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1Introduction
In this note, we obtain the Harnack inequality for “weak” solutions of the following fully
nonlinear, second-0rder, uniformly ellptic partial differential equations (PDEs for short):

F(x,Du, $D^{2}u$) $=f$ in 0, (1)

where, $\Omega\subset \mathrm{R}^{n}$ is abounded domain with smooth boundary cm for simplicity, and $F$ :
$\Omega \mathrm{x}\mathrm{R}^{||}\mathrm{x}S^{n}arrow \mathrm{R}$ and $f$ : $\Omegaarrow \mathrm{R}$ are given functions. Here, $S^{n}$ denotes the set of all
symmetric $n\cross n$ real matrices with the standard ordering.

It is well-known that the Harnack inequality implies the Holder continuity of
solutions. We note that this yields an equi-continuity of solutions since the Holder exp0-
nent and the Holder semi-norm depend only on the space-dimension, the uniform ellipticity
constants and given data in (1).

This research is jointly done with N. S. Trudinger.
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1.1 Hypotheses
In our mind, we consider the case when the coefficients of the second derivatives are merely
measurable, and inhomogenious term belongs to only $L^{n}(\Omega)$ . Moreover, we allow $F$ to have
the quadratic growth in the first derivatives.

However, $F$ is supposed to be uniformly elliptic in the second derivatives.
Thus, our hypotheses are as follows:

Hypotheses

$\{$

(A1) $xarrow F(x,p,X)$ ;measurable $(p\in \mathrm{R}^{n},X\in S^{1}’)$ ,
(A2) $|F(x,p, O)|\leq\gamma|p|^{2}$ $(x\in\Omega,p\in \mathrm{R}^{n})$ ,
(A3) $P^{-}(X-\mathrm{Y})\leq F(x,p, X)-F(x,p, \mathrm{Y})\leq P^{+}(X-\mathrm{Y})$

$(x\in\Omega,p\in \mathrm{R}^{n},X, \mathrm{Y}\in S^{n})$ ,
(A4) $f\in L^{n}(\Omega)$ ,

where, in (A2), $\gamma>0$ is aconstant, and in (A3), $p\pm:S^{n}arrow \mathrm{R}$ are the s0-called Pucci
operators defined by

$P^{+}(X)= \max\{-\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(AX)|\lambda I\leq A\leq\Lambda I\}$ ,
$p-(X)= \min\{-\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(AX)|)I\leq A\leq\Lambda I\}$ .

In what follows, the above constants for uniform ellipticity $0<\lambda\leq \mathrm{A}$ are fixed.
Under these hypotheses, we note that if $u$ is asubsolution (resp., supersolution) of (1),

then it is asubsolution (resp., supersolution) of

$P^{-}(D^{2}u)-\gamma|Du|^{2}\leq f$ (resp., $P^{+}(D^{2}u)+\gamma|Du|^{2}\geq f)$ .

We will give the definition of sub- and supersolutions of (1) later.
It is immediate to see that the following properties on $p\pm \mathrm{h}\mathrm{o}1\mathrm{d}$ true.

Proposition

(1) $\mathrm{V}-(\mathrm{X})\leq P^{+}(X)$ , $P^{+}(X)=-\mathrm{p}-(-\mathrm{X})$ , $P^{\pm}(\alpha X)=\alpha P^{\pm}(X)(\alpha\geq 0)$

(2) $P^{-}(X)+P^{-}(\mathrm{Y})\leq P^{-}(X+\mathrm{Y})\leq P^{+}(X)+P^{-}(\mathrm{Y})\leq P^{+}(X+\mathrm{Y})\leq P^{+}(X)+P^{+}(\mathrm{Y})$

Remark] In view of (1) and (2) in the above, it is easy to see that $p+$ is convex, and $p-$

is concave.

