Introduction

There are many fruitful results on the representations of fuzzy numbers, differentials and integrals of fuzzy functions (see, e.g., in Goetschel-Voxman [7, 8], Dubois-Prade [2, 3, 4, 5], Puri-Ralescue [12], Furukawa [6], Kaleva [9, 10] etc). They establish fundamental results concerning differentials, integrals and fuzzy differential equations of fuzzy functions which map \mathbb{R} to a set of fuzzy numbers. By using the results it seems to be difficult to apply all the practical and significant problems. In this study we introduce the couple parametric representation (see [13]) corresponding to the representation of fuzzy numbers due to Goetschel-Voxman so that it is easy to solve fuzzy differential equations.

In Buckley [1], Kaleva [9, 10], Park [11] and Song [16], various types of conditions for the existence and uniqueness of solutions to fuzzy differential equations. By the couple representation some kinds of differential and integral of fuzzy functions can be easily treated in an analogous way with the real analysis as well as some type of fuzzy differential equations can be solved without difficulty. In Section 2 we denote a fuzzy number x by (x_1, x_2), where x_1, x_2 are endpoints of α-cut set of the membership function μ_x, respectively. We consider some kind of metric space which includes the set of fuzzy numbers as well as prove the continuity of x_1, x_2. In Section 3 we give definitions of differential and integral of fuzzy functions and sufficient conditions for fuzzy functions to be differentiable or integrable. In Section 4 we show the existence and uniqueness of solutions for initial value problems of fuzzy differential equations $x' = F(t, x), x(t_0) = x_0$, where t, t_0 are real numbers and x is a fuzzy number, and our results on behaviours of solutions as $t \to \infty$. In Section 5 we treat a fuzzy differential equation $x'' = f(t, x, x')$ with fuzzy boundary conditions $x(a) = A, x(b) = B$, where f is a fuzzy valued function defined on $J = [a, b]$ in the set of real numbers \mathbb{R}, and A, B are fuzzy numbers. In this section we discuss the existence...
and uniqueness of solutions for fuzzy boundary problems.

2 Parametric Representation of Fuzzy Numbers

In order to introduce a metric space which includes the set of fuzzy numbers, we define the following set.

\[X = \{ x = (x_1, x_2) \in C(I) \times C(I) \} \]

where \(I = [0, 1] \subset \mathbb{R} \) and \(C(I) \) is the set of continuous functions from \(I \) to \(\mathbb{R} \). Denote a metric by \(d(x, y) = \sup_{\alpha \in I}(|x_1(\alpha) - y_1(\alpha)| + |y_2(\alpha) - y_2(\alpha)|) \) for \(x = (x_1, x_2), y = (y_1, y_1) \in X \). Then the metric space \((X, d)\) is complete. The following definition means that fuzzy numbers are identified with membership functions.

Definition 1 Consider a set of fuzzy numbers with bounded supports as follows:

\[\mathcal{F}_{\text{st}}^b = \{ \mu : \mathbb{R} \rightarrow I \text{ satisfying (i)-(iv) below} \} \]

(i) There exists a unique \(m \in \mathbb{R} \) such that \(\mu(m) = 1 \).

(ii) The set \(\text{supp}(\mu) = \text{cl}([\xi \in \mathbb{R} : \mu(\xi) > 0]) \) is bounded in \(\mathbb{R} \).

(iii) One of the following conditions holds:

(a) \(\mu \) is strictly fuzzy convex, i.e.,

\[\mu(c\xi_1 + (1-c)\xi_2) > \min[\mu(\xi_1), \mu(\xi_2)] \]

for \(\xi_1, \xi_2 \in \mathbb{R}, 0 < c < 1 \);

(b) \(\mu(m) = 1 \) and \(\mu(\xi) = 0 \) for \(\xi \neq m \).

(iv) \(\mu \) is upper semi-continuous on \(\mathbb{R} \).

Remark 1 The above condition (iiiia) is stronger than one in the usual case where \(\mu \) is fuzzy convex. From (iiiia) it follows that \(\mu(\xi) \) is strictly increasing in \(\xi \in (-\infty, m) \) and strictly decreasing in \(\xi \in (m, \infty) \). This condition plays an important role in the proof of Theorem 1.

