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An analytical expression of probability density function (PDF) of velocity fluc-
tuation is derived with the help of the statistics based on generalized entropy
(the Tsallis entropy or the R\’enyi entropy). It is revealed that the derived PDF
explains the detailed structure of experimentally observed PDF as well as the scal-
ing exponents of velocity structure function. Every parameters appeared in the
analysis, including the index proper to the Tsallis entropy or the Binyi entropy,
are determined, self-consistently, by making use of observed value of intermit-
tency exponent. The experiments conducted by Lewis and Swinney (1999) are
analyzed.
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An investigation of turbulence based on the generalized entropy, Tsallis’ $[1,2]$ or Renyi’s

[3], was started by the present authors [4] with an investigation of the $\mathrm{p}$-model $[5,6]$ in

terms of ageneralized statistics constructed on the entropy. We intend to analyze the

velocity fluctuation, $\delta u(r)=|u(x+\mathrm{r})$ $-u(x)|$ , between two points with adistance $r$

apart in aturbulence. Here, $u$ represents one of the components of the fluid velocity field

$\vec{u}$, say $x$-component. By making use of the velocity fluctuation $\delta u_{0}$ of eddies with the

largest size $\ell_{0}$ , the Reynolds number is estimated, in the absence of intermittency [7],

as ${\rm Re}=\delta u_{0}\ell_{0}/\nu=(\ell_{0}/\eta)^{4/3}$ where $\nu$ and $\eta=(\nu^{3}/\epsilon)^{1/4}$ are, respectively, the kinematic

viscosity and the Kolmogorov scale. The quantity $\epsilon$ represents the energy input rate at

the largest eddies.

In the case of high Reynolds number ${\rm Re}>>1$ , there exist alot of steps, $n=1,2$ , $\cdots$ ,

at each of which eddies break up into two parts producing aenergy cascade. The size of

eddies in the $n\mathrm{t}\mathrm{h}$ step of the cascade is assumed to be given by $\ell_{n}=\delta_{n}\ell_{0}$ with $\delta_{n}=2^{-n}$ .

Then, our main interest in the following reduces to the fluctuation of velocity difference

$\delta u_{n}=\delta u(\ell_{n})$ corresponding to the size of $n\mathrm{t}\mathrm{h}$ eddies in the cascade. Note that the

dependence of the number of steps $n_{\mathrm{K}}$ on $r/\eta$ , within the analysis where intermittency is

not taken into account [7], is given by
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n $=-\log_{2}r/\eta+(3/4)\log_{2}\mathrm{R}\mathrm{e}$ . (1)

In this paper, we examine the experimental results obtained by Lewis and Swinney

[16] for turbulent Couette-Taylor flow produced in aconcentric cylinder system. Our

analysis is based on the fact that, for high Reynolds number ${\rm Re}>>1$ , the Navier-Stokes

equation for incompressible fluid is invariant under the scale transformation [6]: $r\simarrow$

$\lambda^{\alpha/3}\vec{u},\tilde{u}arrow\lambda\vec{r}$, $tarrow\lambda^{1-\alpha/3}t$ and $(p/\rho)arrow\lambda^{2\alpha/3}(\mathrm{p}/\mathrm{p})$ . Here, the exponent $\alpha$ is an

arbitrary real quantity which specifies the degrees of singularity in the velocity gradient

$| \partial u(x)/\partial x|=\mathrm{h}.\mathrm{m}_{\ell_{n}arrow 0}|u(x+\ell_{n})-u(x)|/\ell_{n}=\lim_{\ell_{n}arrow 0}\delta u_{n}/\ell_{n}$. This can be seen with the

relation $\delta u_{n}/\delta u_{0}=(\ell_{n}/\ell_{0})^{\alpha/3}$ , which leads to the singularity in the velocity gradient [8]

for $\alpha<3$ , since $\delta u_{n}/\ell_{n}^{\alpha/3}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ .

