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1 Backgrounds and objectives

Groebner bases for ideals in polynomial rings were introduced in 1965 by B. Buchberger. He also developed

the fundamental algorithms which was called “the Buchberger algorithm” to compute aGroebner bases ffom

agenerating set of ideals [6]. The theory of Groebner bases and this algorithm provide the foundation for
many algorithms in both algebraic geometry and commutative algebra, and they are applied as amethod of

solving systems of polynomial equations, and so on. Groebner bases are very powerfull tool, but it is known

that to compute them is extremely time consuming.

In 1991, Conti and Traverso proposed an algorithm for integer programming problems (IP) using the

Groebner base [8]. This algorithm makes good use of toric ideals, aspecial class of polynomial ideals. Thanks

to their algorithm, the theory of the Groebner basis has come to be one of the interplay of computational

commutative algebra and optimizations [18][20] [21][23] [22]. Our objectives are;

(i) to measure the efficiency of Groebner bases for combinatorial optimization problems, and

(ii) to analyze the structure of combinatorial optimization problems from the viwe of toric ideals and Groebner

bases.

In this paper, we developed an algorithm for traveling salesman problem (TSP), in which we combined$\cdot$ the

Conti-Traverso algorithm and branch and bound method.

2Preliminaries and Previous Works

2.1 The Traveling Salesman Problem(TSP)

The TSP is one of the most difficult combinatorial problems. It is already known that the problem belongs

to the class $\mathrm{N}\mathrm{P}$-complete[17]. Basic references are [3] [5], and [15].

We consider the TSP on complete undirected graphs with $d$ nodes, denoted by Kd. Let $N=\{1, \ldots, n\}$ be

the node set, $E=\{\{i,j\} : 1\leq i<j\leq n\}$ be the edge set, and $c_{ij}\in \mathbb{R}_{\geq 0}^{n}$ be the cost of edge $\{i,j\}$ . For each

edge $\{i,j\}\in E$ , we introduce avariable $x_{ij}\in\{0,1\}$ . In our formulation, there are 3type of constraints;

(i) Degree Constraints: For each vertex $i\in N$ , just two edges incident with $i$ must be chosen,

(ii) Subtour Elimination: for each subtour $C\subset E$ , the cardinality of the set $\{\{i,j\}\in E : x_{ij}=1\}$ is less

than $|C|$ , where $|\cdot|$ means the cardinality, and

(iii) 0-1 Constraints: for each edge {i, $j\}\in E$ , $x_{ij}\in$ {0,1}.

Let $C$ $\subset 2^{E}$ be the set of all subtours. Then TSP is represented as follows.

$\forall i\in N$ ,
$\forall C\in C$ ,
$\forall\{i,j\}\in E$ .
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2.2 Groebner Bases

In this subsection, we summarize some basic definitions of the theory of Groebner basis for ideals. Basic
references are [1], [2], and [9].

Let $\mathrm{K}$ be an arbitrary field. Denote by $\mathrm{K}[\mathrm{y}]$ the polynomial ring with $\mathrm{y}$ where $\mathrm{y}$ consists of $n$ variables
$y_{1}$ , $\ldots$ , $y_{n}$ , $i.e.$ , $\mathrm{y}=(y_{1}, \ldots,y_{n})$ .

Asubset $I\subset \mathrm{K}[\mathrm{y}]$ is an ideal on $\mathrm{K}[\mathrm{y}]$ if it satisfies: (i) $\mathrm{O}\in I$ , (\"u) if $f,g\in I$ , then $f+g\in I$ , and (iii) if
$f\in I$ and $h\in \mathrm{K}[\mathrm{y}]$ , then the product $hf\in I$ . Let $f1$ , $\ldots$ , $f_{\epsilon}$ be polynomials in $\mathrm{K}[\mathrm{y}]$ and denote

$(f_{1}$ , $\ldots$ , $f_{\epsilon} \rangle=\{\mathrm{e}\mathrm{f}\sum_{\dot{|}=1}^{s}\mathrm{d}h:f_{\dot{1}} : h_{1}, \ldots, h_{l}\in \mathrm{K}[\mathrm{y}]\}$ .

