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On some generalizations of
g-uniform convexity inequalities
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Abstract. This is an announcement of some recent results of the
authors concerning the g-uniform convexity and p-uniform smoothness
inequalities.

We shall consider some generalizations of p-uniform smoothness and g-uniform
convexity inequalities. In particular we shall characterize these two geometric
notions by type- and cotype-like inequalities which are stronger than those of type
and cotype, respectively.

1. p-uniformly smooth and ¢-uniformly convex spaces
Let X be a Banach space with dim X > 2. ’The modulus of convexity of X is
) T + Y
ox(e) =t {1~ LU oy = 1oyl = e}, 0222

X is called uniformly conver if dx(e) > 0 for all € > 0, énd q-uniformly convex
(2 < g < 00) if there exists a constant C' > 0 such that 6X( ) > Ce%for all e > 0.
The modulus of smoothness of X is .

T+TY|+|x—T
px(r) = sup { BT =y — gy =1, 0
X is called uniformly smooth if px(7)/T — 0 as 7 — 0, and p-uniformly smooth
(1 < p < 2) if there exists a constant K > 0 such that px(7) < K7P for all 7 > 0.
These moduli have the best values with a Hilbert space H (cf. [8 p. 68]): For any
Banach space X

(Sx(é‘) < 5}{(6):1— 1—62/4,
px(T) > pH(T) \/1+7'2—1

In view of these facts no. Banach space is q-uniformly convez for g < 2 and p-
umformly smooth for p > 2. In fact, if ¢ < 2, since

ox(e) 1—y/1—¢€2/4 ~ ¢

ed 41+ /124y’
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we have lim,_,,o0x(€)/e? = 0. When p > 2,

px(T)>\/1+’r2—1_ 1
™ = TP P2(y/14+ 724+ 1)
Also every Banach space is 1-uniformly smooth as px(7) < 7 forall 7 > 0. It is

clear that p-uniformly smooth spaces are r-uniformly smooth if 1 < r < p < 2,
and g¢-uniformly convex spaces are r-uniformly convex if 2 < ¢ < r < oo.

— 00 asT— 0.

p-uniformly smooth and g¢-uniformly convex spaces are characterized by the
following p-uniform smoothness and g-uniform convezity inequalities:

Lemma 1 ([1], [2]). (i) Let 1 < p < 2. Then X is p-uniformly smooth if and
only if there exists K > 0 such that

p _ P
O llz + i 42' lz — 9l o IzllP + |Ky|lP for all z,y € X.

(ii) Let 2 < ¢ < 0o. Then X is g-uniformly convex if and only if there exists
C > 0 such that

q —yll9 .
@) Iz + yl| ';' llz —yll > ||z||? + }|Cy||? for all z, y € X.

Remark 1. (i) The validity of the inequality (1) implies K > 1. Thus (1)
with the best constant K = 1 is the following Clarkson inequality

T P z — y||IP\ VP
@ (YT o sy a<p<2)

(ii) In (2) we have necessarily 0 < C < 1 (indeed put z = 0), and the inequality
(2) with the best constant C = 1 is the following Clarkson inequality

z+yll9+ ||z —yl|7\"*
w (LR o i @<o<oo)

2. Generalizations of p-uniform smoothness and g-uniform convexity
inequalities

We shall present some generalizations of p-uniform smoothness and g-uniform
convexity inequalities which hold to characterize these smoothness and convexity.
More prescisely, in the first sense we shall give two-element inequalities sharper
than (1) and (2) respectively, and in the secondary sense we shall characterize
p-uniform smoothness and g-uniform convexity by type-, cotype-like inequalities
which are stronger than type, cotype inequalities respectively.
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The notions of type and cotype were introduced by Hoffman-Jgrgensen [3] (cf.
[9]) in the context of the law of large numbers for random variables with values
in a Banach space. A Banach space X is called of type p, 1 < p < 2, if there is
M > 0 (necessarily M > 1) such that

) (> X Zm p)l/pSM(éuxjnp)w

0,=+1
for all finite systems z,,---,z, € X. X is called of cotype q, 2 < q < o0, if there
is M > 0 (necessarily M > 1) such that

©) (= X ZMJ )l/qz%(éuxjuq)w

9;=+1
for all finite systems z,,---,z, € X.