We introduce the following parametric representation of \(\mu \in \mathcal{F}_{\text{st}}^b \),

\[x_1(\alpha) = \min L_\alpha(\mu), \]
\[x_2(\alpha) = \max L_\alpha(\mu) \]

for \(0 < \alpha \leq 1 \) and

\[L_\alpha(\mu) = \{ \xi \in \mathbb{R} : \mu(\xi) \geq \alpha \}, \]
\[x_1(0) = \min \text{cl}(\text{supp}(\mu)), \]
\[x_2(0) = \max \text{cl}(\text{supp}(\mu)). \]

See Figure 1.

Remark 2 From the extension principle of Zadeh, it follows that

\[\mu_{x+y}(\xi) = \max \min \{ \mu_1(\xi_1), \mu_2(\xi_2) \} \]
\[= \max \{ \alpha \in I : \xi = \xi_1 + \xi_2, \xi_1, \xi_2 \in L_\alpha(\mu) \} \]
\[= \max \{ \alpha \in I : \xi \in [x_1(\alpha) + y_1(\alpha), x_2(\alpha) + y_2(\alpha)] \}, \]

where \(\mu_1, \mu_2 \) are membership functions of \(x, y \), respectively. Thus we get \(x+y = (x_1+y_1, x_2+y_2) \).

The following theorem is a basic result.

Theorem 1 Denote \(\mu = (x_1, x_2) \in \mathcal{F}_{\text{st}}^b \), where \(x_1, x_2 : I \rightarrow \mathbb{R} \). The following properties (i)-(iii) hold.
(i) \(x_1, x_2 \) are continuous on \(I \).

(ii) \(\max x_1(\alpha) = x_1(1) = m \) and \(\min x_2(\alpha) = x_2(1) = m \).

(iii) One of the following statements holds:

(a) \(x_1 \) is strictly increasing and \(x_2 \) is strictly decreasing with \(x_1(\alpha) < x_2(\alpha) \);

(b) \(x_1(\alpha) = x_2(\alpha) = m \) for \(0 < \alpha < 1 \).

Conversely, under the above conditions (i)

- (iii), if we denote

\[\mu(\xi) = \sup\{ \alpha \in I : x_1(\alpha) \leq \xi \leq x_2(\alpha) \} \]

then \(\mu \in \mathcal{F}_b^\text{st} \). Moreover it follows that \(\mathcal{R} \subset \mathcal{F}_b^\text{st} \) and that \(\mathcal{F}_b^\text{st} \) is a complete metric space in \(X \).

In the following example we illustrate typical three types of fuzzy numbers.

Example 1 Consider the following \(L-R \) fuzzy number \(x \in \mathcal{F}_b^\text{st} \) with a membership function as follows:

\[\mu_x(\xi) = \begin{cases}
L(\frac{m-\xi}{r})_+ & \text{for } \xi \leq m \\
R(\frac{\xi-m}{r})_+ & \text{for } \xi > m
\end{cases} \]

where \(m \in \mathbb{R}, l > 0, r > 0 \). \(L, R \) are into mappings defined on \(\mathbb{R} \). Let \(L(\xi)_+ = \max(L(\xi), 0) \) etc. We identify \(\mu_x \) with \(x = (x_1, x_2) \). Then we have \(x_1(\alpha) = m - L^{-1}(\alpha)l \) and \(x_2(\alpha) = m + R^{-1}(\alpha)r \) provided that \(L^{-1} \) and \(R^{-1} \) exist.

Let \(L(\xi) = -c_1\xi + 1 \), where \(c_1 > 0 \). We illustrate the following cases (i)-(iii).

(i) Let \(R(\xi) = -c_2\xi + 1 \), where \(c_2 > 0 \). Then \(c_2(x_2 - m) = c_1r(m - x_1) \).

(ii) Let \(R(\xi) = -c_2\sqrt{\xi} + 1 \), where \(c_2 > 0 \). Then \(c_2(x_2 - m)^2 = c_1r^2(m - x_1) \).

(iii) Let \(R(\xi) = -c_2\xi^2 + 1 \), where \(c_2 > 0 \). Then \(c_2(x_2 - m) = c_1r(x_1 - m)^2 \).

See Figure 2.