It is easy to show that $\langle f_{1}, \ldots, f_{\epsilon}\rangle$ is an ideal. We call such set $\{f1, \ldots, f_{\delta}\}$ agenerating set or a basis.
Furthermore, ($f1$ , $\ldots$ , $f_{e}\rangle$ called the ideal generated by $f1$ , $\ldots$ , $f_{\epsilon}$ . It is known as the Hilbert basis theorem
that each polynomial ideal are finitely generated.

Aterm order on $\mathrm{K}[\mathrm{y}]$ is any $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\succ \mathrm{o}\mathrm{n}\mathrm{N}^{n}$ , Satism.$\mathrm{g}:(\mathrm{i})\succ \mathrm{i}\mathrm{s}$ atotal ordering on Nn, (ii) if $\alpha,\beta,\gamma\in \mathrm{N}^{n}$

and $\alpha$ $\succ\beta$ , then $\alpha$ $+\gamma\succ\beta$ $+\gamma$ , and (iii) 0is the minimal element w.r.t. $\succ$ . As the examples of the term
order, the lexicographic order (lex), graded lex order, and graded reverse lex order are well known.

Now we fix aterm $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\succ \mathrm{o}\mathrm{n}\mathrm{N}^{n}$. Let $I\subset \mathrm{K}[\mathrm{y}]$ be an ideal other than {0}. Then for all polynomial $f$ in
$\mathrm{K}[\mathrm{y}]$ , the $\Psi \mathrm{e}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{e}\mathrm{t}$ term with respect $\mathrm{t}\mathrm{o}\succ \mathrm{i}\mathrm{s}$ uniquely defined. Call this term the initial term of $f$ eu.r. $t$. $\succ$ ,
and denote by $\mathrm{i}\mathrm{n}_{\succ}(f)$ . Furthermore, we define the initial ideal $\mathrm{i}\mathrm{n}_{\succ}(I)$ of I w.2.1. $\succ \mathrm{a}\mathrm{s}$ follow:

$\mathrm{i}\mathrm{n}_{\succ}(I)=\mathrm{d}\mathrm{e}\mathrm{f}\langle \mathrm{i}\mathrm{n}_{\succ}(f) : f\in I\rangle$.

The Groebner basis is defined as follows.

Definition 2.1. (Groebner basis). A finite subset $\{g_{1}, \ldots,g_{t}\}$ of I is a Groebner basis of I $w.r.t\succ$ , $.\cdot f$ it
satisfies, $(\mathrm{i}\mathrm{n}_{\succ}(g_{1}), \ldots, \mathrm{i}\mathrm{n}_{\succ}(g_{t}))=\mathrm{i}\mathrm{n}_{\succ}(I)$ .

For apair of monomials $\mathrm{y}^{\alpha}$ and $\mathrm{y}^{\beta}$ , we say $\mathrm{y}^{\alpha}$ is divisible by $\mathrm{y}^{\beta}$ if, in the vector difference $\alpha$ $-\beta$ , all
entries are nonnegative. It is known that for all ideals except {0}, there exists aGroebner basis.

Let $f$ be an arbitrary polynomial in $\mathrm{K}[\mathrm{y}]$ and I be an ideal. Then the remainder on division of $f$ by a
Groebner basis of I is unique. The remainder called the normal form of $fw.r.t$. $\succ$ , and denoted by $\mathrm{n}\mathrm{f}_{\succ}(f)$ .

AGroebner basis $G_{\succ}(I)$ is reduced, if satisfying: (i) For all $g\in G_{\succ}(I)$ , the coefficient of $\mathrm{i}\mathrm{n}_{\succ}(g)$ is 1, and
(\"u) $]$ for all $g$ , $h\in G_{\succ}(I)$ , any term of $h$ is not divisible by $\mathrm{i}\mathrm{n}_{\succ}(g)$ . The reduced Groebner basis uniquely exists
for all ideal $I\neq\{0\}$ and any term $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\succ$.