The distribution $P^{(n)}(\alpha)d\alpha\propto P^{(1)}(\alpha)^{n}d\alpha$ of singularities at the $n\mathrm{t}\mathrm{h}$ step in the cascade

with

$P^{(1)}(\alpha)$ oc $[1-(\alpha-\alpha_{0})^{2}/(\Delta\alpha)^{2}]^{1/(1-q)}$ , (2)

$(\Delta\alpha)^{2}=2X/[(1-q)\ln 2]$ was derived [9-12] by taking an extreme of the Tsallis en-

tropy [1,2,13] $S_{q}^{\mathrm{T}}[P^{(1)}( \alpha)]=(1-q)^{-1}(\int d\alpha P^{(1)}(\alpha)^{q}-1)$ which is non-extensive, or

the Renyi entropy [3] $S_{q}^{\mathrm{R}}[P^{(1)}( \alpha)]=(1-q)^{-1}\ln\int d\alpha P^{(1)}(\alpha)^{q}$ which has the extensive

character, with appropriate constraints, i.e., the normalization of distribution function,

$\int d\alpha P^{(1)}(\alpha)=$ const., and the $q$-variance being kept constant as aknown quantity,

$\sigma_{q}^{2}=\langle(\alpha-\alpha_{0})^{2}\rangle_{q}=(\int d\alpha P^{(1)}(\alpha)^{q}(\alpha-\mathrm{a}0)2)/\int d\alpha P^{(1)}(\alpha)^{q}$ . In deriving $P^{(n)}(\alpha)$ , we

assumed that each step in the cascade is statistically independent. Note that the values

of $\alpha$ are restricted within the range $[\alpha_{\min}, \alpha_{\max}]$ , where $\alpha_{\max}-\alpha 0=\alpha 0-\alpha_{\min}=\triangle\alpha$ .

With the help of the relation $P^{(n)}(\alpha)$ oc $\delta_{n}^{1-f(\alpha)}[6]$ , we can extract the multi-fractal

spectrum $f(\alpha)$ in the form [9-12]:

$f(\alpha)=1+(1-q)^{-1}\log_{2}[1-(\alpha-\alpha_{0})^{2}/(\triangle\alpha)^{2}]$ , (3)

which reveals how dense each singularity, labeled by $\alpha$ , fills physical space
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FIG. 2. The $\mu$-dependence of $q$ . Circles are the points where the self-consistent equations are solved.

By making use of an observed value of the intermittency exponent $\mu$ as an input, the

quantities $\mathrm{a}\mathrm{O}$ , $X$ and the index $q$ can be determined, self-consistently, with the help of

the three independent equations, i.e., the energy conservation: $\langle\epsilon_{n}\rangle=\epsilon$ , the definition of

the intermittency exponent $\mu:\langle\epsilon_{n}^{2}\rangle=\epsilon^{2}\delta_{n}^{-\mu}$ , and the scaling relation [9-12]: l/(l-q)=

$1/\alpha_{-}-1/\alpha_{+}$ with $\alpha_{\pm}$ satisfying $f(\alpha_{\pm})=0$ , where the average $\langle\cdots\rangle$ is taken by $P^{(n)}(\alpha)$ .

The scaling relation is ageneralization of the one derived first by $[14,15]$ to the case where

the multi-fractal spectrum has negative values. The $\mu$-dependences of the self-consistent

solutions, $\mathrm{a}\mathrm{O}$ , $X$ and $q$ , are given in Fig. 1and Fig. 2for the region where the value of $\mu$

is usually observed, i.e., $0.16\leq\mu\leq 0.31$ . We see that they are given in this region by the

equations $\alpha_{0}=0.998+0.587\mu$ , $X=-5.73\cross 10^{-3}+1.21\mu$ and $q=-0.607+6.01\mu-7.72\mu^{2}$ .

Adopting the value $\mu=0.28$ observed in the experiment [16] with the Taylor-scal

84



Reynolds number $R_{\lambda}=262({\rm Re}=540000)$ or $R_{\lambda}=80({\rm Re}=69000)$ , and solving the

above three equations self-consistently, we have $q=0.471$ , $\alpha_{0}=1.162$ , $X=0.334$ . Then,

we obtain $\alpha_{+}-\alpha_{0}=\alpha_{0}-\alpha_{-}=0.748$ , $\Delta\alpha=1.350$ $[9-12]$ .

