KOROVKIN TYPE APPROXIMATION THEOREMS ON THE DISK ALGEBRA

新潟大学大学院 自然科学研究科 春日一浩 (Kazuhiro Kasuga)
Graduate School of Science and Technology, Niigata University

1. 円板環上のBKW-作用素

 Γ を複素平面の単位円周とする。 $A(\Gamma)$ を Γ 上の複素数値連続関数で開円板 $D=\{|z|<1\}$ へ正則に拡張される関数の全体とする。 $A(\Gamma)$ を円板環という。

高橋 ([4]) は、Korovkin 近似定理を一般化するため Bohman-Korovkin-Wulbert 作用素 (簡単に BKW-作用素 という) の概念を導入した。

定義 X を separable complex Banach space としS を X の部分集合とする。X 上の有界線形作用素 T が test functions S についての BKW-作用素と呼ばれるのは次が成り立つ時に言う。 $\{T_n\}_n$ を次の(i)(ii)を満たす X 上の有界線形作用素の列とする。

- (i) すべての n に対して $||T_n|| \le ||T||$ 。
- (ii) すべての $h \in S$ に対して $||T_n h Th|| \to 0 (n \to \infty)$ 。

この時すべての $f \in X$ に対して $||T_n f - Tf|| \to 0 \ (n \to \infty)$ 。

我々は円板環上の BKW-作用素 について考察する。 $S_n = \{1, z, z^2 \dots, z^n\}$ とおく。この時次が成り立つ。

定理1 ([2]) T を $A(\Gamma)$ 上の有界作用素で ||T||=1 かつ T1=1 とする。 この時 T が test functions S_n についての BKW-作用素であるための必要十分条件は T が次のように表せることである。 すなわち

$$(Tf)(\zeta) = \sum_{j=1}^{n} a_j(\zeta)(C_{\varphi_j}f)(\zeta) \quad (\zeta \in \Gamma, \ f \in A(\Gamma)),$$

ここで Γ 上 $|\varphi_j|=1$, すべての j に対して $a_j(\zeta)\geq 0$, $\sum_{j=1}^n a_j(\zeta)=1$ $(\zeta\in\Gamma)$ 。

さて $\{z_j\}_{j=1}^n \subset D$ に対して

$$b(z) = \lambda \prod_{j=1}^n \frac{-\bar{z_j}}{|z_j|} \frac{z - z_j}{1 - \bar{z_j}z}, \quad z \in \bar{D}$$

とする。ここで λ は $|\lambda|=1$ を満たす定数である。こういうタイプの関数 b(z) を finite Blaschke products という。 Γ 上で |b|=1 である。また絶対値 1 の定数関数も finite Blaschke product という。

2. {1,z} についての 円板環上の BKW-作用素

 $S_1 = \{1, z\}$ についての $A(\Gamma)$ 上の BKW-作用素について考える。次の定理が成り立つ。

定理2 ([3]) T が ||T||=1 を満たす $A(\Gamma)$ 上の有界線形作用素とする。この時 T が $\{1,z\}$ についての BKW-作用素であるための必要十分条件は $T=\psi C_{\varphi}$ と表せることである。ここで ψ,φ は finite Blaschke products である。

3. $\{1, z, z^2\}$ についての 円板環上の BKW-作用素

T を test functions $S_2=\{1,z,z^2\}$ についての $A(\Gamma)$ 上の BKW-作用素で $\|T\|=1$ かつ T1=1 を満たすものとする。定理 1 より T は次のように表せる。

$$(Tf)(\zeta) = a(\zeta)(C_{\varphi}f)(\zeta) + b(\zeta)(C_{\psi}f)(\zeta) \quad (\zeta \in \Gamma, \ f \in A(\Gamma)),$$

ここで

$$|\varphi(\zeta)| = |\psi(\zeta)| = 1$$
, $a(\zeta) + b(\zeta) = 1$, $a(\zeta)$, $b(\zeta) \ge 0$ $(\zeta \in \Gamma)$.