An Groebner basis can be computed by the Buchberger algorithm. It is known that Buchberger algorithm
is extremely time-consuming. There are several studies about speedup of this algorithm [6], [12], [24], but
even with the best currently known versions of the algorithm, computation of aGroebner basis often takes a
tremendously long time and storage space.

2.3 Toric Ideals

We shall explain the toric ideal, aspecial class of ideals in $\mathrm{K}[\mathrm{y}]$ . Basic references are [1], [11] and [19] Let
Abe a $d\cross n$ matrix of $\mathrm{Z}^{n}$ , where $\mathrm{Z}$ is set of aU integers. Denote the $i\mathrm{t}\mathrm{h}$ column vector of Aby $\mathfrak{U}$ . Each
vector R. is identified with amonomial $\mathrm{t}^{\mathrm{a}_{j}}$ in the Laurent polynomial ring

$\mathrm{K}[\mathrm{t}^{\pm 1}]=\mathrm{K}[t_{1}\mathrm{d}\mathrm{e}\mathrm{f}, \ldots, t_{d}, t_{1}^{-1}, \ldots, t_{d}^{-1}]$.
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Consider the semigroup homomorphism $\pi$ and the ring homomorphism $\phi$ ;

$\pi$ : $\mathrm{N}^{n}arrow \mathbb{Z}^{d},\mathrm{u}=(u_{1}, \ldots, u_{n})\mapsto u_{1}\mathrm{a}_{1}+\cdots+u_{n}\mathrm{a}_{n}$,

$\phi$ : $\mathrm{K}[\mathrm{y}]arrow \mathrm{K}[\mathrm{t}^{\pm 1}],y_{i}\mapsto \mathrm{t}^{\mathrm{a}}:$ .

The toric ideal of Ais defined as the kernel of $\phi$ . For all vector $\mathrm{u}\in \mathrm{Z}\mathrm{n}$ , we represent $\mathrm{u}=\mathrm{u}^{+}-\mathrm{u}^{-}$ with

nonnegative vectors $\mathrm{u}^{+}$ , $\mathrm{u}^{-}$ . We denote the integral kernel of $\pi$ by $\mathrm{K}\mathrm{e}\mathrm{r}_{\mathrm{Z}}(\pi)$ . Then, the toric ideal $I_{\mathrm{A}}$ can be

written as following:

$I_{\mathrm{A}}=(\mathrm{y}^{\mathrm{u}^{+}}-\mathrm{y}^{\mathrm{u}^{-}}$ : $\mathrm{u}\in \mathrm{K}\mathrm{e}\mathrm{r}_{\mathrm{Z}}(\pi)\rangle$

Now we talk about computation of toric ideal. The method we explain is based on the Implicitization

Theorem and the Elimination Theorem, detail is in Chapter 3of [9].

Algorithm 2.2. (Compute the reduced Groebner basis of toric ideals [19]).

STEP 1: Introduce $n+d- 1-$ $1$ variables to, $t_{1},$
$\ldots$ , $t_{d}$ , $y_{1}$ , $\ldots$ , $y_{n}$ .

$Let\succ be$ any elimination term order
such that $\{\mathrm{t}\}\succ\{\mathrm{y}\}$ .

STEP 2: Compute the reduced Groebner basis $G$ of the ideal

$\langle t_{0}t_{1}\cdots t_{d}-1, y_{1}\cdot \mathrm{t}^{\mathrm{a}^{-}}\dot{\cdot}-\mathrm{t}^{\mathrm{a}^{+}}\cdot. , \cdot=1, \ldots, n\rangle$.

STEP3 :The set $G\cap \mathrm{K}[\mathrm{y}]$ is the reduced Groebner basis of $I_{\mathrm{A}}$

$w.r.t$. restricted $o$ rder $of\succ on\mathrm{K}[\mathrm{y}]$ .

There are several methods of the Groebner basis computation for toric ideals [4], [16], [18]. To compute a

Groebner basis $\mathrm{G}_{\succ_{\mathrm{t}\mathrm{y}}}(J)$ , remark the following fact.

