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Abstract. This is an announcement of some recent results of the
authors concerning the $q$-uniform convexity and $p$-uniform smoothness
inequalities.

We shall consider some generalizations of $p$-uniform smoothness and q-uniform
convexity inequalities. In particular we shall characterize these two geometric
notions by tyPe- and cotype-like inequalities which are stronger than those of tyPe
and cotype, respectively.

1. puniformly smooth and $q$-uniformly convex spaces

Let $X$ be aBanach space with $\dim X\geq 2$ . The modulus of convexity of $X$ is

$\delta_{X}(\epsilon)=\inf\{1-\frac{||x+y||}{2}$ : $||x||=||y||=1$ , $||x-y||=\epsilon\}$ , $0\leq\in$ $\leq 2$ .

$X$ is called uniformly convex if $\delta_{X}(\epsilon)>0$ for all $\epsilon$ $>0$ , and $q$ -uniformly convex
$(2\leq q<\infty)$ if there exists aconstant $C>0$ such that $\delta_{X}(\epsilon)\geq C\epsilon^{q}$ for all $\epsilon$ $>0$ .
The modulus of smoothness of $X$ is

$\rho_{X}(\tau)=\sup\{\frac{||x+\tau y||+||x-\tau y||}{2}-1$ : $||x||=||y||=1\}$ , $\tau>0$ .

$X$ is called uniformly smooth if $\rho_{X}(\tau)/\tauarrow 0$ as $\tauarrow 0$ , and $p$ -uniformly smooth
$(1 <p\leq 2)$ if there exists aconstant $K>0$ such that $\rho_{X}(\tau)\leq K\tau^{p}$ for all $\tau>0$ .
These moduli have the best values with aHilbert space $H$ (cf. [8, p. 68]): For any
Banach space $X$

$\delta_{X}(\in)$ $\leq$ $\delta_{H}(\epsilon)=1-\sqrt{1-\epsilon^{2}}/4$,

$\rho_{X}(\tau)$ $\geq$ $\rho_{H}(\tau)=\sqrt{1+\tau^{2}}-1$ .

In view of these facts no Banach space is $q$-uniformly convex for $q<2$ and p-
unifomly smooth for $p>2$ . In fact, if $q<2$ , $\sin \mathrm{c}$

$\frac{\delta_{X}(\epsilon)}{\epsilon^{q}}\leq\frac{1-\sqrt{1-\epsilon^{2}/4}}{\epsilon^{q}}=\frac{\epsilon^{2-q}}{4(1+\sqrt{1-\epsilon^{2}/4})}$ ,
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we have $\lim_{\epsilonarrow+0}\delta_{X}(\epsilon)/\epsilon^{q}=0$. When $p>2$ ,

$\frac{\rho_{X}(\tau)}{\tau^{p}}\geq\frac{\sqrt{1+\tau^{2}}-1}{\tau^{p}}=\frac{1}{\tau^{p-2}(\sqrt{1+\tau^{2}}+1)}arrow\infty$ as $\tauarrow 0$ .

Also every Banach space is 1-uniformly smooth as $\rho_{X}(\tau)\leq\tau$ for all $\tau>0$ . It is
clear that $p$-uniformly smooth spaces are $r$-uniformly smooth if $1<r\leq p\leq 2$ ,
and $q$-uniformly convex spaces are $r$-uniformly convex if $2\leq q\leq r<\infty$ .

puniformly smooth and $q$-uniformly convex spaces are characterized by the
following $p$-unifom smoothness and $q$-unifom conveity inequalities:

Lemma 1([1], [2]). (i) Let $1<p\leq 2$ . Then $\mathrm{X}$ is $p$-unifomly smooth if and
only if there exists $K>0$ such that

(1) $\frac{||x+y||^{p}+||x-y||^{p}}{2}\leq||x||^{p}+||Ky||^{p}$ for au $x$ , $y\in X$ .

(ii) Let $2\leq q<\infty$ . Then $X$ is (/-uniformly convex if $\mathrm{m}\mathrm{d}$ only if there exists
$C>0$ such that

(2) $\frac{||x+y||^{q}+||x-y||^{q}}{2}\geq||x||^{q}+||Cy||^{q}$ for all $x$ , $y\in X$ .