It may be reasonable to assume that the probability $\Pi^{(n)}(x_{n})dx_{n}$ to find the scaled

velocity fluctuation $|x_{n}|=\delta u_{n}/\delta u_{0}$ in the range $x_{n}\sim x_{n}+dx_{n}$ can be divided into two

parts:

$\Pi^{(n)}(x_{n})dx_{n}=\Pi_{\mathrm{N}}^{(n)}(x_{n})dx_{n}+\Pi_{\mathrm{S}}^{(n)}(|x_{n}|)dx_{n}$ (4)

where the singular part $\Pi_{\mathrm{S}}^{(n)}(|x_{n}|)$ , stemmed from multifractal distribution of singularities

in velocity gradient that may be related to the fluctuations caused by turbulent viscosity,

is determined by $\Pi_{\mathrm{S}}^{(n)}(|x_{n}|)dx_{n}=P^{(n)}(\alpha)d\alpha$ with the transformation of the variables

between $|x_{n}|$ and $\alpha:|x_{n}|=\delta_{n}^{\alpha/3}$ , leading to [12]

$\Pi_{\mathrm{S}}^{(n)}(|x_{n}|)dx_{n}=3G^{(n)}(|x_{n}|)/(Z^{(n)}|\ln\delta_{n}|)dx_{n}$ (5)

with

$G^{(n)}(x)=x^{-1}[1-(\alpha(x)-\alpha_{0})^{2}/(\triangle\alpha)^{2}]^{n/(1-q)}$ , (6)

$\alpha(x)=3\ln x/\ln\delta_{n}$ . Note that the singular part of the probability density function

has adependence on $\ln\delta u_{n}$ , and that the values of $|x_{n}|$ are restricted within the range
$[\delta_{n}^{\alpha_{\max}/3}, \delta_{n^{\min/3}}^{\alpha}]$ . The first term, $\Pi_{\mathrm{N}}^{(n)}(x_{n})$ assumed to come from thermal or dissipative

fluctuation caused by the kinematic viscosity, will be considered later in this paper after

estimating the moments of the velocity fluctuation.

The $m\mathrm{t}\mathrm{h}$ moments of the velocity fluctuation, defined by $\langle\langle|x_{n}|^{m}\rangle\rangle$ $=$

$\int_{-\infty}^{\infty}dx_{n}|x_{n}|^{m}\Pi^{(n)}(x_{n})$, are given by

$\langle\langle|x_{n}|^{m}\rangle\rangle=2\gamma_{m}^{(n)}+(1-2\gamma_{0}^{(n)})a_{m}\delta_{n}^{\zeta_{m}}$ (7)

where $\mathrm{a}3\mathrm{q}---\{2/[C_{\frac{1}{q}}^{/2}(1+C_{\frac{1}{q}}^{/2})]\}^{1/2}$ with $C_{\overline{q}}=1+2\overline{q}^{2}(1-q)X\ln 2$, and

$2 \gamma_{m}^{(n)}=\int_{-\infty}^{\infty}dx_{n}|x_{n}|^{m}\Pi_{\mathrm{N}}^{(n)}(x_{n})$ . (8)
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Here, we used the normalization $\langle\langle 1\rangle\rangle=1$ . The quantity

$(_{m}=\alpha_{0}m/3-2Xm^{2}/[9(1+C_{m/3}^{1/2})]-[1-\log_{2}(1+C_{m/3}^{1/2})]/(1-q)$ , (9)

is the s0-called scaling exponents of velocity structure function, whose expression was

derived first by the present authors [9-12]. In Fig. 3, we compare the present result (9)

with the experimentally measured scaling exponents [16] at ${\rm Re}=540000$ (circles) and

${\rm Re}=69000$ (triangles). We use the observed value of the intermittency exponent, i.e.,

$\mu=2-\zeta_{6}=0.28$ , for theoretical analysis. There are also represented, as references,

the predictions of K41 (dotted line) [7], of She-Leveque (dashed line) [17] and of the

$\log$-normal(short-dashed line) [18-20]. Note that our formula (9) can also explain the

scaling exponent for higher moments [9-12].