Remark 2.3. Denote $F=\{x:\mathrm{t}^{\mathrm{a}^{-}}‘-\mathrm{t}_{i}^{+} : i=1, \ldots, n\}$ . Then $F$ is already the reduced Groebner basis of $J$

$w.r.t$. an elimination $tem$ order $\succ_{\mathrm{y}\mathrm{t}}$ such that $\{\mathrm{y}\}\succ_{\mathrm{y}\mathrm{t}}\{\mathrm{t}\}$ .

Thanks to this fact, $\mathrm{G}_{\succ_{\mathrm{t}\mathrm{y}}}(J)$ can be obtained by applying akind of basis conversion algorithm, that converts

aGroebner basis $w.r.t$ . $\succ_{\mathrm{y}\mathrm{t}}$ into aGroebner basis $w.\mathrm{r}.t$ . $\succ_{\mathrm{t}\mathrm{y}}$ . Several algorithm are already known [7], [13],

[14], [7], but in this case, the Groebner Walk algorithm is suitable because of its geometric features. On the

polynomial ring $\mathrm{K}[\mathrm{t},\mathrm{y}]$ , set the variable ordering to $t_{1}>\cdots>t_{d}>y_{1}>\cdots>y_{n}$ . Then the Groebner Walk

algorithm will be done in the vector space $\mathbb{R}^{d+n}$ . The departure $\sigma$ and the destination $\tau$ are, for example,

$\sigma$ $=$
$(0, \ldots, 0,1, \ldots, 1)\tilde{d}\tilde{n}$

, and

$\tau$ $=$
$(1, \ldots, 1,0, \ldots, 0)\tilde{d}\check{n}$

.

With respect to the cost vector $\sigma$ (resp. $\tau$ ), aterm which contains at least one of $y_{i}$ (resp. $t_{j}$ ) is always larger

than aterm which does not contain any $y$:(resp. $t_{j}$ ). Furthermore, fix the elimination term $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\succ_{\mathrm{t}\mathrm{y}}$ as the

tie-breaker. Then the desired Groebner basis can be obtained by the Groebner Walk algorithm.

2.4 The Conti-Traverso Algorithm

In this subsection, we talk about the Conti-Traverso algorithm for an integer programming [8]. There are

many method for solving integer programming problems[17]. But the Conti-Traverso algorithm is apurely

algebraic, and its basic idea and the implementation are simple
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Let A be a $d\cross n$ integral matrix with full row rank. Consider following integer programming problem (IPP)

IPA, $\mathrm{c}(\mathrm{b})=\mathrm{d}\mathrm{e}\mathrm{f}$minimize{c.x : Ax $=\mathrm{b}$ , x $\geq 0$}.

The coefficient matr$\dot{m}$ Ais as above, the right hand side vector $\mathrm{b}\in \mathbb{Z}^{d}$ , and the cost vector $\mathrm{c}\in \mathbb{R}^{n}$ . Assume
that, (i) $\mathrm{b}\in$ {Au : $\mathrm{u}\in \mathrm{N}^{n}$ }, and (ii) { $\mathrm{x}\geq 0$ :Ax $=0$} $=\{0\}$ . The assumption (i) guarantees
that $\mathrm{I}\mathrm{P}_{\mathrm{A},\mathrm{c}}(\mathrm{b})$ is feasible. From the theory of convex polytopes, the assumption (ii) implies that $\mathrm{P}_{\mathrm{b}}$ is a
polytope(bounded polyhedron), hence $\mathrm{P}_{\mathrm{b}}^{I}$ is again apolytope. Let $\succ \mathrm{b}\mathrm{e}$ aterm order, and $\mathrm{c}\in \mathrm{R}\mathrm{n}$ . An order
$(\mathrm{c}|\succ)$ on $\mathrm{N}^{n}$ is defined as follow; comparing by the inner product with $\mathrm{c}$ and $\mathrm{u}\mathrm{s}\mathrm{e}\succ \mathrm{a}\mathrm{s}$ the tie breaker. If

$\mathrm{c}$ is nonnegative, $(\mathrm{c}|\succ)$ is term order. By replacing the objective function by $(\mathrm{c}|\succ)$ , the optimal value of
$\mathrm{I}\mathrm{P}_{\mathrm{A},(\mathrm{c}|\succ)}(\mathrm{b})$ does not change, but $\mathrm{I}\mathrm{P}_{\mathrm{A},(\mathrm{c}|\succ)}(\mathrm{b})$ has the unique optimal solution.