注意 a,b,φ,ψ は Γ 上で連続とは限らない。([3] 参照)。

特に次の形を持つBKW-作用素を考える。

(#)
$$T=(C_{\varphi}+C_{\psi})/2$$
, Γ 上で $|\varphi|=1$ かつ $|\psi|=1$ 。

この場合、T1 = 1 かつ ||T|| = 1。

次の補題はBKW-作用素の定義から導かれる。

補題1 $1 \in S \subset A(\Gamma)$ とする。T を $\|T\| = 1$ を満たす S についての $A(\Gamma)$ 上の BKW-作用素とする。 T_1 を $\|T_1\| \le 1$ を満たす $A(\Gamma)$ 上の有界線形作用素とする。 $h \in S$ に関して $Th = T_1h$ ならば $T = T_1$ である。

関数 $h \in A(\Gamma)$, $h \neq 0$ に対して $(h/\bar{h})(\zeta) = h(\zeta)/\bar{h(\zeta)}$ がほとんどすべての点 $\zeta \in \Gamma$ に対して定義できる。 h/\bar{h} が Γ 上連続的に拡張される時 h/\bar{h} は拡張された関数とみなす。 次の定理が成り立つ。

定理3 ([2]) T を $A(\Gamma)$ 上の有界線形作用素で ||T||=1 かつ T1=1 を満たすものとする。 $Tz=h,\ Tz^2=g$ とおく。このとき次が成り立つ。

i) $h \neq 0$ ならば T が (#) を満たす $\{1, z, z^2\}$ についての BKW-作用素 であるための必要十分条件は h/\bar{h} が finite Blaschke product かつ $h/\bar{h}=2h^2-g$ である。この場合、 $\varphi=h+\sqrt{g-h^2}$ で $\psi=h-\sqrt{g-h^2}$ である。ここで $\sqrt{g-h^2}$ は $g-h^2$ の root functions の一つである。

ii) h=0 ならば T が (#) を満たす $\{1,z,z^2\}$ についての BKW-作用素 であるための必要 十分条件は g が finite Blaschke product である。この場合、 $\varphi=\sqrt{g}$ で $\psi=-\sqrt{g}$ である。

証明 まず $h,g \in A, \|h\|_{\infty} \le 1$ かつ $\|g\|_{\infty} \le 1$ であることに注意する。T が (#) の形を持つと仮定する。この時 $\varphi+\psi=2h$ かつ $\varphi^2+\psi^2=2g$ が成り立つ。 $(\varphi+\psi)^2=\varphi^2+\psi^2+2\varphi\psi$ だから

$$2h^2 - g = \varphi\psi \tag{1}$$

である。 $h,g \in A$ だから $\varphi\psi \in A$ である。 Γ 上で $|\varphi\psi|=1$ だから $\varphi\psi$ は finite Blaschke product である。 $h \neq 0$ である時、(1) より $h/\bar{h}=(\varphi+\psi)/(\bar{\varphi}+\bar{\psi})=\varphi\psi=2h^2-g$ 。h=0 の時、 $g=-\varphi\psi$ かつ g は finite Blaschke product である。

次に逆を示す。 $h \neq 0$ と仮定する。

$$b = h/\bar{h} = 2h^2 - g \tag{2}$$

とおく。この時、仮定より b は finite Blaschke product である。

$$b = h^2/|h|^2 \tag{3}$$

だから、(2)より

$$g - h^2 = h^2 - b = (-b)(1 - |h|^2)$$
(4)

が成り立つ。一つの root function $\sqrt{g-h^2}$ をとり

$$\varphi = h + \sqrt{g - h^2}, \quad h \to \psi = h - \sqrt{g - h^2} \tag{5}$$

とおく。この時

$$(\varphi + \psi)/2 = h \in A(\Gamma)$$
 かつ $\varphi \psi = 2h^2 - g \in A(\Gamma)$ (6)

が成り立つ。(4) より

$$|h|^2 + \left|\sqrt{g - h^2}\right|^2 = 1\tag{7}$$

 $\zeta\in\Gamma$ とする。もし $h(\zeta)=0$ ならば、(7) より $|(\sqrt{g-h^2})(\zeta)|=1$ 、したがって $|\varphi(\zeta)|=|\psi(\zeta)|=1$ 。もし $h(\zeta)\neq0$ ならば (3),(4) より

$$(\sqrt{g-h^2})(\zeta)=ih(\zeta)\sqrt{1-|h(\zeta)|^2}/|h(\zeta)|$$

$$(\sqrt{g-h^2})(\zeta) = -ih(\zeta)\sqrt{1-|h(\zeta)|^2}/|h(\zeta)|$$

が成り立つ。したがって、(5)より

$$|\varphi(\zeta)| = \left| h(\zeta) + \left(\sqrt{g - h^2} \right)(\zeta) \right| = \left| h(\zeta) \pm \frac{ih(\zeta)}{|h(\zeta)|} \sqrt{1 - |h(\zeta)|^2} \right|$$
$$= \left| |h(\zeta)| \pm i\sqrt{1 - |h(\zeta)|^2} \right| = 1$$

