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Abstract

In this paper we consider multipliers characterized by group actions.
The classical case, where the group $\mathrm{R}_{+}\cross \mathrm{O}(n)$ acts on Rn, is replaced by
action with the group $\mathrm{R}+\cross \mathrm{O}(p, q)$ on Rn. We also consider some discrete
cases.

1Introduction
The class of multipliers, bounded on afixed $\mathrm{L}^{p}$ , is in general alarge one. For ex-
ample, the set of multipliers bounded on $\mathrm{L}^{2}(\mathrm{R}^{n})$ can be identified with $\mathrm{L}^{\infty}(\mathrm{R}^{n})$ .
Of course, this is usually not adisadvantage. However, by putting more invari-
ance conditions on the class it is possible to make it much more restricted, and
even finite dimensional. This type of characterization applies to the Hilbert
transform and its higher dimensional analogues. These operators play acentral
role in the theory of multipliers and singular integrals and tlieir special position
is confirmed by the above mentioned characterization. The Hilbert and Riesz
transforms correspond to the natural action of the group $\mathrm{R}^{+}\cross \mathrm{O}(n)$ on $\mathrm{R}^{n}$ . In
this work we will consider another group acting and determine the operators it
characterizes. Although the group will act on $\mathrm{R}^{n}$ the real motivation for this
work is to have abetter understanding of multipliers on Riemannian symmetric
spaces. The goal would be to use this type of characterization by invariance to
find interesting operators on those spaces, or at least some class of them. The
main obstacle for this project is that, while the usual Fourier transform work
well with linear transformations, this is not the case with the spherical trans-
form. In the last section of this paper we will look at an action that do work
well with alarge class of symmetric spaces. But this action is not sufficient to
produce areasonable family of operators.

2Hilbert and Riesz transforms
In this section we shall review the classical cases to make the connection with the
other actions clearer. Let us begin with the Hilbert transform, it can be char-
acterized as the only bounded, translation invariant operator acting on $\mathrm{L}^{2}(\mathrm{R})$ ,
which commutes with positive dilations and anti-commutes with negative ones
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see [S] sect. 3.1 or [EG] sect. 6.8. It is well-known that, in this setting, a
bounded, translation invariant operator is represented, on the Fourier $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{I}\#$

form side, by multiplication with abounded function. If we let $F$ denote the
Fourier transform and write $D_{\eta}$ for the operation of dilation with the scalar $\eta$ .
Then it is an easy exercise to prove that

$\mathcal{F}\circ D_{\eta}=|\eta|^{-1}D_{1/\eta}\circ F$ . (1)

Thus if $m$ is the multiplier corresponding to the operator, we have the following
identity $D_{\eta}\circ m=\mathrm{s}\mathrm{g}\mathrm{n}(\eta)m\circ D_{\eta}$ . Letting $m$ also denote the bounded function,
with which we are multiplying. We obtain $m(\eta\lambda)=\mathrm{s}\mathrm{g}\mathrm{n}(\eta)m(\lambda)$ . (A priori,
this relation only holds $\mathrm{a}.\mathrm{e}$. But, since the group acts transitively on the set
$\mathrm{R}\backslash \{0\}$ , the relation extends to all A’s in that set) So, up to aconstant, $m$

is the sign-function. The natural generalizations of the Hilbert transform to
higher dimensions are the Riesz transforms. These can also be characterized in
asimilar manner. Let $t_{\rho}(f)(x)=f(\rho^{-1}x)$ denote the left regular representation
of $O(n)$ . We then have

Theorem 1([S] sect. 3.1 Prop 21). A family of multiplier operators $\overline{T}=$

$(T_{1}, \ldots,T_{n})$ bounded $\mathit{0}n$ $\mathrm{L}^{2}(\mathrm{R}^{n})$ and commuting $urid\iota$ positive dilations, satisfies
the identity $l_{\rho^{-1}}\mathrm{o}\overline{T}\circ l_{\rho}=\pi_{\rho}\circ\overline{T}$, where $\pi_{\rho}$ is the standard representation of $O(n)$

on $\mathrm{R}^{n}$ , iff $m\dot{.}(\lambda)=C\lambda:/|\lambda|$ . That is, up to a constant, the family of operators
is the family of Riesz transforms.
Proof. The assumption that the operators commute with positive dilations is
equivalent to demanding that the corresponding multipliers are homogeneous of
degree zero. For the Fourier transform we have the identity

$\mathcal{F}\circ l_{\rho}=l_{\rho}\circ \mathcal{F}$ ,

if $\rho\in O(n)$ . So, on the Fourier transform side the identity becomes $\overline{m}(\rho\lambda)=$

$\pi_{\rho}(\overline{m}(\lambda))$ . Asimple calculation confirms that the family of Riesz transforms
satisfies this identity. Since the components of $\overline{m}$ are homogeneous of degree
zero we may identify them with their restrictions to the unit sphere. Let $O(n-$
1) be imbedded as the subgroup fixing the vector $(1,0, \ldots,0)$ . Note that the
standard representation of $O(n)$ is equivalent to the representation of $O(n)$ on
the spherical harmonics of degree one. For such representations we have the
following lemma

Lemma 1( $[\mathrm{s}\eta$ , Thm. IV.2.12, [CW], Thm $\mathrm{I}\mathrm{I}.3.3^{2}$ ). Assume that
$(\pi_{\rho}, V)$ is an irreducible representation coming from the spherical harmonics.
Then there is a unique one-dimensional subspace in $V$ invariant under $O(n-1)$ .

lThe statement there is not quite right, but it is easy to correct. Stein claims that the
Riesz transforms are determined by the identity (in our notation) $\mathrm{J}_{\rho}\mathrm{o}\overline{T}\mathrm{o}l_{\rho^{-1}}=\pi_{\rho}0\overline{T}$. This
leads to the identity $\overline{m}(\rho^{-1}x)$ $=\rho(\overline{m}(x))$ for the multiplier vector. But, in fact, this identity
does not hold for the Riesz transforms. (the error has its origin in amistake in the calculations
at the end of the proof of the lemma at page 57)

$2\mathrm{i}\mathrm{n}$ both references, explicitly in the first and implicitly in the second, it is assumed that
$n>2$ . But the case $n=2$ follows easily from the explicit formulas for the spherical harmonics,
see [SW], page 142
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Proof. Let 1be the trivial one-dimensional representation of $O(n-1)$ . As the
multiplicity of $\pi_{\rho}$ in $\mathrm{L}^{2}(\mathrm{S}^{n-1})=1$ , the Frobenius reciprocity theorem shows
that 1also has multiplicity 1in the restriction of $\pi_{\rho}$ to $O(n-1)$ . $\square$

According to our assumptions above $m$(1, 0, $\ldots$ , 0) is invariant under the
subgroup $O(n-1)$ . Since the group action is transitive on the unit sphere, this
determines $m$ completely. $\square$

Remark 1. Clearly we might change the homogeneity on the Fourier transform
side, $i.e$ . instead of the assumption that the multipliers are homogeneous of
degree zero we might assume that they are homogeneous of some negative degree.
Such a multiplier ill not be bounded on $\mathrm{L}^{2}$ but might be bounded from $\mathrm{L}^{p}$ to $\mathrm{L}^{r}$ ,
for some $p$ and $r$. (For instance, if $m( \xi)=\frac{\xi}{|\xi|^{a+1}}.\cdot$ , where $a\leq n/2$ it is easy to
see that this function satisfies the conditions in, $fNfThm\mathit{1}$ , for $q= \frac{n}{n-a}$ . (each
term in the integrand is of the form $2^{j|\alpha|}$

