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Abstract

Cluster formation is ageneric phenomenon in many-body systems, and have been studied
in various context(see Aizawa, Sato and Ito, 2000; Nakato and Aizawa, 2000). Acluster is
not the closed system but the open system with finite lifetime. It survives by exchanging the
member particles with the external environment, and self-regulates the inherent inner structure
through the interactions among member particles. The peripheral region of acluster, s0-called
“interface” plays asignificant role in the response to the change of environment, i.e., evaporation
or absorption of particles is sensitively controlled in the interface which surrounds the core-part
of the cluster. Recent results of our simulations, carried out with many-body systems under
short-ranged attractive forces, will be briefly discussed in the following.

1. Two Kinetic Phases embedded in the Cluster

An equilibrium cluster is described by the ergodic measure $\mu(x)$ defined in the one-
particle phase space $x$ ,

$\mu(x)=\langle r\rangle\mu_{\mathrm{c}}(x)+(1-\langle r\rangle)\mu_{g}(x)$ (1)

where $\langle r\rangle$ stands for the mean fraction of the phase space corresponding to the clus-
tering motions; $\mu_{\mathrm{c}}(x)$ and $\mu_{g}(x)$ are the normalized characteristic measure to describe
the cluster phase and the gaseous phase, respectively. The probability density $P_{g}(T_{g})$

for the residence time $T_{g}$ in gaseous phase is usually approximated by the poissonian,
$P_{g}(T_{g})=\langle T_{g}\rangle^{-1}\exp[-T_{g}/\langle T_{g}\rangle]$ , but on the other hand the probability density $P_{\mathrm{c}}(T_{\mathrm{c}})$ for
the residence time $T_{\mathrm{c}}$ in cluster phase is quite different from the poissonian;

$P_{\mathrm{c}}(T_{\mathrm{c}})=p \cdot\frac{dQ_{W}}{dT_{\mathrm{c}}}+(1-p)\cdot\frac{dQ_{L}}{dT_{\mathrm{c}}}=\frac{dQ_{\mathrm{c}}}{dT_{\mathrm{c}}}$ (2)

where $Q_{W}=\exp[-AT_{\mathrm{c}}^{-\alpha}]$ (negative Weibull distribution), $Q_{L}=\exp[-B(\log T_{\mathrm{c}})^{-\beta}]$ (Log-
Weibull distribution), and $p$ is the fraction of the negative Weibull component (Aizawa,
Sato and Ito, 2000; Aizawa, 2000). Figure 1demonstrates the accumulated probability
$Q_{\mathrm{c}}(x)(x=T_{\mathrm{c}})$ , where the scaling regimes corresponding to two components $Qw$ (or $Pw$ )
and $Q_{L}$ (or $P_{L}$ ) are clearly observed, and particularly the intrinsic long time tails of $Q_{L}(x)$

are systematically prolonged when the cluster size becomes large; when the total energy
$E$ decreases the size of the cluster increases. Two kinetic phases generally coexist in big
clusters.

The shape of acluster depends on the strength of interaction between the cluster and
the environment. When the member particles are violently exchanged in the case of a
small cluster, the shape is quite irregular, but in alarge cluster the shape is almost globular
and the variation of the shape is very slow and majestic. This $\mathrm{i}\mathrm{s}\triangleright \mathrm{t}\mathrm{h}\mathrm{e}$ reason why the $1/f$

fluctuation is often $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}9_{\mathrm{n}4}.\mathrm{d}$ in clustering motions. Figure 2is atypical example of cluster
formation in $\mathrm{N}$-body hamiitonian systems which we have reportecLin the previous pape
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$|\mathrm{a}\mathrm{t}|0$ and Ito, 2000), where the stability of member particles is demon
;ale which represents the Gauss-Riemannian curvature; the inside $0$

$\prime \mathrm{e}$ curvature and the outside has negative one. The Riemannian geom
used in the analysis of the Mixmaster universe model (Aizawa, $\mathrm{K}$

1997), is successfully applied for the rigorous definition of the cluste
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Fig.l Distribution function $Q(x)$ for the trapping time $x$ . $Pw(x)$ is the
Negative-Weibull and $P_{L}(x)$ is the $\mathrm{b}\mathrm{g}$-Weibull. The parameter $E$ is the
total energy which controls the size of the cluster

Fig.2 Asnapshot of the cluster formation at $E=0$ , where the number
of member particles is almost 50 percents of the total particles
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2. Universality of the ${\rm Log}$-Weibull Distribution Characterizing Arnold
Diffusion

The ${\rm Log}$-Weibull component becomes larger and larger, when the cluster size increases
and the cluster shape approaches to aglobular one. This implies that the one-particle
motion can be approximated by an integrable hamiltonian $H(p, q)$ if we consider the
clustering motions in alarge cluster;

$H(p, q)=H_{0}(p)+\epsilon H_{1}(p, q,t)$ (3)

where $H_{0}$ is the effective integrable hamiltonian and the $\epsilon H_{1}(p, q, t)$ is the perturbation
due to the small derivation ffom the globular cluster. Equation (3) is the standard form
of nearly integrable hamiltonian systems, where we can use the Nekhoroshev theorem
(Nekhoroshev, 1977) for slowly drifting motions such as the Arnold diffusion in the Fermi-
Pasta-Ulam models for quartz oscillators (Aizawa, 1995). The distribution function $P(T)$

of the characteristic time $T$ for the diffusion was derived many years ago(Aizawa, 1989)
in the following form; $P(T) \propto\frac{1}{T(\log T)^{\mathrm{c}}}(T\gg 1)$ . It is easily obtained that the distribution
function $P(T)$ for the Arnold diffusion is nothing but the ${\rm Log}$-Weibull distribution function
demonstrated in Fig.1; if we put $c=2$ , the intrinsic long time tails in cluster formation
(in 2-dimensional simulations) are completely understood in terms of the Arnold diffusion
(Aizawa, 2000).

3. Quasi-structure surviving as aWhole-body

Clusters appear almost always in the transitional regime between two different ther-
modynamical phases as astable kinetic phase. Only difference ffom the ordinary phase
in thermodynamic limit is that the cluster is an extremely small open system with finite
scales in time as well as in space, where microscopic fluctuations influence prominently
ly on the whole processes extending from the birth to the death of the quasi-structure.
The cluster discussed here behaves like agiant particle composed of many microscopic
particles. The internal structure of the cluster has been explored for long time, but no
one succeeded to find out any rigid structures in the inside of the cluster. However, our
simulations elucidates that the internal structures are clearly understood in terms of the
coexistence of two different kinetic laws embedded in acluster. The self-0rganization of
these two different types of kinetic phases is essential in order that the cluster can survive
for long period, and the stability seems to be protected by its own internal mechanisms,
which are inherent to the cluster itself. We can say that acluster should be understood
as an entity with active nature, and it is never apassive entity only adapting to the
environment.
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