The Conti-Ihverso algorithm that is listed in AlgOrithm2.4 solves $\mathrm{I}\mathrm{P}_{\mathrm{A},(\mathrm{c}|\succ)}(\mathrm{b})$.

Algorithm 2.4. (Conti-Thaverso Algorithm for IPP).

STEP 1: Compute a Groebner basis $\mathrm{G}_{(\mathrm{c}|\succ)}(I_{\mathrm{A}})$ .
STEP 2: Compute a feasible solution $\mathrm{u}$ of $\mathrm{I}\mathrm{P}\mathrm{A},\mathrm{c}(\mathrm{b})$ .
STEP 3: Compute the normal form of $\mathrm{y}^{\mathrm{u}}$ and store result as $\mathrm{y}^{\mathrm{v}}$ .

$\mathrm{v}$ is the unique optimal of $\mathrm{I}\mathrm{P}_{\mathrm{A},(\mathrm{c}|\succ)}(\mathrm{b})$ .

2.5 Toric Ideals of Incidence Matrices of Complete Graphs

Next we introduce the result of [10], which plays an important role in TSP. Let $K_{d}$ be the complete graph
with $d$ nodes. In this section, denote the node edge incidence matrix of $K_{d}$ by A. Furthermore, we use the
term edge for the closed line segment joining their end nodes. And we identify the nodes of $K_{d}$ with the
vertices of aregular $d$-gon in the plane labeled clockwise from 1to $d$.

One result of this paper is the fact that the reduced Groebner basis of $I_{\mathrm{A}}$ has agood property, it can be
obtained without applying the Buchberger’s algorithm [10].

Consider following polynomial ring:

$\mathrm{K}[\mathrm{y}]=\mathrm{K}[y_{\dot{l}}j\mathrm{d}\mathrm{e}\mathrm{f}$ : $1\leq i<j\leq 4$ .

The variables $y_{j}.\cdot$ correspond to the edge $\{i,j\}\mathrm{i}\mathrm{n}K_{d}$. Define the variable ordering as:

$y_{j}.\cdot<y_{k}\iota\Leftrightarrow\{$

$i<k$ ,
or
$i=k$ and $j>l$ .

Then the toric ideal $I_{\mathrm{A}}$ is the kernel of the homomorphism $\Phi$ : $\mathrm{K}[\mathrm{y}]arrow \mathrm{K}[\mathrm{t}]$ , $y_{\dot{l}\mathrm{j}}\mapsto Utj$ .
$\mathrm{L}\mathrm{e}\mathrm{t}\succ \mathrm{b}\mathrm{e}$ the lexicographic term order on $\mathrm{K}[\mathrm{y}]$ . Given any pair of non-intersecting edges $\{i,j\}$ , $\{k, l\}$ of

$K_{d}$ , one of the pairs $\{i, k\}$ , $\{j, l\}$ or $\{i, l\}$ , $\{j, k\}$ meets in apoint. With the disjoint edges $\{i,j\}$ , $\{k, l\}$ , we
associate the binomial $yijyki-VuVjk$ where $\{i,$ $/\}$ , $\{j, k\}$ is the intersecting pair. We denote by $C$ the set of
$\mathrm{a}\mathrm{H}$ binomials obtained in this fashion.

Theorem 2.5. $(/\mathit{1}\theta J)$ The set $C$ is the reduced Groebner basis of $I_{\mathrm{A}}w.r.t$. $\succ$ .