$P(\xi)$

$\overline{|\xi|^{a+1+2|\alpha|}}$
, where $P$ is a homogeneous

polynomial of total degree $|\alpha|+1$ , so it can be estimated by $2^{a}$ . Thus the integral is
bounded by $2^{j(n-2a)}$ ) By duality and interpolation, we then get that the operator
is bounded from $\mathrm{L}^{p}$ to $\mathrm{L}^{r}$ , if $p \underline{1}-\frac{1}{r}--\frac{a}{n}$ . This can also be seen by factoring the
multiplier as $m( \xi)=m_{1}(\xi)\cdot m_{2}(\xi)=\frac{1}{|\xi|^{a}}$ . $\frac{\xi}{|\xi|}.$ . The second operator is essentially
just a Riesz transform, so bounded on Lp. The result then follows from tlge
theorem of Hardy-Littlewood-Sobolev.
Remark 2. The lemma shows that there eists a unique family of operators for
any representation coming from spherical harmonics. These families are called
higher Riesz transforms by Stein, see $[S]$ sect $III$. and III.4.8.
Remark 3. One can observe that from $n\geq 3$ it is enough to consider the action
of the subgroup SO(n) because also in that case we have a fied vector. On the
other hand it is easy to see that if $n<3$ this is not sufficient. (SO(l)=id does
not act transitively on $\mathrm{S}^{0}=\{+1, -1\}$ . For $n=\mathit{2}$ the group acts transitively but
the subgroup is trivial. Hence every point on the circle is fied under it)

3Aslight digression

3.1 The Hilbert transform on T and $\mathrm{Z}$

Edwards and Gaudry [EG] sect. 6.7-8, consider the Hilbert transform not only
on $\mathrm{R}$ but also on $\mathrm{T}$ and Z. To make it easier to see the connection to the 2-
dimensional cases we shall give aquick review of their results in this section. For
$\mathrm{Z}$ dilations are defined as usual, but for $\mathrm{T}$ they are defined by taking powers:
$D_{a}f(x)=f(x^{a})$ , $a\in \mathrm{Z}\backslash \{0\}$ . As $\frac{1}{a}$ does not belong to $\mathrm{Z}$ , we are forced to
reformulate the identity (1) alittle bit on $\mathrm{T}$

$D_{a}\circ \mathcal{F}\circ D_{a}=\mathcal{F}$ .
Note that the factor $1/|\eta|$ has disappeared since the volume now is finite. But
this factor appears on both sides of the identity for the operator on $\mathrm{R}$, so this
difference does not matter. Otherwise the proof is the same and we obtai$\mathrm{n}$
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Theorem 2([EG] Thm. 6.8.3). If T. is a multiplier operator 0n $\mathrm{L}^{2}(\mathrm{T})$

satisfying the identity $r_{\mathit{4}^{\ovalbox{\tt\small REJECT}}}\circ D_{a}\ovalbox{\tt\small REJECT}$ sgn aD. $\circ T_{\mathit{4}}\ovalbox{\tt\small REJECT}$ for all a e $\mathrm{Z}^{\ovalbox{\tt\small REJECT}}2$ {0}. Then 4? is $a$

constant multiple of the sign function. Hence, T. is a constant multiple of the
Hilbert transform.

In the case of Z we are forced to modiy the characterization slightly, on
account of the following result

Lemma 2([EG] Lemma 6.8.4). If $T_{\phi}$ is a multiplier operator on $1^{2}(\mathrm{Z})$ such
that $T_{\phi}\mathrm{o}D_{a}=\sigma(a)D_{a}\mathrm{o}T_{\phi}$ for all $a\in \mathrm{Z}\backslash \{0\}$ , where $\sigma(a)$ is a complex-valued
function on $\mathrm{Z}\backslash \{0\}$ . Then $T_{\phi}$ is a constant multiple of the identity.

Proof. Let $\delta_{x}(n)=1$ if $n$ $=x$ and 0otherwise, and take $x\not\in a\mathrm{Z}$ . Applying the
identity to the function $\delta_{x}$ then gives the relation $aD_{a}(T_{\phi}\delta_{x})=0$ . Setting $\kappa$ $=$

$T_{\phi}\delta_{0}$ this becomes $\kappa(-x)=0$ , because $T_{\phi}$ commutes with translations. Since $x$

was an arbitrary number $\not\in a\mathrm{Z}$, we have shown that suPp $\kappa$ $\subset\cap a\mathrm{Z}=\{0\}$ . $\square$

The proof of this result shows that we can only take the identity for the
restriction to the subspace of functions supported on $a\mathrm{Z}$ . So, to have the identity
for all $a$ the function have to be supported at the origin. Fortunately, this is
also sufficient for the characterization. Another problem in this case is that
the identity for the Fourier transform only works for functions supported on
$a\mathrm{Z}$ . This is however not amajor problem because in this case the kernel, $\kappa$ ,
is $\mathrm{i}\mathrm{m}1^{2}(\mathrm{Z})$ . The kernel will also satisfy an identity similar to the one for the
multiplier. Hence, we can give acharacterization in terms of the kernel

Theorem 3([EG] Thm 6.8.5). Let $T_{\phi}$ be a multiplier operator which, for
every $a\in \mathrm{Z}$ , satisfies the relation $T_{\phi}(D_{a}f)=aD_{a}T_{\phi}(f)$ for all functions $f$ with
support in $a\mathrm{Z}$ . Then the kernel, $\kappa$ is a constant multiple of the function $\frac{1}{n}$ .

Remark 4. In $[EG]$, the authors define the Hilbert transform on $\mathrm{Z}$ to be given
by convolution with the kernel, $h(n)= \frac{1}{\pi n}$ . This kernel differs a little bit from
the Fourier transform $of-i\mathrm{s}\mathrm{g}\mathrm{n}\theta$ , the conjugate function operator, whose kernel
can be written $as:\propto(-1)^{n}-1h(n)$ . The point being that $h$ is easier to handle and
boundedness on $\mathrm{L}^{p}$ for $h$ implies boundedness for the conjugate function oper-
ator. One can also note that $h(n)$ is the natu$ml$ correspondent to the Hilbert
kernel on R.