FIG. 3. The scaling exponent $\zeta_{m}$ of the velocity structure function. The experimental results obtained by
Lewis and Swinney are shown by circles $({\rm Re}=540 \mathrm{o}\mathrm{m})$ and by triangles $({\rm Re}=69000)$ . The present theoretical
result (9) is drawn by solid line for the intermittency exponent $\mu=0.28$ taken from the experimental data.
Dotted line represents K41, whereas dashed line She-Leveque. The prediction of the $\log$-normal model is given
by short-dashed line with the best fit but inconsistent value $\mu=0.27$ of the intermittency exponent following
Lewis and Swinney.

Let us introduce new variable

$\xi_{n}=\delta u_{n}/\sqrt{\langle\langle\delta u_{n}^{2}\rangle\rangle}=x_{n}/\sqrt{\langle\langle x_{n}^{2}\rangle\rangle}=\overline{\xi}_{n}\delta_{n}^{\alpha/3-\zeta_{2}/2}$ (10)

scaled by the variance of velocity fluctuation where $\overline{\xi}_{n}=[2\gamma_{2}^{(n)}\delta_{n}^{-\zeta_{2}}+(1-2\gamma_{0}^{(n)})a_{2}]^{-1/2}$ ,

and the probability density function (PDF) $\Pi^{(n)}(|\xi_{n}|)\wedge$ in terms of this variable through

the relatio
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$\Pi^{(n)}(|\xi_{n}|)d\xi_{n}=\Pi^{(n)}(|x_{n}|\wedge)dx_{n}$ . (11)

Making use of the relation between $\xi_{n}$ and $\alpha$ , the PDF responsible for the distribution

of singularities $\Pi_{\mathrm{S}}^{(n)}(|\xi_{n}|)\wedge$ can be rewritten in terms of $\alpha$ in the form

$\Pi_{\mathrm{S}}^{(n)}(|\xi_{n}|)=\Pi_{\mathrm{S}}^{(n)}\delta_{n^{2}}^{\zeta/2-\alpha/3+1-f(\alpha)}\wedge-$ (12)

with $\Pi_{\mathrm{S}}^{(n)}-=3(1-2\gamma_{0}^{(n)})/(2\overline{\xi}_{n}\sqrt{2\pi X|\ln\delta_{n}|})$ .

FIG. 4. The $n$-dependence of the PDF $\Pi^{(n)}\wedge(\xi_{n})$ given by the present analysis with $q=0.471$ $(\mu=0.280)$ for

integer values $n$ from 5to 20, from left to right at the axis $\xi$ .

In the following, we will derive the symmetric part of the PDF of velocity difference.

The origin of the asymmetry in the PDF (i.e., skewness) may be attributed to dissipative

evolution of eddies or to experimental setup and situations. The consideration of the

latter will be reported elsewhere.

In order to determine the normal part $\Pi_{\mathrm{N}}^{(n)}(\xi_{n})\wedge$ of the PDF, we divide $\Pi^{(n)}(\xi_{n})\wedge$ into

two parts [21]: $\Pi^{(n)}(\xi_{n})=\Pi_{<*}^{(n)}(\xi_{n})$ for
$\wedge\wedge$

$|\xi_{n}|\leq\xi_{n}^{*}$ , and $\Pi^{(n)}(\xi_{n})=\Pi^{(n)}*<(\xi_{n})$ for$\xi_{n}^{*}\leq\wedge\wedge|\xi_{n}|\leq$

$\overline{\xi}_{n}\delta_{n}^{\alpha_{\min}/3-\zeta_{2}/2}$ . The point $\xi_{n}^{*}$ is defined by $\xi_{n}^{*}=\overline{\xi}_{n}\delta_{n}^{\alpha^{*}/3-\zeta_{2}/2}$ giving $\Pi_{\mathrm{S}}^{(n)}(|\xi_{n}^{*}|)=\Pi_{\mathrm{S}}^{(n)}\wedge-$, where

