OptFollow makes asequence of axis-changes between $(x_{p_{1}+q1}, y_{p_{1}+q1})$ and
axis to the $\mathrm{Y}$-axis, betw een $(x_{p_{2}+q2}, y_{p_{2}+q2})$ and $(x_{p_{3}}, y_{p3})$ from the $\mathrm{Y}$ axis to th
$(x_{p_{k-1}+qk-1}, y_{p_{k-1}+qk-1})$ and $(x_{pk}, y_{pk})$ from the $\mathrm{Y}$ axis to the $X$-axis(iii) Finallj
(may be zero) moves on the $X$-axis. Other cases are similar and omited.

We first calculate $\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ . By applying Lemma 7to the $y$-phase $(x_{p2}, y_{n})\cdots$

claim that
$\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}3})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}2})\geq|y_{p2}|$ .

Similarly
$\mathrm{O}\mathrm{P}\mathrm{T}(S_{p4})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}3})\geq|x_{\mathrm{P}3}|$ , $\cdots$ , $\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}k})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk-1})\geq|y_{\mathrm{P}k}$

By summing up these inequalities, we obtain
$\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}k})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{p_{2}})\geq|y_{\mathrm{P}2}|+|x_{\mathrm{P}3}|+\cdots+|y_{pk-1}|$.

Since $\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}2})$ is obviously at least $|x_{1}|$ , we can get the key inequality
$\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})\geq \mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}k})\geq|x_{1}|+|y_{p_{2}}|+\cdots+|y_{\mathrm{P}k-1}|$. (1

We next calculate $A(S_{n})$ . By applying Lemma 8to the $x$-phase $(x_{1}, y_{1})\cdots$ $(x_{l}$

phase 1) and to the $y$-phase $(x_{p2}, y_{\mathrm{P}2})\cdots$ $(x_{p_{2}+q2}, y_{p_{2}+q2})$ (for phase 2), we obtain
$\mathrm{A}(\mathrm{S}\mathrm{P}\mathrm{t})-A(S_{1})\leq 2(\mathrm{o}\mathrm{P}\mathrm{T}(S_{p_{2}})-\mathrm{O}\mathrm{P}\mathrm{T}(\mathrm{S}\mathrm{n})+|x_{1}|+3|y_{p_{2}}|$ ,

$\mathrm{A}(\mathrm{S}\mathrm{P}\mathrm{t})-\mathrm{A}(\mathrm{S}\mathrm{P}\mathrm{t})\leq 2(\mathrm{o}\mathrm{p}\mathrm{t}(5\mathrm{P}4)-\mathrm{O}\mathrm{P}\mathrm{T}(S_{p_{2}}))+|y_{\mathrm{P}2}|+3|x_{\mathrm{P}3}|$ .

Similarly
$A(S_{p_{4}})-A(S_{p3})\leq 2(\mathrm{o}\mathrm{P}\mathrm{T}(S_{p4})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{ps}))+|x_{p3}|+3|y_{\mathrm{P}4}|$ ,

$A(S_{\mathrm{P}k})-A(S_{pk-1})\leq 2(\mathrm{o}\mathrm{P}\mathrm{T}(S_{pk})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}k-1}))+|y_{\mathrm{P}k-1}|+3$

Since $A(S_{1})=\mathrm{O}\mathrm{P}\mathrm{T}(S_{1})=|x_{1}|$ , again by summing up these inequalities we obtain
$A(S_{pk})\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{\mathrm{P}k})+4(|y_{\mathrm{P}2}|+|x_{p_{3}}|+\cdots+|y_{pk-1}|)+3|x_{pk}|$.

If $S_{n}=S_{pk}$ , namely, if $S_{n}$ is finished with an axis-change move of the crew, th
can be written as

$A(S_{n})\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})+4(|y_{p_{2}}|+|x_{p3}|+\cdots+|y_{pk-1}|)+3|x_{pk}|$

$\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})+4\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})+3|x_{pk}|$ ,

by using the inequality $(**)$ . Since the final axis-change is from the $\mathrm{Y}$ axis to the A
which implie

$A(S_{n})\leq 9\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ .
If there are some moves on the $X$-axis after the final axis-change, then we must corn

(1) If OPT $\leq \mathrm{O}\mathrm{P}\mathrm{T}^{Y}$ at the end, then
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$A(S_{n})\leq A(S_{pk})+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})$

$\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+4(|y_{p_{2}}|+|x_{p3}|+\cdots+|y_{pk-1}|)+3|x_{pk}|+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})$

$\leq \mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+4\mathrm{o}\mathrm{P}\mathrm{T}(S_{n})+3|x_{pk}|+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$

$\leq 9\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ ,

by using (j), $(**)$ , $\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})\leq \mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ and $|x_{pk}|\leq \mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ . (The last inequality holds since OPT $\leq \mathrm{O}\mathrm{P}\mathrm{T}^{Y}$

at this moment.)
(2) Otherwise, i.e., $\cdot \mathrm{i}\mathrm{f}\mathrm{o}\mathrm{P}\mathrm{T}^{X}>\mathrm{O}\mathrm{P}\mathrm{T}^{Y}$ at the end, then we can obtain the following inequality instead

of $(**)$ :
$\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})\geq|x_{1}|+|y_{p2}|+\cdots+|y_{pk-1}|+|x_{pk}|$ , (I)

since $\mathrm{o}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})\geq|x_{pk}|$ (proof is omitted but is very similar to the proof of Lemma 7). Also, since
OPT $(S_{n})\leq \mathrm{O}\mathrm{P}\mathrm{T}^{Y}(S_{n})+|y_{n}|$ we can show that

$A(S_{n})\leq A(S_{pk})+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{p\mathrm{k}})+|y_{n}|$ ,

which implies that
$A(S_{n})\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+4(|y_{p2}|+|x_{p3}|+\cdots+|y_{pk-1}|)+3|x_{p\mathrm{k}}|+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+|y_{n}|$

$\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+4(|y_{p_{2}}|+|x_{p\mathrm{s}}|+\cdots+|y_{pk-1}|)+4|x_{pk}|+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+|y_{n}|$

$\leq 2\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+4\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})-\mathrm{O}\mathrm{P}\mathrm{T}(S_{pk})+|y_{n}|$

$\leq 2\mathrm{o}\mathrm{P}\mathrm{T}\{\mathrm{S}\mathrm{P}\mathrm{k})+4\mathrm{o}\mathrm{P}\mathrm{T}(5\mathrm{n})+\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})+|y_{n}|\leq 8\mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ ,

by using (\ddagger ), $(**)$ and $|y_{n}|\leq \mathrm{O}\mathrm{P}\mathrm{T}(S_{n})$ . (The last inequality holds since OPT $>\mathrm{O}\mathrm{P}\mathrm{T}^{Y}$ at the end.)
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