3.2 Riesz transforms on $\mathrm{T}^{2}$ and $\mathrm{Z}^{2}$

In this section we would like to extend the results from the last section to $\mathrm{T}^{2}$

and $\mathrm{Z}^{2}$ . (See remark 5for acomment on why we restrict ourselves to these
cases) The first problem we encounter is to find the correct semigroup acting(of
course, $\mathrm{Z}\backslash \{0\}$ , that acted on $\mathrm{T}$ and $\mathrm{Z}$ , is only asemigroup.) In $\mathrm{R}^{2}$ the group
was $\mathrm{R}_{+}\cross O(2)$ , so let us consider the semigroup $G=(\mathrm{R}_{+}\cross O(2))\cap GL(2, \mathrm{Z})$.
Observe that if $g\in G$ then $g^{-1}$ need not be in $G$ but $|\det g|g^{-1}$ will be. If
$f\in 1^{2}(\mathrm{Z}^{2})$ then we define the action of $G$ on $f$ as $l_{g}f(\overline{m})=f(g^{t}\overline{m})$ . Similarly
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if $f\in \mathrm{L}^{2}(\mathrm{T}^{2})$ then we let $L_{g}f(\exp(i\overline{x}))=f(\exp(2\pi ig^{t}\overline{x}))$ . Here we consider $\mathrm{T}^{2}$

a$\mathrm{s}$ $\mathrm{R}^{2}/\mathrm{Z}^{2}$ . (If

$g=(\begin{array}{ll}a bc d\end{array})$ ,

we may write the action as $L_{g}f(x_{1}, x_{2})--f(x_{1}^{a}x_{2}^{c}, x_{1}^{b}x_{2}^{d})$ , which has the advan-
tage of not being dependent on agiven presentation of $\mathrm{T}^{2}$ . However, this way of
writing the action is not so convenient for our purposes.) In the case $\mathrm{T}^{2}$ things
work almost as in $\mathrm{R}^{2}$ , but we have to work directly with the whole group. (Note
that in one dimension we have $(\mathrm{R}_{+}\cross \mathrm{O}(1))\cap GL(1, \mathrm{Z})=\mathrm{N}_{+}\cross O(1)$ . But in
higher dimensions this type of decomposition does not work.)

Theorem 4. If $T_{\overline{\phi}}$ is a family of multiplier operators $\mathit{0}n$ $\mathrm{L}^{2}(\mathrm{T}^{2})$ satisfying the
identity

$L_{g^{l}}\mathrm{o}T_{\overline{\phi}}=|\det g|^{-1/2}\pi_{g}oT_{\overline{\phi}}\circ L_{g^{t}}$ (2)

for all $g\in G$ . Then $\overline{\phi}$ is a constant multiple of $\overline{m}/|\overline{m}|$ .

Proof. To begin with we need the identity for the Fourier transform

Lemma 3. $D_{|\det g|}\circ F$ $\mathrm{o}L_{\mathit{9}^{t}}=L_{g^{t\mathrm{O}}}F$

Proof. We have that

$\int_{\mathrm{T}^{2}}e^{2\pi i|\det g|\overline{m}\cdot\overline{\theta}}f(g(\overline{\theta}))d\theta=|\det g|^{-1}\int_{g(\mathrm{T}^{2})}e^{2\pi i(g^{-1})^{t}(|\det g|\overline{m})\cdot\overline{\theta}}f(\overline{\theta})d\theta$ .

Now, we observe that although $g^{-1}$ does not belong to $G$ , $|\det g|(g^{-1})^{t}=g$

does. This implies that the integrand is afunction on $\mathrm{T}^{2}$ . It remains to show
that $g(\mathrm{T}^{2})=|\det g|\mathrm{T}^{2}$ , i.e. for afunction on $\mathrm{T}^{2}$ it should be the same to
integrate over the first set as taking $|\det g|$ times the integral over $\mathrm{T}^{2}$ . Since
$g\in G$ , $g$ will be of the form

$(\begin{array}{ll}k l-l k\end{array})$ or $(\begin{array}{ll}k ll -k\end{array})$ .

But the latter can be written as

$(\begin{array}{ll}1 00 -1\end{array})$ . $(\begin{array}{ll}k l-l k\end{array})$

and the matrix
$(\begin{array}{ll}1 00 -1\end{array})$

does not affect the integral. Hence it is enough to consider the first type. Let

$g=(\begin{array}{ll}k l-l k\end{array})$

and identify $\mathrm{T}^{2}$ with the unit square which has corners at the points $(0,0)$ ,
$(1, 0)$ , $(0, 1)$ , $(1, 1)$ . The matrix $g$ maps this square to the square with corners
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$(0, 0)$ , $(k, -l)$ , $(l, k)$ , $(k+l, k-l)$ . Multiplying $g$ with asuitable power of the
matrix

$(\begin{array}{ll}0 1-1 0\end{array})$ ,

we may restrict ourselves to the case where $k$ and $l$ are both positive. Draw
the line, parallel with one of the axes, going into the square from each of the
corners, see fig.

This gives us four triangles, and possibly one square at the center

$\Delta_{1}$ $=$ $\{(0,0), (k, -l), (k,0)\}$

$\Delta_{2}$ $=$ $\{(0,0), (l,k), (l,0)\}$

$\Delta_{3}$ $=$ $\{(k, -l), (k+l,k-l), (k,k-l)\}$

$\Delta_{4}$ $=$ $\{(l,k), (k+l,k-l), (l,k-l)\}$

$\square$ $=$ $\{(k,0), (l,0), (k,k-l), (l,k-l)\}$ .

Clearly, the triangles with vertex sets $\Delta_{1}$ and $\Delta_{4}$ fit together to form arectangle
with sides of length $k$ and $l$ , as does the ones with vertex sets A2 and $\Delta_{3}$ . Thus
we have obtained that $g(\mathrm{T}^{2})$ equals $2kl+(k-l)^{2}=|\det g|$ copies of $\mathrm{T}^{2}$ . $\square$

Applying $D_{|\det g|}\circ \mathcal{F}$ to both sides of (2) gives

$\phi(g\overline{m})=|\det g|^{-1/2}\pi_{g}(\phi(|\det g|\overline{m}))$. (3)

The subgroup fixing the vector $(1,0)$ is $H=O(1)$ . It is easy to see that the
direction $(1, 0)$ is the only one fixed by $H$. The semigroup $G$ does not act
transitively on $\mathrm{Z}^{2}\backslash \{0\}$ . But we only need that we can reach any point from
the $H$-fixed vector and this is true also in this case. Rom the identity (3)
it follows that $\phi_{2}(1,0)=0$ and that $\overline{\phi}(\overline{m})=\frac{\overline{m}}{|\overline{m}|}\cdot$

$\phi_{1}(|\overline{m}|^{2},0)$ . It remains to
show that $\phi_{1}(|\overline{m}|^{2},0)=\phi_{1}(1,0)$ . Now, for dilations the identity (3) becomes
$\overline{\phi}(a\overline{m})=\mathrm{s}p$ a $\overline{\phi}(a^{2}\overline{m})$ , which is not enough. This originates from the fact that
the relation in lemma 3, in this case, is $D_{a^{2}}\circ F\circ D_{a}=D_{a}\circ F$ . But inspection of
the proof shows that for dilations we can improve the result to $D_{a}\circ F\circ D_{a}$ $=F$.
The reason is that although in general we are forced to multiply $(g^{-1})^{t}$ by $|\det g|$

to obtain an element in $G$ , it is enough to multiply dilations by $|\det g|^{1/2}$ . $\square$
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Before we start with the characterization for $\mathrm{Z}^{2}$ we want to consider the
analogue of lemma 2.

Lemma 4. Let $T_{\phi}$ he a multiplier operator $\mathit{0}n$ $1^{2}(\mathrm{Z}^{2})$ such that

$D_{a}\mathrm{o}T_{\phi}=\sigma(a)T_{\phi}\circ D_{a}$

for all $a\in \mathrm{Z}\backslash \{0\}$ , where $\sigma$ is a complex valued function on Z. Then $\phi$ is $a$

constant function.
Proof. The proof is essentially the same as that of Lemma 2By applying the
identity to afunction with support ( $a(\mathrm{Z}^{2})$ and looking at the origin, we obtain
the equation

$T_{\phi}f(\overline{0})=0$ .
In particular, if $f=\delta_{\overline{x}}$ , the function supported at the point $\overline{x}$ and takes the
value, 1, there, we obtain $\kappa(-\overline{x})=0$ . Which implies that the kernel $\kappa$ has
support in $a(\mathrm{Z}^{2})$ . Varying $a$ , and using the fact that $\cap a(\mathrm{Z}^{2})=\{0\}$ proves that
$\kappa$ is supported at the origin. $\square$

In view of this lemma we have to restrict the identity to functions supported
in $a(\mathrm{Z}^{2})$ . But as before the operator is already determined by the identity applied
to the unit function.