We shall give atypical example for which (A1)-(A3)are satisfied
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Bxmple $\rangle\rangle$

- $\sum_{:\dot{s}=1}^{n}a_{ij}(x)\frac{\partial^{2}u}{\partial x_{1}\partial x_{j}}\cdot+b(x)|Du|^{2}=f(x)$ (2)

Here, $A(\cdot)=(a_{\dot{|}j}(\cdot))$ , $b(\cdot)$ and $f(\cdot)$ satisfy the following:

$\lambda|\xi|^{2}\leq(\mathrm{A}(\mathrm{x})\mathrm{t}, \leq\Lambda|\xi|^{2}(\xi\in \mathrm{R}^{n})$ , $\sup_{x\in\Omega}|b(x)|\leq\gamma$ , $f\in L^{n}(\Omega)$ ,

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product in $\mathrm{R}^{n}$ .

This kind of PDEs arises in the risk-sensitive stochastic control and certain PDEs derived
from large deviation problems.

1.2 Known results
Let us mention known-results in case when the linear growth condition is supposed in place
of (A2);

$|F(x,p, O)|\leq\gamma|p|$ $(x, \in\Omega,p\in \mathrm{R}^{n})$

When $F$ is merely measurable in $x$ :

Krylov-Safonov [21] (1979) first obtained the Holder continuity of solutions by aprob-
abilistic approach. Trudinger [25] (1980) showed the same result as in [21] only by tools
from PDEs. We note that in these results, solutions means “strong” solutions; they belong
to $W_{loc}^{2,n}(\Omega)$ and satisfy the PDEs alomost everywhere sense.

Recently, Caffarelli [3] (1989) showed the Holder continuity of the “standard” viscosity
solutions when $f$ is continuous but the estimate depends only on $||f||_{L^{n}(\Omega)}$ . The reason why
$f$ is supposed to be continuous there is that Alexandroff-Bakelman-Pucci (ABP for short)
maximum principle holds for the standard viscosity solutions only when $f\in C(\Omega)$ . How-
ever, utilizing an approximation technique, CaffareUi-CrandaU-Kocan-Swiyh [4] (1996)
proved the ABP maximum principle when $f\in L^{n}(\Omega)$ for slightly restricted viscosity solu-
tions.

In this article, we adapt the notion in [4], $IP$-viscosity solutions, but, under
the assumption $f\in C(\Omega)$ , it is easy to check that our results below are still valid
for the standard viscosity solutions.

For higher regularity of solutions, Caffarelli [3] obtained that soultions belong to $W_{l\mathrm{o}\mathrm{e}}^{2,n}(\Omega)$

when “the oscillation of coefficients for the second derivatives are small in $L^{n}$-sense. How-
ever, in general, we cannot expect that solutions are in $W_{loe}^{2,n}(\Omega)$ . Because, if we could get
the higher regularity, then the solution would be the unique strong solution, which con-
tradicts the fact that there exists acounter-example for uniqueness of viscosity solutions
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by Nadirashvili [22](1997). We also refer to Safonov [23](1999), which gives an alternative
proof of [22] by aPDE approach.

When $F$ is continuous in $x$ :

Here, we only mention $C^{1,a}(\alpha\in(0,1))$ estimates for viscosity solutions by Trudinger
[26] and [27].

1.3 Two ways to derive Harnack inequality

We recall the meaning that the Harnack inequality holds; For any 0’ $\mathbb{C}$
$\Omega$ , there exists

aconstant $C=C(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\Omega’,\partial\Omega)>0$ such that for any nonnegative solutions of (1), it follows
that

$\max_{\overline{\Omega}}$, $\leq C(_{\mathrm{f}\mathrm{f}}\mathrm{n}u+\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\Omega’)||f||_{L^{n}(\Omega)})$

Bemark] By the standard scaling argument and translation, we only have to show the
above inequality when $\Omega’$ is aunit cube or aball.