We define the weight $w_{j}$.of the variable $y_{j}.\cdot$ as the number of edges of $K_{d}$ which do not meet the edge $\{i,j\}$ .
We denote $\mathrm{w}=\mathrm{d}\mathrm{e}\mathrm{f}$ $(w_{j}.\cdot : 1\leq i<j\leq d)$ . Then, it is known that the set $C$ is the reduced Groebner basis of $I_{\mathrm{A}}$

w.r.t. the order induced by $\mathrm{w}$ .
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3Groebner Basis Method for TSP

3.1 Our Framework for Integer Programming Problems

Our framework is one of the iterative relaxation methods. Considering $\mathrm{I}\mathrm{P}_{\mathrm{A},\mathrm{c}}(\mathrm{b})$ . Let $C$ be the set of all

constraint equations. For each $C’\subset C$ , denote the corresponding coefficient matrix and right hand vector by
$\mathrm{A}’$ and $\mathrm{b}’$ . We call $\mathrm{I}\mathrm{P}_{\mathrm{A}’,\mathrm{c}}(\mathrm{b}’)$ arelaxation problem of $\mathrm{I}\mathrm{P}_{\mathrm{A},\mathrm{c}}(\mathrm{b})$ .

The framework is based on the following strategy: choose asubset of constraints $C_{0}\subset C$ . Denote the

corresponding coefficient matrix and right hand vector by $\mathrm{A}^{0}$ and $\mathrm{b}^{0}$ . Then solve $\mathrm{I}\mathrm{P}_{\mathrm{A}^{0},\mathrm{c}}(\mathrm{b}^{0})$ by the Conti-

Raverso algorithm and check if the obtained optimal solution satisfies all of $C$ . If so, stop: we have found

aoptimal solution. If not, chose some violated constraints and add them to $C_{0}$ and form $C_{1}$ . Then solve
$\mathrm{I}\mathrm{P}_{\mathrm{A}^{1},\mathrm{c}}(\mathrm{b}^{1})$ . Repeat this process until obtain aoptimal. This framework is very natural, but good points of

ours are:

(i) the solution obtained in each iteration is integral,

(ii) the Groebner basis computation of each iteration can be done by applying the Groebner Walk algorithm.

The property (i) can be guaranteed by the Conti-Traverso algorithm.

3.2 Applications for TSP

In this subsection, we introduce two algorithm for TSP as an application of our method for IPP. One is

based on the iterative relaxation method, and the other is based on the branch-and-bound method.

(Algorithm 1, based on the iterative relaxation method):

Recall that there are three kind of constraints: (i) “degree constraints”, (ii) “subtour elimination”, and (iii)

“0-1 constraints”. TSP is represented as following 01 integer programming.

minimize
$\sum_{\{i,j}\sum x_{ij}=2$}

$\in E,c_{ij}x_{ij},$

, $\forall i\in V$,subject to

$j. \cdot\{,j\}\in E\sum_{\{i,j\}\in C}^{t}x_{ij}\leq|C|-1$, $\forall C\in C$ ,

$x_{ij}\in\{0,1\}$ , $\forall\{i,j\}\in E$ .
$C$ is the set of all subtours in the graph. The size of the coefficient matrices for TSP are so large that it is

impossible to solve with the Conti-Traverso algorithm. It is because of the amount of “subtour elimination

constraints”. According to our experiments, TSP on the graph with 5nodes and more is not solvable by

the Conti-Traverso algorithm. However the coefficient matrices of TSP have several good features which are

suitable for our method for IPP based on the iterative relaxation method. The algorithm consists of 3steps,

and it is shown in Figure 3.2.
In STEP 1in the $k\mathrm{t}\mathrm{h}$ iteration, solve the integer programming $\mathrm{I}\mathrm{P}_{\mathrm{A}_{\mathrm{k}},\mathrm{c}^{\mathrm{k}}}$

$(\mathrm{b}^{k})$ with the Conti-Traverso

algorithm. Remark that because we consider on the complete graph, afeasible solution for Conti-TVaverso

algorithm is trivial (circular tour, for example). In addition, in the 1st iteration, we can make good use of

results of $[?]$ and the Groebner Walk to compute the reduced Groebner basis.