3 Differential and Integral of Fuzzy-valued Functions

Let an interval \(J \subset \mathbb{R} \). Denote an \(\mathcal{F}_b^\text{st} \)-valued function by

\[x(t) = (x_1(t), x_2(t)) \]

\[= \{(x_1(t, \alpha), x_2(t, \alpha))^T \in \mathbb{R}^2 : \alpha \in I \} \]

We define the continuity and differentiability of fuzzy-valued function as follows:

Definition 2 A fuzzy-valued function \(x : J \to \mathcal{F}_b^\text{st} \) is continuous at \(t \in J \) if

\[\lim_{h \to 0} d(x(t+h), x(t)) = 0. \]

Let \(x : J \to \mathcal{F}_b^\text{st} \) be

\[x(t) = (x_1(t, \cdot), x_2(t, \cdot)) = x(t, \cdot) \]

for \(t \in J \). The function \(x \) is said to be differentiable at \(t \in J \) if for any \(\alpha \in I \) there exist \(\frac{\partial x_1}{\partial t}(t, \alpha), \frac{\partial x_2}{\partial t}(t, \alpha) \) such that \(\frac{\partial x_2}{\partial t}(t, \alpha) \leq \frac{\partial x_2}{\partial t}(t, \alpha) \) and \(\mu_{\partial x}(t, \xi) \in \mathcal{F}_b^\text{st} \), where \(\mu_{\partial x}(t, \xi) = \sup\{ \alpha \in I : \frac{\partial x_2}{\partial t}(t, \alpha) \leq \xi \leq \frac{\partial x_2}{\partial t}(t, \alpha) \} \). The function \(x \) is said to be differentiable on \(J \) if \(x \) is differentiable at any \(t \in J \). Denote \(\frac{dx}{dt}(t) = x'(t) = (\frac{\partial x_1}{\partial t}(t, \cdot), \frac{\partial x_2}{\partial t}(t, \cdot)) \) and it is said to be the derivative of \(x(t) \).
We consider the following definition of the integral of F_b^t-valued functions.

Definition 3 Let $x: J \to F_b^t$ be $x(t, \cdot) = (x_1(t, \cdot), x_2(t, \cdot))$ for $t \in J$. The function x is said to be integrable over $[t_1, t_2]$, if x_1, x_2 are Riemann integrable over $[t_1, t_2]$. Then we define the integral as follows:

$$\int_{t_1}^{t_2} x(s, \cdot)ds = \{(\int_{t_1}^{t_2} x_1(s, \alpha)ds, \int_{t_1}^{t_2} x_2(s, \alpha)ds)^T \in \mathbb{R}^2 : \alpha \in T)\}.$$

Remark 3 Let $x(t) = (x_1(t, \cdot), x_2(t, \cdot)) \in F_b^t$ for $t \in J$.

(i) If x is differentiable at t, we get the integral over $[t_1, t_2] \subset J$ as follows:

$$\int_{t_1}^{t_2} x'(s, \cdot)ds + x(t_1, \cdot) = x(t_2, \cdot).$$

(ii) If $x(t) \in F_b^t$ is integrable over $[t_1, t_2]$, then we have $\int_{t_1}^{t_2} x(s, \cdot)ds \in F_b^t$. We have

$$d(\int_{t_1}^{t_2} x(s, \cdot)ds, 0) \leq \int_{t_1}^{t_2} d(x(s, \cdot), 0)ds.$$

4 **Initial Value Problems of Fuzzy Differential Equations**

Consider the following initial value problem of a differential equation

$$x'(t) = f(t, x), \quad x(t_0) = x_0 \quad (N)$$

where $t_0 \in \mathbb{R}, x_0 \in F_b^t$. Let $f: J_c \times B(x_0, r) \to F_b^t$, where $J_c = [t_0, t_0 + c], c > 0, B(x_0, r) = \{x \in F_b^t : d(x_0, 0) \leq r\}$.

By applying the contraction principle we get the following theorem.

Theorem 2 cf. [16] Suppose that the following conditions (i) and (ii) are satisfied.

(i) f is bounded, i.e., there exists an $M > 0$ such that $d(f(t, x), 0) \leq M$ for $(t, x) \in J_c \times B(x_0, r)$;

(ii) f is Lipschitzian in x, i.e., there exists an $L > 0$ such that $d(f(t, x), f(t, y)) \leq Ld(x, y)$ for $(t, x), (t, y) \in J_c \times B(x_0, r)$.

Then there exists a unique solution x for (N) such that $x(t) = x_0 + \int_{t_0}^{t} f(s, x(s, \cdot))ds$ for $t \in J_p = [t_0, t_0 + \rho], \text{where } \rho = \min(c, r/M)$.

In the following example we obtain an initial value problem of ordinary differential equations which are arising from fuzzy problems.