We shall use the following symbols:

$B_{r}:=\{y\in \mathrm{R}^{n}||y|\leq r\}$ , $B_{r}(x):=B_{\mathrm{r}}+x$ , $Q_{r}:=\{y\in \mathrm{R}^{n}||y_{k}|\leq r/2\}$ , $Q_{f}(x):=Q_{r}+x$

Bemark 1 We notice the following inclusions hold.

$Q_{1}\subset B_{\sqrt{n}/2}\subset Q_{\sqrt{n}}$ .

&difference of proofs bewteen Trudinger’s and Caffarelli’s))

Let us formally explain the difference of proofs between Trudinger’s and Caffarelli’s.
Trudinger’s proof: We first derive the weak Harnack inequality for nonnegative super-

solutions of (1). That is to find $\kappa$ $>0$ (possibly smaller than 1) and $C>0$ such that

$||u||_{L^{\kappa}(Q_{1})} \leq C(\min_{Q_{1}}u+||f||_{L^{n}(Q_{R})})$

for some $R>1$ which only depends on $n$ .
We remark that we obtain this estimate on cubes in place of balls since we essentially

use Calder\’on-Zygmund’s cube-decomposition lemma.
Next, we show the local maximum principle for nonnegative subsolutions; That is to

find $C>0$ such that with the above $\kappa$ $>0$ in the weak Harnack inequality for some $R>1$ ,

$\max u\leq CB_{1}(||u||_{L^{\kappa}(B_{R})}+||f||_{L^{n}(B_{R})})$
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Combining these, it is easy to show the Harnack inequality.
Caffarelli’s proof: We use the (essentially) same argument as that of Trudinger to get the

we $\mathrm{k}$ Harnack inequality for nonnegative supersolutions.
Next, for nonnegative solutions, we get acontradiction if we suppose that the Harnack

inequality fails. To this end, we adapt ablow-up arugument. We note that we need
properties of subsolutions and supersolutions.

2Main results
Our aim is to show that any solutions of (1), for which assumptions (A1) $-(A3)$ are
fulfilled, have the same equi-Holder continuity. However, without further hypothesis, we
cannot expect to prove such aresult.

Let us present an example to show that we need further hypothesis.

Example)) Let $n=1$ and $\Omega=(0,1)$ . Set $u(x)=Ax(A\geq 0)$ . Notice that $-\triangle u=0$ in
$(0, 1)$ . By setting $v(x)=e^{\mathrm{u}(x)}$ , it follows that

$-\triangle v+e^{-Ax}|Dv|^{2}=0$ in $(0, 1)$

Since $u\geq 0$ in $(0, 1)$ , the “coefficient” in front $\mathrm{o}\mathrm{f}|Dv|^{2}$ is bounded for any $A\geq 0$ . However,
for any fixed small $\epsilon$ $\in(0,1/2)$ , it is impposible to find $C=C(\epsilon)>0$ independent of $A>0$
such that

$x \in[\epsilon,1-\epsilon]x\in[\epsilon,1-\epsilon]\max v(x)\leq C\mathrm{m}\dot{\mathrm{m}}v(x)$.
We notice that $v$ is not “equ\"i-H\"older continuous when $Aarrow\infty$ .

As will be seen, since our estimate depends only on $\lambda$ , $\Lambda$ , $n$ and 7in the hytotheses, this
example explains why we need the further hypothesis on $L^{\infty}$-bound for solutions.

Now, we shall recall the definitions of viscosity solutions.
Throughout this article, we suppose that

(A5) $p> \frac{n}{2}$

Under (A5), it is well-known that any function in $W_{lo\mathrm{c}}^{2p}(\Omega)$ has second-0rder derivatives
almost all $x\in\Omega$ .