In STEP 2, check the feasibility for TSP. Prom the integrality of the solution, it can be done on the realm

of graph theory, by checking whether $\mathrm{x}^{k}$ forms atour in the graph or not. If yes, it is an optimal solution for

the TSP then output it. Otherwise, goto STEP 3.
In STEP 3, choose aviolated constraint arbitrarily, then add the constraint to $\mathrm{I}\mathrm{P}_{\mathrm{A}_{k},\mathrm{c}^{k}}(\mathrm{b}^{k})$. It can be

done by expanding \^A, $\mathrm{b}$ and $\mathrm{c}^{k}$ . Note that, the new constraint is represented as ainequality, then the slac
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E1:The framework of the algorithm for TSP

variable must be added. The costs corresponding to slack variables are set to zero (in the fact, any value is
available).
(Algorithm 2, based on the Branch-and-Bound method):
In TSP branch-and-bound method can be applied as follow: let $\overline{C}$ be the initial trivial feasible solution and
$\overline{q}$ be its (value of the objective function). First, solve the problem in which only $(\mathrm{i})\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}$ constraints and
$(\mathrm{i}\mathrm{i}\mathrm{i})\mathrm{O}-1$ constraints are considered, denote by $P(\emptyset, \emptyset)$ . If there is no subtours in the solution, the we obtain
the optimal solution. If not, choose asubtour arbitrarily and denote the edges on it by $C=\{l_{1}, l_{2}, \ldots, l_{r}\}$

along the tour (i.e., 1and $l_{:+1}$ ($i=1$ , $\ldots$ , $r-1$) are adjacent). The problem $P(\emptyset, \emptyset)$ can be divided into $r$

subproblems with additional constraints:

$P(\{l_{1},$
\ldots ,

$l_{r-1}\}, \{l_{r}\})$ :fix $l_{1}$ , \ldots ,
$l_{r-1}$ to use, $l_{r}$ not to use,

$P(\{l_{1},$
\ldots ,

$l_{r-2}\}, \{l_{r-1}\})$ :fix $l_{1}$ , \ldots ,
$l_{r-2}$ to use, $l_{r-1}$ not to use,

$P(\{l_{1}\}, \{l_{2}\})$ :fix $l_{1}$ to use, $l_{2}$ not to use,
$P(\emptyset, \{l_{1}\})$ :fix $l_{1}$ not to use.

It is easy to see that the optimal solution of TSP is asolution of asubproblem. Solve asubproblem
$P(\{l_{1}, \ldots, l_{j-1}\}, \{l\mathrm{j}\})$ , $1\leq j\leq \mathrm{r}$ , then three cases can be occurred:

(case 1) obtained cost is greater than $\overline{q}$,

(case 2) obtained cost is not greater than $\overline{q}$ and the solution forms atour,
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(case 3) obtained cost is not greater than $\overline{q}$ and the solution does not form atour.

case 1. The feasible region of this subproblem never contains the optimal solution. Exit the subproblem.

case 2. We obtain abetter solution than $\overline{C}$ . Replace $\overline{C}$ by this solution and $\overline{q}$ by its cost, and exit the

subproblem.
case 3. We obtain the subtour with form $\{l_{1}, \ldots, l_{j-1},\tilde{l}_{1}, \ldots,\overline{l}_{B}\}$ . Then we divide into the subproblems again

and solve them:

$P(\{l_{1}, \ldots, l_{j},\tilde{l}_{1}, \ldots,\tilde{l}_{\epsilon-1}\}, \{\tilde{l}_{s}\})$,
$P(\{l_{1}, \ldots, l_{j},\tilde{l}_{1}, \ldots,\tilde{l}_{\epsilon-2}\}, \{\tilde{l}_{\epsilon-1}\})$ ,

$P(\{l_{1}, \ldots, l_{j},\tilde{l}_{1}\}, \{\tilde{l}_{2}\})$ ,
$P(\{l_{1}, \ldots, l_{j}\}, \{\tilde{l}_{1}\})$ .