Remark 1. (i) The validity of the inequality (1) implies $K\geq 1$ . Thus (1)
with the best constant $K=1$ is the following Clarkson inequality

(3) $( \frac{||x+y||^{p}+||x-y||^{p}}{2})^{1/p}\leq(||x||^{p}+||y||^{p})^{1/p}$ $(1<p\leq 2)$

(ii) In (2) we have necessarily $0<C\leq 1$ (indeed put $x=0$), and the inequality
(2) with the best constant $C=1$ is the following Clarkson inequality

(4) $( \frac{||x+y||^{q}+||x-y||^{q}}{2})^{1/q}\geq(||x||^{q}+||y||^{q})^{1/q}$ $(2\leq q<\infty)$

2. Generalizations of $p$-uniform smoothness and $q$-uniform convexity
inequalities

We shall present some generalizations of puniform smoothness and q-uniform
convexity inequalities which hold to characterize these smoothness and convexity.
More prescisely, in the first sense we shall give tw0-element inequalities sharper
than (1) and (2) respectively, and in the secondary sense we shall characterize
$p$-uniform smoothness and $q$-uniform convexity by type-, cotype like inequalities
which are stronger than type, cotype inequalities respectively
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The notions of tyPe and cotype were introduced by $\mathrm{H}\mathrm{o}\mathrm{f}\mathrm{f}^{\ovalbox{\tt\small REJECT}}\mathrm{m}\mathrm{a}\mathrm{n}- \mathrm{J}\langle 5\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}[3]$ (cf.
[9]) in the context of the law of large numbers for random variables with values
in aBanach space. ABanach space X is called of type p, 1 $\ovalbox{\tt\small REJECT}$ p $\ovalbox{\tt\small REJECT}$ 2, if there is
M $>0$ (necessarily M $\ovalbox{\tt\small REJECT}$ 1) such that

(5) $( \frac{1}{2^{n}}\sum_{\theta_{j}=\pm 1}||\sum_{j=1}^{n}\theta_{j}x_{j}||^{p})^{1/p}\leq M(\sum_{j=1}^{n}||x_{j}||^{p})^{1/p}$

for all finite systems $x_{1}$ , \cdots , $x_{n}\in X$ . X is called of cotype q, $2\leq q<\infty$ , if there
is M $>0$ (necessarily M $\geq 1$ ) such that

(6) $( \frac{1}{2^{n}}\sum_{\theta_{j}=\pm 1}||\sum_{j=1}^{q}\theta_{j}x_{j}||^{q})^{1/q}\geq\frac{1}{M}(\sum_{j=1}^{n}||x_{j}||^{q})^{1/q}$

for all finite systems $x_{1}$ , \cdots , $x_{n}\in X$ .

These probabilistic properties are characterized by Clarkson’s inequalities which
are of geometric nature. Namely, in 1997 the first and second authors [6] showed
that $X$ is of type $p$ with $M=1$ if and only if Clarkson’s inequality (3) holds
in $X$ and the corresponding fact for cotype and Clarkson’s inequality (4) (their
presentations are more general). On the other hand it is well known that

(i) $p$-uniformly smooth spaces are of type $p$ ,
(ii) $q$-uniformly convex spaces are of cotype $q$

.and there is no converse of these assertions. Indeed there exisits a non-reflexive
space $X$ having type 2(James [4]). Then $X$ is of type $p$ for any $1<p\leq 2$ , whereas
$X$ is not puniformly smooth because uniformly smooth spaces must be reflexive.
Also its dual space $X^{*}$ is of cotype $q$ for any $2\leq q<\infty$ , but not q-uniformly
convex as $X^{*}$ is not reflexive.

Theorem 1($\mathrm{p}$-uniform smoothness). Let $1<p\leq 2$ and $1\leq s<\infty$ . The
following are equivalent.

(i) $X$ is $p$-uniformly smooth
(ii) There exists $K\geq 1$ such that

(7) $( \frac{||x+y||^{s}+||x-y||^{s}}{2})^{1/s}\leq(||x||^{p}+||Ky||^{p})^{1/p}$ $\forall x$ , y $\in X$ .