$\alpha^{*}$ is the solution of $\zeta_{2}/2-\alpha/3+1-f(\alpha)=0$ . The PDF function $\Pi_{<*}^{(n)}(\xi_{n})\wedge$ is constituted

both by thermal fluctuation and by the multifractal distribution of singularities, and is

assumed to be given by Gaussian function [21]. On the other hand, the contribution to

$\Pi_{*<}^{(n)}(\xi_{n})\wedge$ is assumed to come only from the multifractal distribution of singularities, i.e.
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$\Pi_{*<}^{(n)}(\xi_{n})\wedge=\Pi_{\mathrm{S}}^{(n)}(|\xi_{n}|)\wedge[21]$ . Connecting $\Pi_{<*}^{(n)}(\xi_{n})\wedge$ and $\Pi_{*<}^{(n)}(\xi_{n})\wedge$ at $\xi_{n}^{*}$ having the same value

and the same derivative there, we have

$\Pi_{<*}^{(n)}(\xi_{n})\wedge=\Pi_{\mathrm{S}}^{(n)}\mathrm{e}^{-[1+3f’(\alpha)][(\xi_{n}/\xi_{n})^{2}-1]/2}-\cdot.$ . (13)

The $n$-dependence of $\Pi^{(n)}(\xi_{n})\wedge$ is shown in Fig. 4with the self-consistently determined

parameters $\mathrm{a}\mathrm{o}$ , $X$ and $q[21]$ . We notice that there are two points which look like in-

dependent of the number $n$ of steps in the cascade at $\xi_{n}\approx 0.8$ and at $\xi_{n}\approx 2.3$ . These

points are also observed in the experimental data [16] at about the same values of $\xi_{n}$ .

FIG. 5. Experimentally measured PDF of the velocity fluctuations by Lewis and Swinney for $R_{\lambda}=262$

$({\rm Re}=540000)$ are compared with the present theoretical results $\Pi^{\{n)}\wedge(\xi_{n})$ . Open triangles are the experimental
data points on the left hand side of the PDF taken from Lewis and Swinney, whereas open squares are those on
the right hand side. Closed circles are the symmetrized points obtained by taking averages of the left and the
right hand experimental data. For the experimental data, the distances $r/\eta=\ell_{n}/\eta$ are, from top to bottom:
11.6, 23.1, 46.2, 92.5208, 399, 830 and 1440. Solid lines represent the curves given by the present theory with
$q=0.471$ . For the theoretical curves, the number of steps in the cascade $n$ are, ffom top to bottom: 14, 13, 11,
10, 9.0, 8.0, 7.5, 7.0. For better visibility, each PDF is shifted by -1 unit along the vertical axis.

The comparison of experimentally measured PDF’s of the velocity fluctuation [16] and

those obtained by the present analysis is given in Fig. 5. In order to extract the symmet-

rical part from experimental data, we took mean average of those on the left hand side

(represented by open triangles in the figure) and the right hand side (by open squares).

The symmetrized data are described by closed circles. The solid lines are the curves
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$\Pi^{(n)}(\xi_{n})\wedge$ obtained by the present analysis.

The dependence of $n$ on $r/\eta$ , extracted from Fig. 5, is shown in Fig. 6by solid line,

which gives us the best fit

$n=-1.019\cross\log_{2}r/\eta+0.901\mathrm{x}\log_{2}{\rm Re}$ (14)

with ${\rm Re}=540000$ . The dashed line represents (1) valid in the absence of intermittency.

From (14), we see that the power $w$ in ${\rm Re}=(\ell_{0}/\eta)^{w}$ turns out to be $w=1.13$ in the

present intermittent turbulence, which is 4/3 in the absence of intermittency, and that

the number $n_{\mathrm{K}}$ corresponding to the Kolmogorov scale is estimated as $n_{\mathrm{K}}=17.2$ for the

experiments under consideration.

The success of the present theory in the analysis of the experiments [16] may indicate

the robustness of singularities even for the case of no inertial range. The same experiments

are investigated in [22] by arather different analysis from the present one. Comparison

of these two approaches is given in [21]. The present theory works quite well also for

another systematic numerical experiments conducted by Gotoh [23]. It will be reported

elsewhere.
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