Theorem 5. Let $T_{\overline{\phi}}$ be a family of multiplier operators on $1^{2}(\mathrm{Z}^{2})$ and assume
that

$l_{g^{-1}}(T_{\overline{\phi}}\delta_{0})(\overline{m})=|\det g|^{-_{\mathfrak{T}}^{3}}\pi_{g}(T_{\overline{\phi}}\delta_{0}(\overline{m}))$ .
Then $\overline{\kappa}(\overline{m})=C\overline{m}/|\overline{m}|^{3}$.

Proof. Rewriting the identity in terms of the kernel vector, gives us

$\overline{\kappa}(g\overline{m})=|\det g|^{-_{2}^{3}}\pi_{g}(\overline{\kappa}(\overline{m}))$.

As usual, ffom this identity we get first that $\overline{\kappa}(\begin{array}{l}10\end{array})=(_{0}^{\kappa_{1}(\begin{array}{l}10\end{array})})$ , because $(\begin{array}{l}10\end{array})$ is

$H$-fixed. After that we use that the $G$-orbit of the vector $(\begin{array}{l}10\end{array})$ is all of $\mathrm{Z}^{2}\backslash \{0\}$ ,
so the kernel vector is completely determined. We have

$\overline{\kappa}$ $(\begin{array}{l}mn\end{array})=\overline{\kappa}$ $((\begin{array}{ll}m -nn m\end{array})(\begin{array}{l}10\end{array}))=(_{\frac{\frac{m}{(m^{2}+n^{2})^{3/2}n}}{(m^{2}+n^{2})^{3/2}}\kappa_{1}}^{\kappa_{1}}$ $)$

$\square$

Remark 5. By repeating the procedure of assigning signs, as from one to two
dimensions, it is easy to see that if the dimension is a power of two then the
$co$ responding semigroup, $(\mathrm{R}_{+}\cross O(n)))\cap GL(n, \mathrm{Z})$ , also consists of matrices
where the rows only differ by signs and per mutations of the components. Fur-
therrreore, it is obvious that this semigroup is “transitive” in the sense that the
$G$ -orbit of the $H$ -fied vector is all of $\mathrm{Z}^{n}\backslash \{0\}$ . Hence, it is not difficult to $se$
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that the analogous results hold also in these cases. If the dimension is not $a$

power of two, on the other hand, things get much more complicated. In fact,
already in three dimensions the semigroup action is no longer transitive. For
example, we cannot reach the point (1, 1, 1) from the $H$-fied vector (1, 0, 0). We
can also see that the problem of determining the transformations in $G$, fixing
one of the axes, is equivalent to the problem of finding all integers $a,b$ and $c$

such that $a^{2}+b^{2}=c^{2}$ .

4 $\mathrm{O}(\mathrm{p},\mathrm{q})$-action and multipliers

4.1 First attempt
We would now like to look at an action with another group on $\mathrm{R}^{n}$ . Inspection
of the proof in the case of action with goup $\mathrm{R}_{+}\cross O(n)$ shows that we needed
that the group $O(n)$ acts transitively on the unit sphere $\mathrm{S}^{n-1}$ and that in the
representation there is aunique vector fixed under the subgroup $O(n-1)$ .
To begin with we shall consider the group $\mathrm{R}_{+}\cross O(p,q),p+q=n$ acting
on $\mathrm{R}^{n}$ , where the action of $\mathrm{R}_{+}$ , as before, is assumed to be trivial and the
action of $O(p,q)$ is the natural one. As before, the identity on the Fourier
transform side should be $m(g\lambda)=|\det g|^{-1/n}\pi_{g}(m(\lambda))$ , where $\pi_{g}$ is the standard
representation. Clearly, for $g\in \mathrm{R}_{+}$ we have $m(g\lambda)=m(\lambda)$ and so, as in the
classical case, the function $m$ is invariant under dilations and could thus be
considered as afunction on the unit sphere. However, in the present setting it is
better to consider it as afunction on the homogeneous spaces $O(p,q)/O(p-1,q)$
and $O(p, q)/O(p,q-1)$ . Using the argument with the Frobenius reciprocity
theorem as before in each case separately, we again end up with aunique fixed
vector. We have thus solved the problem of uniqueness for the identity on the
Fourier transform side, and would now like to go back to the original problem
for the multiplier. Unlike the classical situation this transformation turns out
not to work. This is caused by the fact that the group $O(p,q)$ is non-compact,
which implies that the fixed vectors for the natural representation, one for each
choice of $H$, will be unbounded. But it is $\mathrm{w}\mathrm{e}\mathrm{U}$-known that multipliers have to be
bounded, so the functions we found cannot be amultipliers. From this it is clear
that if we want to obtain multipliers, we will have to introduce compactness.
Anatural way is to make the functions $K$-invariant. This means we have to
modify the approach alittle bit. Let us review the classical case once more. We
had an $O(n)$-representation of functions on $\mathrm{S}^{n-1}$ with aunique $O(n-1)$-fixed
vector. By Frobenius reciprocity theorem, this latter fact is equivalent to saying
that the representation is irreducible. So, the natural modification would be to
take an irreducible $O(p,q)$-representation of functions on the hyperbolic space
which has aunique $O(p)\cross O(q)$ fixed vector.
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4.2 The Principal series
We will consider the principal series representations for $G/H=O(p,q)/O(p-$
$1$ , $q)$ . Ageneral reference for this section is part $\mathrm{I}\mathrm{I}$. in [HS], where much of the
general theory is exemplified by the case $SO_{e}(p,q)/SO_{e}(p-1, q)$ , see also [F]
sect IV and V. Except the Cartan involution 0, which acts as $\theta(X)=-X^{T}$ , for
$X\in \mathfrak{g}$ , we have another involution $\sigma$. To define its action, let

$I_{1,p+q-1}=(\begin{array}{ll}1 00 -I_{p+q-1}\end{array})$ ,

where $I_{p+q-1}$ is the $(p+q-1)\cross(p+q-1)$ unit matrix. Then we set $\sigma(X)=$

$I_{1,p+q-1}\cdot X\cdot I_{1,p\dagger q-1}$ . The involution $\sigma$ also lifts to an involution of the group
acting in the same way. The decomposition of 9according to eigenspaces of $\sigma$

is $9=\mathfrak{h}+\mathrm{q}$ . Obviously [$)$ is the Lie algebra of $H$. Let

$a$ $=\{A_{t}\}_{t\in \mathrm{R}}=\{$ $(\begin{array}{lll}0 0 t0 0 0t 0 0\end{array})$ $\}_{t\in \mathrm{R}}$