If p $\leq s<\infty$ , in addition:
(iii) There exists K $\geq 1$ such that

(8) $( \frac{1}{2^{n}}\sum_{\theta_{j}=\pm 1}||\sum_{j=1}^{n}\theta_{j^{X}j||^{s})^{1/s}\leq}(||x_{1}||^{p}+\sum_{j=2}^{n}||Kx_{j}||^{p})^{1/p}$

for all finite systems $x_{1}$ , \cdots , $x_{n}\in X$ .
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Remark 2. (i) The inequality (7) is sharper than (1) of Lemma 1if p $\ovalbox{\tt\small REJECT}$ s.
Indeed in this case by Lemma 2

$( \frac{||x+y||^{p}+||x-y||^{p}}{2})^{1/p}\leq(\frac{||x+y||^{s}+||x-y||^{s}}{2})^{1/s}\leq(||x||^{p}+||Ky||^{p})^{1/p}$ .

(ii) For the case $K=1$ the equivalence of the inequalities (7) and (8) is proved
in KatO-Takahashi [6].

(iii) The inequality (8) is stronger than the tyPe $p$ inequality (5). Indeed, the
space $X$ of James stated above is of type $p$ , whereas (8) fails to hold in $X$ . So we
refer to (8) as strong tyPe $p$ inequality.

Theorem 2($q$-uniform convexity). Let $2\leq q<\infty$ and $1<t\leq\infty$ . The
following are equivalent.

(i) $X$ is $q$-uniformly convex.
(ii) There exists $0<C\leq 1$ such that

(9) $( \frac{||x+y||^{t}+||x-y||^{t}}{2})^{1/t}\geq(||x||^{q}+||Cy||^{q})^{1/q}$ $\forall x$ , y $\in X$.

If $1<t\leq q$ , in addition:
(iii) There exists $0<C\leq 1$ such that

(10) $( \frac{1}{2^{n}}\sum_{\theta_{j}=\pm 1}||\sum_{j=1}^{n}\theta_{\mathrm{j}}x_{j}||^{t})^{1/t}\geq(||x_{1}||^{q}+\sum_{j=2}^{n}||Cx_{j}||^{q})^{1/q}$

for all finite systems $x_{1}$ , \cdots , $x_{n}\in X$ .

Remark 3. (i) The inequality (9) is sharper than (2) of Lemma 1if q $\geq t$ .
Indeed we have

$( \frac{||x+y||^{q}+||x-y||^{q}}{2})^{1/q}\geq(\frac{||x+y||^{t}+||x-y||^{t}}{2})^{1/t}\geq(||x||^{q}+||Cy||^{q})^{1/q}$ .

(ii) For the case $C=1$ the equivalence of the inequalities (9) and (10) is proved
in KatO-Takahashi [6].

(iii) The inequality (10) is stronger than the cotype $q$ inequality (6). Indeed
the dual space $X^{*}$ of the space $X$ of James is of cotype $q$ , but (10) fails to hold in
X. $L_{1}$ is also acounter example, since it is of cotype 2and non-reflexive. So we
refer to (10) as strong cotype $q$ inequality.

It is well known that if $X$ is of type $p$ , then $X^{*}$ is of cotype $q$ , where $1/p+1/q=$
$1$ , and the converse is not true ([2, pp. 309-310]). Indeed, $l_{1}=(c_{0})^{*}$ has cotype 2,
whereas $c\mathit{0}$ has no non-trivial type. Our next theorem asserts that for our strong
type and cotype inequalities (8) and (10) the converse is also true if $p\leq s<\infty$ .
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Theorem 3(duality). Let $1\leq p\leq 2,1<s<\infty$ and $1/p+1/q=1/s+1/t=$
$1$ . Let $1\leq K<.\infty$ . Then if

(8) $( \frac{1}{2^{n}}\sum_{\theta_{j}=\pm 1}||\sum_{j=1}^{n}\theta_{j^{X}j||^{s})^{1/s}\leq}(||x_{1}||^{p}+\sum_{j=2}^{n}||Kx_{j}||^{p})^{1/p}$

holds in $X$ ,

$(10^{*})$ $( \frac{1}{2^{n}}\sum_{\theta_{j}=\pm 1}||\sum_{j=1}^{n}\theta_{j}x_{j}^{*}||^{t})^{1/t}\geq^{\mathrm{t}}(||x_{1}^{*}||^{q}+\sum_{j=2}^{n}||K^{\neg 1}x_{j}^{*}||^{q})^{1/q}$

holds in $X^{*}$ . If $p\leq s<\infty$ the converse is true.
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