が成り立つ。同様にしてすべての $\zeta\in\Gamma$ に対して $|\psi(\zeta)|=1$ が成り立つ。ゆえに

$$\Gamma$$
上で $|\varphi| = |\psi| = 1$ 。 (8)

 $f \in A(\Gamma)$ に対して

$$T_0 f = \frac{1}{2} (C_{\varphi} + C_{\psi}) f \tag{9}$$

とおく。この時(5)より

$$T_0 1 = 1, T_0 z = h$$
 かつ $T_0 z^2 = g$ (10)

が成り立つ。 $\varphi^n+\psi^n=(\varphi^{n-1}+\psi^{n-1})(\varphi+\psi)-\varphi\psi(\varphi^{n-2}+\psi^{n-2})$ だから (6) と帰納法により

すべての非負な整数
$$n$$
 に対して $T_0 z^n \in A(\Gamma)$ (11)

が成り立つ。 $f \in A$ とする。この時、解析的な多項式の列 $\{p_k\}_k$ で $\|f-p_k\|_\infty \to 0$ $(k \to \infty)$ が存在する。この時 (8) と (9) により $\|T_0f-T_0p_k\|_\infty \to 0$ $(k \to \infty)$ 。(11) より $T_0p_k \in A(\Gamma)$ 。

したがって $f \in A(\Gamma)$ に対して $T_0 f \in A(\Gamma)$ が成り立つ。結果として T_0 は $A(\Gamma)$ 上の有界線形作用素で $\|T_0\|=1$ かつ $T_0 1=1$ を満たす。定理 1 より T_0 は $\{1,z,z^2\}$ についての $A(\Gamma)$ 上の BKW-作用素である。(10) より $T_0 z^j = T z^j$ (j=0,1,2) が成り立つ。ゆえに補題 1 より $T=T_0$ である。

h=0 かつg は finite Blaschke product であると仮定する。 $T_1f=\frac{1}{2}(C_{\sqrt{g}}+C_{-\sqrt{g}})f$ $(f\in A)$ とおく。この時 $n\geq 1$ に対して $T_11=1$, $T_1z^{2n-1}=0$ かつ $T_1z^{2n}=g^n$ が成り立つ。上と同様にして $T_1=T$ かつ T が $\{1,z,z^2\}$ についての BKW-作用素であることを証明できる。 (証明終わり)。

4. 問題

T を test functions $S_3=\{1,z,z^2,z^3\}$ についての $A(\Gamma)$ 上の BKW-作用素で $\|T\|=1$ かつ T1=1 を満たすものとする。定理 1 より T は次のように表せる。

$$(Tf)(\zeta) = a(\zeta)(C_{\varphi}f)(\zeta) + b(\zeta)(C_{\psi}f)(\zeta) + c(\zeta)(C_{\varphi}f)(\zeta) \quad (\zeta \in \Gamma, \ f \in A(\Gamma)),$$

ここで

$$|\varphi(\zeta)|=|\psi(\zeta)|=|\phi(\zeta)|=1,\ a(\zeta)+b(\zeta)+c(\zeta)=1,\ a(\zeta),\ b(\zeta),\ c(\zeta)\geq 0\ \ (\zeta\in\Gamma)_{\circ}$$

特に次の形を持つBKW-作用素を考える。

$$(\star)$$
 $T=(C_{\varphi}+C_{\psi}+C_{\phi})/3,~\Gamma$ 上で $|\varphi|=1$ かつ $|\psi|=1$ かつ $|\phi|=1$ 。
この場合、 $T1=1$ かつ $\|T\|=1$ 。

問題 T を $A(\Gamma)$ 上の有界線形作用素で ||T||=1 かつ T1=1 を満たすものとする。この時 T が (\star) を満たす $\{1,z,z^2,z^3\}$ についての BKW-作用素であるための必要十分条件は何か。

REFERENCES

- Hoffman K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- [2] Hirasawa G., Izuchi K. and Kasuga K., Korovkin type approximation theorems on the disk algebra. Hokkaido. Math. J. 29 (2000), 103-117.
- [3] Izuchi K., Takagi H. and Watanabe S., Sequential BKW-operators and function algebras. J. Approx. Theory 85 (1996), 185-200.
- [4] Takahasi S.-E., Bohman-Korovkin-Wulbert operators on normed spaces. J. Approx. Theory 72 (1993), 174-184.