Then $a$ is amaximal abelian subspace in $\mathrm{q}\cap \mathfrak{p}$ . Let $M_{1}$ be the centralizer of $a$

in $G$ . It is easy to see that

$M_{1}=(\begin{array}{lll}\epsilon 0 00 O(p-1,q-1) 00 0 \epsilon\end{array})$ . $(\begin{array}{lll}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}t 0 \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}t0 I 0\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}t 0 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}t\end{array})$ , (4)

where $\epsilon=\pm 1$ and the second factor is $A=\exp a$ . We decompose $M_{1}$ accordingly
as $M_{1}=MA$ . (note that in contrast to [HS], where the case $SO_{e}(p,q)/SO_{e}(p-$

$1$ , $q)$ is considered, see example II.3.3 there, we need not make an exception for
the case $p=q=2$, because $O(1, 1)$ has trivial centre) The centralizer of ain $K$

1s

$M\cap K=(\begin{array}{lllll}\epsilon 0 0 00 O(p-1) 0 00 0 O(q -1) 00 0 0 \epsilon\end{array})$

It is also easy to calculate the normalizer of ain $K$. It just the same except that
the sign for the two $\mathrm{e}’ \mathrm{s}$ might be different. Thus $W=N_{K}(a)/M\cap K=\{\pm 1\}$ .
We also obtain $W_{K\cap H}=N_{K\cap H}(a)/M\cap K\cap H=H\cap N_{K}(a)/M\cap K\cap H=\{\pm 1\}$ .
So the two groups are the same, which will be important later. The root system
$\Sigma(a,\mathfrak{g})=\{\pm\alpha\}$ and we might assume that the positive root corresponds to
$A_{t}$ ’s with positive $t’ \mathrm{s}$ . If we denote by $E_{i,j}$ the matrix with zeros everywhere
except at the position $(i,j)$ , where we put 1, then the root space $\mathfrak{g}_{a}$ can be seen
to be generated by elements $X_{i}=E_{1,i}-E_{i,1}+E_{p}+q,j+Ej,p+q’ i=2$ , $\ldots p$

and $\mathrm{Y}_{j}=-E_{p+j,p+q}+E_{p+q,p\dagger j}+E_{p+j,1}+E_{1,p+j}$ , $j=1$ , $\ldots$ , $q-1$ . Ashort
calculation shows that all products are zero except for $X_{\dot{\mathrm{t}}}^{2}=-E_{1,1}+E_{1,p+}-q$
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$E_{\mathrm{p}+q_{\mathrm{t}}1}+E_{p+\mathrm{v}\mathrm{t}\mathrm{P}+q}$ and\yen Thus the group N $\ovalbox{\tt\small REJECT}$

$\exp \mathrm{g}$. becomese7

$N= \{1+\dot{.}\sum_{=2}^{p}u:\cdot(E_{1,:}-E\dot{.},1+E_{\mathrm{p}+q,p+q}:+E\dot{.},)+$ (5)

$+ \sum_{j=1}^{q-1}v_{j}\cdot(-E_{p+j,p+q}+E_{\mathrm{p}+q,p+j}+E_{p+\mathrm{j},1}+E_{1,p\dagger \mathrm{j}})$ (6)

$+( \sum_{k=2}^{p}u_{k}^{2}-\sum_{l=1}^{q-1}v_{l}^{2})\cdot(-E_{1,1}+E_{1,\mathrm{p}+q}-E_{p+q,1}+E_{\mathrm{p}+q,p+q})$ (7)

; $u:,v_{\mathrm{j}}\in \mathrm{R}$}. (8)

Let $P=MAN$ then $P$ is a $\sigma- \mathrm{n}\cdot \mathrm{n}\cdot \mathrm{n}\mathrm{l}\mathrm{f}\mathrm{i}$ parabolic subgroup. As $W=W_{K\cap H}$ it
follows ffom general theory that the right $H$-orbit of $P$ is dense in $G$. This can
also be seen directly. Equivalently we consider the action of the group $NM_{1}$ on
the origin in $G/H$, i.e. at the vector (1, 0, $\ldots$ ,0). We want to show that this is
the set $V=\{\overline{x}\in O(p,q)/O(p-1,q);x_{1}-x_{p+q}\neq 0\}$. Clearly, an element, $\overline{x}$ , in
$V$ is determined by the coordinates #2, $\ldots$ , $x_{p+q-1}$ and the difference $x_{1}-x_{p+q}$ .
Taking representatives as in formulas 4and 8we find that the vector (1, 0, $\ldots$ ,0)
maps to the vector

$\overline{v}=\{\begin{array}{l}\mathrm{c}\oe \mathrm{h}t\cdot\epsilon+^{\underline{U}}u_{2}\cdot T_{t}2\epsilon,\cdot T_{t_{\prime}\epsilon}\vdots u_{\mathrm{p}}\cdot T_{t.\epsilon}-v_{1}\cdot T_{t,\epsilon}\vdots\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}t\cdot\epsilon+\tau.T_{t,\epsilon}-v_{q-1}\cdot T_{t,\epsilon}U\end{array}\}$,

where $U= \sum_{=2}^{p}.\cdot u_{}^{2}-\sum_{j=1}^{q-1}v_{j}^{2}$ and $T_{t,\epsilon}=\sinh t\cdot\epsilon-\cosh t\cdot\epsilon$ . Since $u_{2}$ , $\ldots$ , $u_{p}$ ,
$v_{1}$ , $\ldots$ , $v_{q-1}$ and also $v_{1}-vm$ $=(\cosh t-\sinh t)\cdot$ $\epsilon$ are arbitrary reel numbers
we have proved the statement.

To get aprincipal series representation we need afinite dimensional irre-
ducible unitary representation of $M$, with aAf $\cap H$-fixecl vector. Since $M\cong$

$O(1)\cross O(p-1,q-1)$ and $M\cap H\cong O(p-1,q-1)$ , this is just decomposition
into even or odd functions(with respect to $\epsilon.$ ) Let $\xi\dot{.}$ be the representation of
$M$ given by $\xi:(m)=\epsilon^{:}$ . Let $c_{:,\lambda}(G)$ , with $\lambda\in a_{\mathrm{c}}^{*}$ , be the space of continuous
functions on $G$ satisfying

$f(gman)=a^{\lambda-\rho}\xi\dot{.}(m^{-1})f(g)$ .

In our setting $\rho=\frac{\mathrm{p}+q-2}{2}$ . Let $\pi:,\lambda$ denote the left regular action of $G$ on this
space. Then we say that the representation $(\pi:,,{}_{\lambda}\mathrm{C}:,\lambda(G))$ is of the principal
series, see [HS] $\mathrm{I}\mathrm{I}$. lecture 5. One can show that the representation is unitary
and irreducible if Ais imaginary and non-zero. We may also identify the space
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$\mathrm{C}_{i,\lambda}(G)$ with the space, $\mathrm{C}_{i}(K)$ , of continuous functions on $K$ satisfying

$f(km)=\xi_{i}(m^{-1})f(k)$ ,

for $m\in M\cap K$. That is odd or even functions on $\mathrm{S}^{p-1}\cross \mathrm{S}^{q-1}$ . The latter space
has the advantage of not depending on A. On the other hand the transferred
representation becomes more complicated. Another way to view these repre-
sentations in our case is to consider functions on the cone $—=G/(M\cap H)N=$

$\{x\in \mathrm{R}^{p+q}; x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2}=0,\overline{x}\neq 0\}$ . The space $C_{i,\lambda}(G)$

can be identified with $C_{i,\lambda}(_{\cup}^{-}-)$ , the space of continuous functions satisfying