These probabilistic properties are characterized by Clarkson’s ihequalities which
are of geometric nature. Namely, in 1997 the first and second authors [6] showed
that X is of type p with M = 1 if and only if Clarkson’s inequality (3) holds
in X and the corresponding fact for cotype and Clarkson’s inequality (4) (their
presentations are more general). On the other hand it is well known that

(i) p-uniformly smooth spaces are of type p,
(ii) g-uniformly convex spaces are of cotype ¢

.and there is no converse of these assertions. Indeed there exisits a non-reflexive
space X having type 2 (James [4]). Then X is of type p for any 1 < p < 2, whereas
X is not p-uniformly smooth because uniformly smooth spaces must be reflexive.
Also its dual space X* is of cotype ¢ for any 2 < ¢ < oo, but not g-uniformly
convex as X* is not reflexive. =

Theorem 1 (p-uniform smoothness). Let 1 <p <2and1<s < oo. The
following are equivalent.

(i) X is p-uniformly smooth.

(ii) There exists K > 1 such that

S L] 1/s )
z+y||°+ |z — ;
o (EEEEE T < o oy ey e x

If p < s < 00, in addition:
(iii) There exists K > 1 such that

®) (x Zz;em V" < (e +Z IKz,lP)

0;==%1
for all finite systems zy,---,z, € X.

1/p




96

Remark 2. (i) The inequality (7) is sharper than (1) of Lemma 1 if p < s.
Indeed in this case by Lemma 2 ’ ‘

z+ylP+llz—ulP\? _ (llz+yl+lz—yll*\ .

2 2

(i) For the case K = 1 the equivalence of the inequalities (7) and (8) is proved
in Kato-Takahashi [6].

(iii) The inequality (8) is stronger than the type p inequality (5). Indeed; the
space X of James stated above is of type p, whereas (8) fails to hold in X. So we
refer to (8) as strong type p inequality.

Theorem 2 (g-uniform convexity). Let 2 < g <ooand 1<t < oco. The
following are equivalent.

(i) X is g-uniformly convex.

(i) There exists 0 < C' < 1 such that

z+yllt + ||z — vt 1/t |
(9) (” y” 5 ” y” ) > (":v”q + IICy”q)l/q Vr, y € X

If 1 <t <gq, in addition:
(iii) There exists 0 < C < 1 such that

1 n t\ 1/t | n 1/q
(10) ( Z [Zea|) = (e + X tcz)
0;=%1" j=1 =2
for all finite systems z;,---,z, € X.

Remark 3. (i) The inequality (9) is sharper than (2) of Lemma 1 if ¢ > ¢.
Indeed we have

/a t t\ 1/t
Iz +ylle + flz — yll9) " Iz +ylit + |lz — vl .
( > > (]l + ICyl) 2.

2 - 2

(ii) For the case C = 1 the equivalence of the inequalities (9) and (10) is proved
in Kato-Takahashi [6].

(iii) The inequality (10) is stronger than the cotype ¢ inequality (6). Indeed
the dual space X* of the space X of James is of cotype ¢, but (10) fails to hold in
X. L, is also a counter example, since it is of cotype 2 and non-reflexive. So we
refer to (10) as strong cotype q inequality.

It is well known that if X is of type p, then X* is of cotype ¢, where 1/p+1/q =
1, and the converse is not true ([2, pp. 309-310]). Indeed, {; = (cp)* has cotype 2,
whereas ¢y has no non-trivial type. Our next theorem asserts that for our strong
type and cotype inequalities (8) and (10) the converse is also true if p < s < oo.



Theorem 3 (duality). Let1 <p<2/1<s<ooandl/p+1/qg=1/s+1/t =
1. Let1<K<oo Thenlf

(8) 7- ( 921 20 T )1 " <|lx1|lp+i2llkwj|ip>1/p
holds in X, ' o J— o
w (7 02;1 ZM ) é(ﬂ;’;nuénrl *||q) "

holds in X*. If p < s < 0o the converse is true.
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