Definition

(1) We call $u\in C(\Omega)$ an $L^{\mathrm{p}}$-viscosity subsolution (subsolution for short) of (1) if for any
$\phi$ $\in W_{lo\mathrm{c}}^{2,p}(\Omega)$ , it follows that

$\lim_{\epsilonarrow 0}\mathrm{e}\mathrm{s}\mathrm{s}\inf_{y\in x)}\{F(y, D\phi(y),D^{2}\phi(y))-f(y)\}\leq 0$
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provided u $-\langle/\rangle$ attains its maximum at xE0.
(2) We call ue $\mathrm{C}?(\mathrm{O})$ an $\mathrm{f}$-viscosity supersolution (supersolution for short) of (1) if for
any p6 $W_{E}\ovalbox{\tt\small REJECT}\cdot(Cl)$ , it follows that

$\lim_{\epsilonarrow 0}\mathrm{e}\mathrm{s}\mathrm{s}\sup_{y\in B_{e}(x)}\{F(y, D\phi(y), D^{2}\phi(y))-f(y)\}\geq 0$

provided $u-\phi$ attains its minimum at $x\in\Omega$ .
(3) We call $u\in C(\Omega)$ an $L^{p}$-viscosity solution (solution for short) of (1) if it is an $L^{p_{-}}$

viscosity sub- and supersolution of (1).

Remark] We call $u$ a $C$-viscosity(sub-, super-) solution if the above properties hold
by replacing $W_{loc}^{2,p}(\Omega)$ by $C^{2}(\Omega)$ . Since //-viscosity solutions are more restrictive than
$C$-viscosity solutions, //-viscosity solutions are, indeed, $C$-viscosity solutions.

We remark that the opposite inclusion is true when $F$ and $f$ are continuous. See [4] for
this fact.

We recall the notion of strong solutions here:

Definition

We call $u\in C(\Omega)$ astrong subsolution (resp., supersolution) of (1) if Du(x) and $D^{2}u(x)$

exist for almost all $x\in\Omega$ and

$F$ ( $x$ , Du(x), $D^{2}u(x)$ ) $-f()\leq 0$ (resp., $\geq 0$) $a.e$ . in $\Omega$ .

We also call $u\in C(\Omega)$ astrong solution of (1) if it is astrong sub- and supersolution of
(1).

In what follows, we mainly discuss about $L^{n}$-viscosity solutions.

Our main result is as follows:

Theorem

For any $N>0$ and asubdomain $\mathrm{f}l’\mathbb{C}\mathrm{f}l$ , if asolution $u$ satisfies
that $|u|\leq N$ in 0, then there is $C>0$ such that

$\max uB_{r}(x)\leq C$ $\min_{B_{r}(x)}u+r||f||_{L^{n}(\Omega)}$ (for $x\in\Omega’$ and small $r>0$)

Remark] This result does not affect the counter-example
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We shall give asufficient condition for (2) in the above example under $\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}\ovalbox{\tt\small REJECT}$ irichlet
condition on an for which the L”-estimate is apriori obtained.

Bxample $\rangle\rangle$

$0\leq b(x)\leq\gamma$ and $f\geq 0$ in Q.

In fact, in this case, since 0is aclassical subsolution of (2), in view of the comparison
principle between astrong subsolution and an $L^{n}$-supersolution in [18], we obtain that the
$L^{n}$-solution $u$ of (2) is nonnegative.

To obtain the upper bound, we find astrong supersolution $w\in C(\overline{\Omega})\cap W_{lo\mathrm{c}}^{2,n}(\Omega)$ of

$\{$

$p-(D^{2}w)\geq f^{+}$ $a.e$ . in 0,
$w=0$ on $\partial\Omega$ ,
$0\leq w\leq C||f||_{L^{n}(\Omega)}$ in $\Omega$ .

See the existence of strong solutions below for the proof of the existence of $w$ . Since $w$ is
astrong supersolution of (2), the comparison principle again yields that

$u\leq w\leq C||f||_{L^{n}(\Omega)}$ in $\Omega$ .

We modify the proof of Trudinger’s in [27]. In fact, if we directly apply CafFarelli’s blow-
up argument, we can only succeed to prove the assertion in the case when the growth-0rder
in $p$-variables is strictly less than 2. See [18] for this approach.