$f(rx)=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(r)^{\dot{\iota}}|r|^{\lambda-\rho}f(x)$ ,

for $r\in \mathrm{R}\backslash \{0\}$ . So far we have only aseries of representations of $G$ but, under
our assumptions, these representations have $H$-fixed distribution vectors and
ffom $H$-fixed distribution vectors we get linear maps from the space of $\mathrm{C}^{\infty}-$

vectors, $\mathrm{C}_{i,\lambda}(G)^{\infty}=\mathrm{C}^{\infty}(G)\cap \mathrm{C}_{i,\lambda}(G)$ , to $\mathrm{C}^{\infty}(G/H)$ . The construction goes by
taking matrix coefficients $T_{v’,v}(g)=v’(\pi(g^{-1})v)$ , where $v’\in(\mathrm{C}_{i,\lambda}(G)^{-\infty})^{H}$ and
$v\in \mathrm{C}_{i,\lambda}(G)^{\infty}$ . Since $v’$ is $H$-invariant, it is clear that $T_{v’,v}\in \mathrm{C}^{\infty}(G/H)$ . (for
more details see [HS] Lemma 5.1) Under the assumption that $\langle{\rm Re}\lambda-\rho, \alpha\rangle>0$

we can define an $H$-fhxecl distribution vector as follows: let

$f_{i,\lambda}(hman)=a^{\lambda-\rho}\xi_{i}(m^{-1})$

on the dense open subset $HP$. Then it can be shown by general theory that $f_{i,\lambda}$

has acontinuous extension to all of $G$ , for the specified region of the parameter
$\lambda$ , and that the definition can be extended by analytic continuation to amer0-

morphic function of $\lambda\in a_{c}^{*}$ , see [HS] section II for references. However, using
the cone presentation both statement are easy to see directly. Considering $f_{i,\lambda}$

as afunction on the cone, —, it is identified with $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x_{1})^{i}|x_{1}|^{\lambda-\rho}$. Prom this
view point it is trivial that it extends continuously if ${\rm Re}\lambda-\rho>0$ . Furtther-
more, it is clear that it is locally integrable and hence defines adistribution if
${\rm Re}\lambda-\rho>-1$ . Using the functional equation $\frac{d}{d\lambda}f_{i,\lambda}=(\lambda-\rho)\cdot$ $f_{i,\lambda-1}$ it follows
easily that the function has ameromorphic extension, with, at most, simple
poles when $\lambda-\rho$ is anegative integer, see [HS], example II.6.2. Thus, from an
element, $\phi\in C_{i,\lambda}(G)^{\infty}$ , we obtain an element in $C^{\infty}(G/H)$ by

$T_{f_{i,\lambda},\phi}(g)= \int_{\mathrm{S}^{\mathrm{p}-1}\mathrm{x}\mathrm{S}^{q-1}}$ sign$((g^{-1}b)_{1})|(g^{-1}b)_{1}|^{\lambda-\rho}\phi(b)db$

$= \int_{\mathrm{S}^{\mathrm{p}-1}\mathrm{x}\mathrm{S}^{q-1}}$ sign$((b, x))$ $|(b,x)|^{\lambda-\rho}|\phi(b)db$ ,

where $x=gH$ and $($ ., . $)$ denotes the $O(p, q)$-bilinear form. We also used the
relation $(g^{-1}b)_{1}=(b,x)$ which is easy to verify.

We would also like a $K$-type version of this(see the nice expose in [BFS] sect
4.4.) Let $(\mu, V_{\mu})$ be an irreducible unitary representation of $O(p)\cross O(q)$ with
aone dimensional subspace of $K\cap M\cap H$-fixed vectors, and let $v$ be such a
vector. As

$K\cap M\cap H\cong O(p-1)\mathrm{x}$ $O(q-1)$ ,
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this implies that $\mu=\pi_{k}\otimes\pi_{l}’$ , where $\pi_{k}$ and $\pi_{l}’$ are spherical harmonics repre-
sentations of $O(p)$ and $O(q)$ respectively. If $\langle{\rm Re}\lambda-\rho,\alpha\rangle>0$ for the positive
root $\alpha$ we can define an $\mathrm{H}$-fixed vector by setting

$f_{\mu,\lambda}(h,mn)$ $=a^{\lambda-\rho}\mu(m^{-1})v$,

where this time $m\in M\cap K$ and equal to zero outside the dense open set $HP$.
(since $M=(\mathrm{A}\mathrm{f}\cap H)$ .(Af $\cap K)$ the function is defined on aU of $HP$) Like before,
general theory tells us that it is then possible to extend the definition of $f_{\mu,\lambda}$

to ameromorphic function of $\lambda\in a_{\mathrm{c}}^{*}$ . We can also see this without appealing
to general results. In lemma 5, we will see that for $m\in M\cap K$ we have
$\mu(m^{-1})=\xi:(m^{-1})$ , for $i=k+l(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ . Thus, the components of the vector
valued distribution $f_{\mu,\lambda}$ are either zero, or equal to $f\dot{.},\lambda$ , in fact we obtain the
relation $f_{\mu,\lambda}(g)=f.\cdot,x(g)\cdot v$ . Hence, the meromorphic extension for $f_{\mu},x$ follows
ffom the corresponding result for $f\dot{.},\lambda$ . We now project onto K-type

$E_{\mu,\lambda}(g)= \int_{K}\mu(k)f_{\mu,\lambda}(g^{-1}k)dk$.

In view of what we have said above the components of the Eisenstein integral
$E_{\mu,\lambda}$ will be functions $Tf_{,\lambda},\phi$ , where $\phi$ is a $\mathrm{K}$-finite element of $C_{\lambda}.\cdot,(G)^{\infty}$ of type
$\mu$ . Rom what we have said earlier it follows that the only possible poles for $\lambda\vdash+$

$E_{\mu,\lambda}$ occur at points where $\lambda-\rho$ is anegative integer. Amore careful analysis
of the singularities for $\lambda\vdasharrow f\dot{.},\lambda$ shows that in the case $i=0$ the only poles
appear when $\lambda-\rho$ is anegative odd integer, and in the case $i=1$ the function
has poles when $\lambda-\rho$ is anegative even integer. Let $E_{\mu,\lambda}^{0}= \frac{1}{\Gamma(\frac{\lambda-\rho-1+}{2})}E_{\mu,\lambda}$

and define $f_{i,\lambda}^{0}$ and $f_{\mu,\lambda}^{0}$ by multiplying the corresponding functions with the
same factor. Then $\lambda\vdash+E_{\mu,\lambda}^{0}$ , A $\vdash+f_{\mu,\lambda}^{0}$ and $\lambda\vdash*f_{i,\lambda}^{0}$ become entire functions,
(this normalization is the same as in [F] and [Sch]. Note, however, that this
definition differs ffom the usual one, see [HS], example II.6.5. This definition
is simpler and suffices for our purposes) One can show that au the components
of $E_{\mu,\lambda}^{0}$ are eigenffinctions of the Laplacian on $O(p,q)/O(p-1,q)$ , see [F] Prop
5.4, [Sch] sect. 7 and [St] sect. 4. Since the components are also $K$-finite they
are smooth. By [O] Corollary 4.3, these functions are bounded when $|{\rm Re}\lambda|<\rho$

and so, under that assumption, they are multipliers for $\mathrm{L}^{2}$ .