It is easy to see that this algorithm must terminate after solving finite subproblems, and $\overline{C}$ is the optimal

solution. We talk about the advantage of applying the Conti-TVaverso algorithm to this branch-and-bound
framework of TSP. Let $A$ be the incidence matrix of the complete graph with $d$ nodes. Moreover, let $\mathrm{x}$ and $\mathrm{c}$

be the variables and cost vector, and $n$ be the number of edges.

The problem $P(\emptyset, \emptyset)$ can be represented by following integer programming problem:

$| \min_{\mathrm{s}.\mathrm{t}}$

.
$\mathrm{x}\in\{0,1\}^{n}\mathrm{c}\cdot \mathrm{x}\mathrm{y}\in\{0,1\}^{n}(\begin{array}{ll}A \mathrm{o}\mathrm{I} \mathrm{I}\end{array})$

$(\begin{array}{l}\mathrm{x}\mathrm{y}\end{array})=$ $(\begin{array}{l}12\end{array})$

(3.1)

where $\mathrm{y}$ is the slack variables, Iis $n$-dimensional identity matrix, and 0is $d\cross n$-zero matrix. An important

fact is that the coefficient matrix is Lawrence type. Hence the reduced Groebner basis of its toric ideal is the

minimal universal Groebner basis simultaneously (i.e., aGroebner basis for all term order). This is very good

feature when consider subproblems. In subproblems, there are additional constraints on edge, “must be used”

and “must not be used”. The property “must be used” can be expressed by setting its cost $\mathrm{t}\mathrm{o}-M$ , where $M$

is sufficient big number (like “big-M method” to linear programming problems). The property “must not be

used” can be expressed by setting its cost to $\ovalbox{\tt\small REJECT} f$ . Assume that the reduced Groebner basis $\mathcal{G}$ of the coefficient

matrix of 3.1 had been obtained. Hence $\mathcal{G}$ is auniversal Groebner basis, we can solve subproblems with the

Conti-Traverso algorithm by modifying the cost vector $\mathrm{c}$ adequately: find normal form with respect to the

modified cost vector.
One problem is that the order induced by the modified cost vector may not be aterm order. But following

two lemmas guarantee its correctness.

Lemma 3.1 ([19], Lemma 4.14): Let $A$ be a $d\cross n$ -integral matrix. The toric ideal $I_{A}$ is homogeneous if
and only if there exists a vector $\omega$

$\in \mathbb{Q}^{d}$ such that $\mathrm{a}$ $\cdot\omega$ $=1$ for all $i=1$ , $\ldots$ , $n$ .

Clearly, the toric ideal of the coefficient matrix of 3.1 is homogeneous$(\omega=(0, \ldots, 0,1, \ldots, 1))$.

Lemma 3.2 ([19], Theorem 2.5): The Groebner fan $\mathrm{G}\mathrm{F}(I)$ is complete if I is homogeneous with respect

to some positive grading.

Thanks to above, using the order induced by the modified cost vector, division algorithm works well while

it is not aterm order.
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4Computational Experience and Conclusions
We implemented our algorithms on $\mathrm{R}\mathrm{I}\mathrm{S}\mathrm{A}/\mathrm{A}\mathrm{S}\mathrm{I}\mathrm{R}$ with some OpenXM libraries. Computational experiences

ware done on Linux machine with AMD-K6(400MHz) and $384\mathrm{M}\mathrm{B}$ RAM.
In this paper, two approaches for TSP based on the Conti-Raverso algorithm was proposed. We combine the

iterative methods (Algorithm 1) and the Branch-and-Bound method (Algorithm 2) with the Conti-Traverso
algorithm. The computing result is listed in Table 1. They are very slow because of the Groebner basis
computation.

Prom this result, we cannot insist that the Groebner basis is atool to solve the IPP. But it is atool to
analyse combinatorial optimization problems from the view of the polynomial ring and ideals.
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