Idea of proof)

(1) Use two different transformations to subsolutions and supersolutions, respec-
tively, to simplify the original PDEs.
(2) Show the local maximum principle for transformed subsolutions and the weak
Harnack inequality for transformed supersolutions.

2.1 Preliminaries
Two key tools are the ABP maximum principle and the existence of strong solutions.

To this end, we introduce the upper contact set $\Gamma_{\Omega}[u]$ for $u\in C(\Omega)$ ;

$\Gamma_{\Omega}[u]=$ { $x\in\Omega|\exists p\in \mathrm{R}^{n}$ such that $u(y)\leq u(x)+\langle p,y-x\rangle$ for $\forall y\in\Omega$ }

fLemark] Roughly speaking, it holds that “$D^{2}u\leq 0$”on $\Gamma_{\Omega}[u]$ .

ABP maximum principle (Proposition 3.3 in [4])
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Assume $f\in L^{n}(\Omega)$ . There exists $C=C(\lambda, \Lambda, n, \Omega)>0$ such that if $u\in C(\Omega)$ is an
$L^{n}$ subsolution (resp., $L^{n}$-supersolution)of

$P^{+}(D^{2}u)\leq f$ $(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.,$ $P^{+}(D^{2}u)\geq f)$ ,

then it follows that

$\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}u^{+}\leq$ an
$u^{+}+C\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\Omega)||f^{+}||L^{n}(\mathrm{p}_{\Omega}[\mathrm{u}+])$

$(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.$ , $\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}u^{-}\leq\max u^{-}\partial\Omega+C\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\Omega)||f^{-}||_{L^{n}(\mathrm{p}_{\Omega}[u^{-}]))}$

remark] (i) Here, we have used the notations:

$u^{+}:= \max\{u, 0\}$ and $u^{-}:= \max\{-u, 0\}$

(ii) If $\Omega$ is aball or acube, then $C>0$ does not depend on 0.
(iii) We do not know if this assertion holds true for $C$-solutions unless $f$ is continuous.
(iv) The idea of proof is first to approximate $f$ by smooth functions (see the proposition
below for an existence result when $f$ is smooth), and then, to approximate “

$u$”by the sup-
convolution (resp., $\inf$-convolution)and the standard mollifier to apply the ABP maximum
principle for strong solutions.

Existence of strong solutions (Lemma 3.1 in [4])

There exists $C>0$ such that for $f\in L^{n}(\Omega)$ , there is an $L^{n}$-strong subsolution $u\in$

$C(\overline{\Omega})\cap W_{lo\mathrm{c}}^{2,n}(\Omega)$ of

$\{$

(1) $P^{+}(D^{2}u)\leq f$ $a.e$ . in $\Omega$ ,
(2) $u=0$ on an,
(3) $||u||_{L}\infty(\Omega)\leq C\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\Omega)||f||_{L^{n}(\Omega)}$

Bemark] (i) Here, the constant $C>0$ is the one for the ABP maximum principle. We
may have the corresponding result for $P^{-}(D^{2}u)\geq f$ .
(ii) The sketch of proof is as follows: Choose $f_{k}\in C^{\infty}(\overline{\Omega})$ such that $||f-f_{k}||_{L^{n}(\Omega)}arrow 0$ , as
$k$ $arrow\infty$ . Since $P^{+}$ is convex and independent of $x$ , in view of [12], we know the existence
of classical solutions $u_{k}$ of

$\{$

$P^{+}(D^{2}u_{k})=f_{k}$ in $\Omega$ ,
$u_{k}=0$ on $\partial\Omega$ .

Follwoing the argument in [4], we can get auniform estimate for $||u_{k}||_{W_{loc}^{2,n}(\Omega)}$ and the

uniform convergence to some $u\in C(\overline{\Omega})$ . We remark that the limit function $u$ only satisfies
(1) since we may only know $u_{k}arrow u$ weakly in $W_{loc}^{2,n}(\Omega)$ .
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2.2 Local maximum principle
Setting

$w(x)=e^{*}-1u\mathrm{s}$ ,

we observe that $w$ is anonnegative subsolution of

$P^{-}(D^{2}w) \leq\underline{f}:=\frac{e+_{\gamma f}^{u}}{\lambda}$.