4.3 Multipliers
Before coming to multipliers connected with principal series representations we
shall take one more look at the classical case. The representation of $O(n)$
we considered was the standard representation on $\mathrm{R}^{n}$ . This representation is
equivalent with the left regular representation of $O(n)$ on spherical harmonics
of degree one. As in the previous section, the map goes by taking matrix
coefficients $T_{v’,v}(g)=v’(\pi(g^{-1})v)$ , where $v’$ is an $H$-fixed vector. For example
let us consider the case $n=2$ . If we take $v’=(1,0)$ , $v=(a, b)$ and

$g=(\begin{array}{ll}\mathrm{c}\oe\theta \mathrm{s}\mathrm{i}\mathrm{n}\theta-\mathrm{s}\mathrm{i}\mathrm{n}\theta \mathrm{c}\mathrm{o}\mathrm{s}\theta\end{array})$
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we obtain $T_{v’,v}(g)=a\cos\theta-b\sin\theta$ . We also see that $\pi(g)v’=(\cos\theta, -\sin\theta)$ ,
i.e., up to the sign of the second factor, it is the Riesz transform vector. The
same is true in higher dimensions.

Returning to setting of the last section we shall prove asimilar result for
$O(p, q)$ . To begin with we have

Theorem 6. Let $\overline{m}$ be a $\mathrm{C}^{\infty}$ function vector on $O(p,q)/O(p-1, q)$ whose compO-

nents are eigenfunctions of the Laplacian on this space with the same eigenvalue:
$\lambda^{2}-\rho^{2}$ , where $|{\rm Re}\lambda|<\rho$ and $\lambda-\rho$ is not an integer. Assume further that this
vector transforms under $O(p)\cross O(q)$ as $\overline{m}(kx)=\mu(k)\overline{m}(x)$ , where $\mu=\pi_{k}\otimes\pi_{l}’$

is a tensor product of representations coming from spherical harmonics on $O(p)$

and $O(q)$ respectively. Then $\overline{m}=CE_{\mu,\lambda}^{0}$ .

Proof. As they are eigenfunctions of the Laplace operator and $\lambda-\rho$ is assumed
not to be an integer, the components of $\overline{m}$ lies in the image under the Poisson
transform, $varrow T_{f_{\lambda}^{0}v}.\cdot,$”of the representation space of $\pi_{0,\lambda}\oplus\pi_{1,\lambda}$ . (For $i=0$ this
is shown in [Sch] section 7. The case $i=1$ can be handled in asimilar way)
Hence, we may assume that they are given by $T_{f_{0,\lambda}^{\mathrm{O}},F_{\mathrm{O}}}(g)+T_{f_{1,\lambda}^{\mathrm{O}}F_{1}},(g)$ , where
$F_{i}$ is afunction on $K$, transforming according to $F(km)=\xi\dot{.}(m^{-1})F(k)$ . The
transformation $v-tTf\dot{\cdot},\lambda,v$ is equivariant(see [HS] Lemma 5.1,) so the function
vector $\overline{F}$ corresponding to $\overline{m}$ must also be of tyPe $\mu$ . Thus, $\overline{F}(k)=\mu(k)\overline{F}(1)$ .
For this to be compatible with the transformation rule, we have to have that
the vector $\overline{F}(1)$ is invariant under $K\cap H\cap M$.

Lemma 5. If $u$ is a $K\cap H\cap M\mu$-fixed vector then $\mu(m)u=\xi_{i}(m)u$ for $i\equiv k+l$

$(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ .

Proof. We know that $\mu=\pi_{k}\otimes\pi_{l}’$ . Let $u=u_{p}\otimes u_{q}$ . The restriction of $\pi_{k}$ to
$O(1)\cross O(p-1)$ acts like arepresentation of $O(1)$ on up. We must show that
this representation is irreducible. Taking as the representation space for $\pi_{k}$

the homogeneous harmonic polynomials of degree $\mathrm{k}$. We find(see [CW] page
37 or [SW] Lemma IV.2.11) that $u$ is given by apolynomial of the form (for

the moment we assume that $p>2$) $\Sigma_{j=0}^{[k/2]}c_{j}x_{1}^{k-2j}(x_{2}^{2}+\ldots+x_{p}^{2})^{j}$ . In particular,
we see that the powers of $x_{1}$ are all odd, or all even. Thus, the representation
is irreducible. If $p=2$ it is easy to see that $\pi_{k}(g)$ acts as $g^{k}$ , so again the
representation is irreducible. The same reasoning holds for $\pi_{l}’$ and putting things
together we obtain $\mu(m)u--\mathrm{s}\mathrm{g}\mathrm{n}^{k+l}u$ and the lemma is proved. $\square$

The lemma shows that the components of the vector $\overline{F}(k)$ , in fact, only lies
in one of the representations $\pi_{i,\lambda}$ . Summing up, we have shown that $\overline{F}(k)=$

$C_{\lambda}\mu(k)v$ . By construction, the original function vector on $G/H$ is given as

$\mathit{1}\overline{F}(k)f_{i,\lambda}^{0}(g^{-1}k)dk=C_{\lambda}\int_{K}\mu(k)f_{\mu,\lambda}^{0}(g^{-1}k)dk=C_{\lambda}E_{\mu,\lambda}^{0}(g)$ .
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Remark 6. As the proof shows, the assumption that X -p is not an integer is
needed to ensure that the Poisson transform is surjective. In [Sch], it is $sho\ovalbox{\tt\small REJECT}$

that the lack of surjectivity comes from the discrete series, see Thm7.1 and 6.4
in that paper.

Of course, the same type of result holds for $O(p,q)/O(p,q-1)$. Let $\overline{x}=$

$(x’,x’)$ be the decomposition of the vector $\overline{x}$ according to the $(p,q)$-separation
of the variables. We make the same decomposition of the Laplace operator on
$\mathrm{R}^{n}:\Delta=\Delta’+\Delta’$ . Combining the results we obtain the following theorem

Theorem 7. Let $\overline{m}$ be a vector of homogeneous functions of degree zero, which
are eigenfunctions of the operator $(|x’|^{2}-|x’|^{2})(\Delta’-\Delta’)$ on the open $set|x’|^{2}-$

$|\dot{x}’|^{2}\neq 0$, with the same eigenvalue: $\lambda^{2}-\rho^{2}$ , where $|{\rm Re}\lambda|<\rho$ and $\lambda-\rho$ is not an
integer. Assume also that $\overline{m}$ transforms according to a fixed $K$-type: $m-(kx)=$
$\mu(k)\overline{m}(x)$ , where $\mu$ is a tensorproduct of spherical harmonics representations,
$\pi_{k}\otimes\pi_{l}’$ for $O(p)$ and $O(q)$ . Then the restrictions of $\overline{m}$ to $O(p,q)/O(p-1,q)$ and
$O(p,q)/O(p,q-1)$ are constant multiples of the normalized Eisenstein integrals
with index $\mu$ , Afor each of the spaces.

Proof. I. $|\mathrm{x}’|^{2}-|\mathrm{x}’|^{2}>0$ .Let $r=\sqrt{|x’|^{2}-|x’|^{2}}$.We may write $x’=r\cosh sy’$

and $x’=r \sinh s\oint’$ . Note that $\oint$ and $\oint’$ denote points on the spheres $\mathrm{S}^{p-1}\cross\{0\}$

and $\{0\}\cross \mathrm{S}^{q-1}$ respectively. Let $\theta_{1}$ , $\ldots$ , $\theta_{p-1}$ be parameters for the sphere $\mathrm{S}^{\mathrm{p}-1}$

and $\phi_{1}$ , $\ldots$ , $\phi_{q-1}$ for the sphere $\mathrm{S}^{q-1}$ . In terms of these coordinates the operator
$\Delta’-\Delta’$ can be written as(the verification is simple but tedious)

$\frac{\partial^{2}}{\partial r^{2}}+\frac{p+q-1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\Delta_{\epsilon,\overline{\theta},\overline{\phi}}$ , (9)

where, apriori, $\Delta_{\epsilon,\overline{\theta},\overline{\phi}}$ is just an operator on $O(p,q)/O(p-1,q)$ . But taking into
account that the operator is invariant under $O(p,q)$ and has degree two, it has
to be the Laplacian on $O(p,q)/O(p-1,q)$ . Another way to find the formula 9
is to apply Theorem 3.3 in [H], which tells us that the radial part of $\Delta’-\Delta’$ is
$r^{-\simeq\not\in\partial\partial} \S^{\underline{-1}}\theta\approx \mathrm{o}r^{+\underline{-1}}-r^{-\mathrm{g}+}4^{\underline{-1}}\partial^{2}(ae^{2}\tau\partial i^{\mathrm{Z}}r5^{\underline{-1}})=+\mathrm{a}\mathrm{e}^{2}\mathrm{z}\frac{\mathrm{p}+q-1}{r}\pi$.

$\mathrm{I}\mathrm{I}.|\mathrm{x}’|^{2}-|\mathrm{x}’|^{2}<0$. For this open set we set $r=\sqrt{||x’|^{2}-|x’|^{2}|}$ . Thus we
may write $x’=r$ $\mathrm{s}\mathrm{i}\cdot \mathrm{h}s\oint$ and $x’=r$ coshs $\oint’$ , where $y’$ and $\oint’$ are as before.
Obviously, in terms of the coordinates $(r,s,\overline{\theta},\overline{\phi})$ the expansion of the operator
$\Delta’-\Delta’$ is just minus the formula 9. Of course, in this case the operator $\Delta_{\epsilon,\overline{\theta},\overline{\phi}}$

will be the Laplacian for $O(p,q)/O(p,q-1)$ .
By assumption, our function only depends on $s,\overline{\theta}$ and $\overline{\phi}$ so it is also an

eigenfunction of $\Delta_{s,\overline{\theta},\overline{\phi}}$ , with the same eigenvalue.(note that in the second case
the sign is corrected by the homogenizing factor) But this implies that the
assumptions of Theorem 6are satisfied for each of the open sets. Applying that
theorem then concludes the proof. $\square$

Corollary 1. The restrictions of $\overline{m}$ to the sets $x’=0$ and $x’=0$ are families
of higher Riesz transforms in $p$ and $q$ dimensions respectively.
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Proof. Both cases are the same, so let us consider the first case. Let us denote
the restriction $\ovalbox{\tt\small REJECT}’$ . Then the assumption on the $K$-type for $\ovalbox{\tt\small REJECT}$ becomes $\mathrm{v}\ovalbox{\tt\small REJECT} \mathrm{z}’(\mathrm{A}\ovalbox{\tt\small REJECT} \mathrm{z})\ovalbox{\tt\small REJECT}$

$\ovalbox{\tt\small REJECT}.(\ovalbox{\tt\small REJECT}’(\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}))$. But this shows that $\ovalbox{\tt\small REJECT}’$ satisfies the assumptions of the generalization
of Theorem 1to general spherical harmonics representations, see Remark 2. [Il

5Atransformation compatible with the Spher-
ical transform

In this final section we move on to the motivating problem of finding acharac-
terization of some family of operators on non-compact Riemannian symmetric
spaces. We would like to be able to transfer the identity to the Fourier trans-
form side, where it becomes an identity for functions. Thus we would like the
group to transform in asimple way under the Fourier transform. In contrast
with the usual Fourier transform, the Spherical transform does not work well
together with general linear transformations. The transformation we want to
consider in this section originates ffom the following example

Example 1. Let us consider the product of two copies of a rank-One space, $G/K$.
In this case the spherical functions decompose as the product of the spherical
functions for each of the factor spaces $\phi_{\lambda_{1},\lambda_{2}}$ $(x, y)=\phi_{\lambda_{1}}(x)\cdot\phi_{\lambda_{2}}(y)$ . Let $\sigma$ be the
map that interchanges the trno variables. Then $\phi_{\sigma(\overline{\lambda})}(x,y)=\phi_{\lambda_{2}}(x)\cdot$ $\phi_{\lambda_{1}}(y)=$

$\phi\lambda(\sigma(\overline{x}))$ . Note that $\sigma$ is just the involution that makes $G\cong G\cross G/\Delta G$ into $a$

symmetric space.

Let $G$ be asemisimple Lie group with finite center and $K$ amaximal compact
subgroup. Except the Gartan involution 0we will assume that there exists an
other involution $\sigma$ commuting with 0. The Lie algebra 9decomposes according
to the two involutions as $\mathfrak{g}$ $=t$ $+\mathfrak{p}$ and $\mathfrak{g}$

$=\mathfrak{h}+\mathrm{q}$ . Let $\mathrm{b}$

$\subset \mathfrak{p}$ denote aCart
subspace and $a$ $\subset \mathfrak{p}$ $\cap \mathrm{q}$ amaximal abelian subspace, such that $\mathrm{a}\subset \mathrm{b}$ . We take
the root systems compatible, i.e. if $\alpha$ is apositive root of $\Sigma(\mathfrak{g}, \mathrm{b})$ with non-zero
restriction to $a$ , then $\sigma\theta\alpha\in\Sigma^{+}(\mathfrak{h})$ .

Theorem 8. Assume that all positive roots have non-zero restriction. Then the
following identity holds

$\phi_{\sigma\theta\lambda}(a)=\phi_{\lambda}(\sigma\theta a)$ .

Proof. We begin with asimple lemma

Lemma 6. Under the present assumptions, the map $\sigma\theta$ fixes $\rho$ .

Proof. This follows directly since positive roots go to positive roots under the
map. 0

Thus from the definition of $\phi$ we are left to show that $\sigma\theta A(ka)=A(k\sigma\theta a)$ .
This follows if we can prove that $\sigma\theta(N)=N$ and $\sigma\theta(K)=K$.

Lemma 7. $\sigma\theta(N)=N$ .
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Proof. Let X $\in \mathfrak{g}_{\alpha}$ then $\sigma\theta(X)\in 0\sigma\theta\alpha$ ’so by our assumptions $\sigma\theta(X)\in \mathfrak{n}$ . $\square$

Lemma 8. $\sigma\theta(K)=K$.

Proof. Take k $\in K$. As $\sigma$ and 0commute $\sigma$ 0 $\theta(k)\in G^{\theta}=K$. $\square$

口

Example 2. It is not always possible to make the assumption that all positive
roots have non-zero restrictions, in other words, for some semisimple Lie groups
there does not eist an involution $\sigma$ such that our assumptions on the root sys-
t.ems hold. If we take $G=Sp(2,\mathrm{R})$ then the root system $\Sigma(\mathfrak{g}, \mathrm{b})$ will be of type
$B_{2}$ . It is then easy to see that we have to choose ato lie along one of the roots,
to make the root systems compatible. But this implies that there always exists $a$

positive root whose restriction is zero.
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