Since we suppose that $0\leq u\leq N$ , we do not have to worry about the right hand side of
the above.

Local maximum principle
Fix any $p>0$ and $\Omega’(\subset\Omega$ . There exists $C=C$( $\lambda,$

$\Lambda$ , $n$ , dist(Q’, $\partial\Omega),p$) $>0$ such that

$Q_{r}(x) \max w\leq C(||w||_{L^{p}(Q_{2\sqrt{\mathrm{n}}r}(x))}+r||\underline{f}||_{L\cdot(Q_{2\sqrt r}(x)))}$.
for $x\in\Omega’$ and small $r$ $>0$ .

For simplicity, we shall obtain the assertion when $x=0$ and $r=1$ . Let us write $B$ for
$B_{\sqrt{n}}^{o}$ for simplicity.

We first note that it is sufficient to show the case when $\underline{f}=0$. Indeed, letting $\psi$ $\in$

$C(\overline{B})\cap W_{loc}^{2,n}(B)$ be the strong subsolution of

$\{$

$P^{+}(D^{2}\psi)\leq-\underline{f}$ $a.e$ . in $B$ ,
$\psi$ $=0$ on $\partial B$ ,
$||\psi||_{L(B)}\infty\leq C||\underline{f}||_{L^{n}(B)}$,

we need to show the assertion for $w+\psi$ , which is an $L^{n}$ subsolution of

$P^{-}(D^{2}(w+\psi))\leq 0$ .

We notice here that even for $p\in(0,1)$ , we have the following inequality in place of the
triangle inequality for $p\geq 1$ :

$||f_{1}+f_{2}||_{L^{p}(\Omega)}\leq 2^{\frac{1}{p}}(||f_{1}||_{L^{\mathrm{p}}(\Omega)}+||f_{2}||_{L^{\mathrm{p}}(\Omega))}$ for $f_{1}$ , $f_{2}\in L^{p}(\Omega)$ .

Next, we introduce the following “cut-0ff’ function

$\eta(|x|)=(n-|x|^{2})^{\frac{2\mathrm{n}}{\mathrm{p}}}$ .
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It is not hard to verify that $W(x):=\eta(x)w(x)$ satisfies

$P^{-}(D^{2}W)\leq C(\eta^{-\mathrm{L}}\overline{2}n|DW|+\eta^{-R}nW)$ .

Since an easy geometrical observation implies that

$|DW(x)| \leq\frac{W(x)}{\sqrt{n}-|x|}\leq C\eta^{-_{n}}(\epsilon x)W(x)$ for $x\in\Gamma_{B}[W^{+}]$ .

Thus, since $Q_{1}\not\subset$ $B_{\sqrt{n}}$ , the ABP maximum principle yields that

$\max w\leq C\max W^{+}\leq C||\eta^{-_{n}}W^{+}|\epsilon|_{L^{n}(B)}\leq\frac{1}{2}\max W^{+}+C||w||_{L^{\mathrm{p}}(B)}Q_{1}BB_{1}^{\cdot}$

More precisely, we first regularize $w$ by the $\sup$-convolution $w^{\epsilon}$ of it. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n},\mathrm{w}\mathrm{e}$ get the
estimate in asmaller ball $B_{r}$ , where $r=r(\epsilon)arrow\sqrt{n}$ as $\epsilon$ $arrow 0$ .

Bemark]To deduce PDEs to homogenious ones, we need to work with $L^{n}$-solutions instead
of $C$-solutions. In fact, we only know that the above $\psi$ belongs to $W_{l\mathrm{o}\epsilon}^{2,n}(B)$ but $C^{2}(B)$ .

2.3 Weak Harnack inequality
We shall adapt Caffarell’s argument in [2] to show the weak Harnack inequality for super-
soultions while in [19] we adapt the argument in [25].

We fisrt use the following transformation for $u$ :

$v(x)=1-e^{-\frac{\gamma u(x)}{\lambda}}$

It is easy to see that $v$ is asupersolution of

$P^{+}(D^{2}v) \geq\overline{f}:=\frac{e^{-\mathrm{L}^{u}})\gamma f}{\lambda}$ .

Weak Harnack inequality
Fix $\Omega’\mathrm{c}\subset\Omega$ . There exist $p>0$ and $C=C(\lambda,\Lambda, n, \Omega’)>0$ such that

$||v||_{L^{\mathrm{p}}(Q_{r}(x))} \leq C(\min_{Q_{r}(x)}v+r||\overline{f}||_{L^{n}(Q_{2\sqrt{n}r}(x))})$

for $x\in\Omega’$ and small $r>0$ .

As before, we may suppose that $x=0$ and $r=1$ .
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Again, considering $vf$ $\psi$ instead of $\psi$ , where $\psi\in C(\overline{B}_{1})\cap W_{loe}^{2,n}(B_{1})$ is asupersolution of

$\{$

$\mathcal{P}^{-}(D^{2}\psi)\geq\overline{f}^{-}$ $a.e$ . in $B_{1}^{o}$ ,
$\psi=0$ on $\partial B_{1}$ ,
$0\leq\psi$ $\leq C||\overline{f}||_{L^{\mathfrak{n}}(B_{1})}$ in $B_{1}$ ,

we only need to consider the case when $\overline{f}=0$ .
Moreover, by considering $v(x)/( \min_{Q_{1}}v+\epsilon)(\epsilon>0)$ instead of $v$ , it is sufficient to find

$p>0$ such that
$||v||_{L^{q}(Q_{1})}\leq C$.

To this end, we need the following decay estimate of the distribution of $v$ ;

$|\{x\in Q_{1}|v(x)>t\}|\leq Ct^{-\tau}$ $(t\geq 0)$

Here, $C>0$ and $\tau>0$ are independent of $v$ . Thus, it suffices to show the following
assertion for any integer $k$ $\geq 1$ :

$|$ {$x\in Q_{1}$ I $v(x)>M^{k}$} $|\leq\mu^{k}$ ,

where $M>1$ and $\mu\in(0,1)$ are independent of $k$ .
For the case of $k$ $=1$ , the above estimate is adirect consequence of the ABP maximum

principle.
To show any $k\geq 1$ , we argue by contradiction: Suppose that the assertion for $k$ holds

but fails for $k+1$ . To get acontradiction, we use the cube-decomposition lemma by
Calder\’on-Zygmund. See [2] for it.

2.4 Concluding remarks
In [19], following Escauriaza in [10], we give an extension to the case when $f$ belongs to a
slightly larger space, $L^{\mathrm{p}}(\Omega)$ for some $p\in(n/2, n)$ .

In [19], we also mention the Holder estimate near the boundary, which ensures the global
Holder estimate. In afuture work, we will discuss on higher regularity for solutions of (1)
utlizing this global H\"older estimate.

Open questions] There must be so many open questions (at least to me) in this direction.
We only list some of them:
(1) Haraack inequality near the boundary when $f\in L^{p}(\Omega)$ for $p\in(n/2, n)$ . (i.e. Fabes-
Stroock type formula near $\partial\Omega.$ )
(2) Relation between Caffarell’s class and the VMO space for higher regularity.
(3) Sufficient conditions to show the existence of solutions of (1) in compariosn to Nagum
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(4) More delicate sufficient conditions to derive $L”(\mathrm{O})$ estimate than that mentioned here,

(proposed by Prof. H. Nagai)
(5) More than quadratic nonlinearity. (proposed by Prof. M. Otani)

etc.

Though some of papers listed below are not refered here, for the interested readers, we
give alist of related papers on If-solutions for fully nonlinear PDEs.
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