Example 2 Consider the following problem of fuzzy differential equation

$$x' = p(t)x + q(t), \quad x(t_0) = x_0 \quad (E)$$

$t \in \mathbb{R}, x_0, x(t) \in F_b^t$. Functions $p, q: \mathbb{R} \to \mathbb{R}$ are continuous, respectively.

Let $p: \mathbb{R} \to (-\infty, 0]$ and $x(t) = (x_1(t), x_2(t)).$ Then we have $x_1'(t) = p(t)x_2(t) + q(t), x_2' = p(t)x_1(t) + q(t)$, by denoting $x_0 = (a_0, b_0)$, so $x_1(t, \alpha)$ and $x_2(t, \alpha)$ satisfy

$$\begin{pmatrix} x_1(t, \alpha) \\ x_2(t, \alpha) \end{pmatrix} = \Phi(t, \alpha) \begin{pmatrix} a_0(t, \alpha) \\ b_0(t, \alpha) \end{pmatrix} + \Phi(t, \alpha) \int_{t_0}^{t} \Phi^{-1}(s, \alpha) \begin{pmatrix} q(s, \alpha) \\ q(s, \alpha) \end{pmatrix} ds,$$

where $\Phi(\cdot, \cdot)$ is a fundamental matrix of

$$\frac{d}{dt}(x_1(t, \alpha), x_2(t, \alpha))^T = (p(t)x_2(t, \alpha), p(t, \alpha)x_1(t, \alpha))^T.$$

Consider of linear fok as subset of all of we have the solution that passing the theorem. Here differential we calculates the result that unstabilty. Theorem, i.e.,

$$
\Phi(t, \alpha) = \begin{pmatrix}
\phi_{11}(t, \alpha) & \phi_{12}(t, \alpha) \\
\phi_{21}(t, \alpha) & \phi_{22}(t, \alpha)
\end{pmatrix}
$$

\(\phi_{11}(t, \alpha) = \frac{\int_{t_0}^{t} p(s, \alpha) ds}{2} + e^{-\int_{t_0}^{t} p(s, \alpha) ds}
\)

\(\phi_{12}(t, \alpha) = \frac{-\int_{t_0}^{t} p(s, \alpha) ds}{2} - e^{-\int_{t_0}^{t} p(s, \alpha) ds}
\)

\(\phi_{21}(t, \alpha) = \frac{\int_{t_0}^{t} p(s, \alpha) ds}{2} - e^{-\int_{t_0}^{t} p(s, \alpha) ds}
\)

\(\phi_{22}(t, \alpha) = \frac{-\int_{t_0}^{t} p(s, \alpha) ds}{2} + e^{-\int_{t_0}^{t} p(s, \alpha) ds}
\)

for \(t \geq t_0, \alpha \in I\). Then we get the following theorem which means that solutions of the fuzzy differential equation show unstability in some sense.

Theorem 3 Let \(q(t) \equiv 0\). For any solution \(x = (x_1, x_2)\) of (E) it follows that

\[
\lim_{t \to \infty} |x_1(t, \alpha) + x_2(t, \alpha)| = 0 \text{ for } \alpha \in I.
\]

In what follows we consider the equation (E) with \(q(t) \equiv 0\).

Example 3 Consider behaviors of solutions of the following problem of a fuzzy differential equation

\[
x' = p(t)x, \quad x(t_0) = x_0 \quad (E_0)
\]

where \(t \in \mathbb{R}, x_0\) and \(x(t) \in \mathcal{F}_b^t\). Function \(p(t) = (p_1(t, \cdot), p_2(t, \cdot)) : \mathbb{R} \to \mathcal{F}_b^t\) is continuous.

Remark 4 Let \(T(x) = p(t)x\). It follows that \(T\) is non-linear.

In analyzing the ordinary differential equation \(x' = a(t)x + b(t)\), where \(a, b : \mathbb{R} \to \mathbb{R}\) are continuous, the condition that

\[
\lim_{t \to \infty} \int_t^a s p(s) ds = 0
\]

plays an important role in showing the property that \(\lim_{t \to \infty} x(t) = 0\).

Concerning fuzzy differential equation (E0), we get an extension result of asymptotic behaviors of ordinary linear differential equations as well as we observe a little different result as follows.

Seikkala [15] calculates the solution in case that \(p(t) \equiv -1\). See Figure 3.

In the following theorem we show an attractivity set \(A^{E_0}(t_0)\) of (E0) at \(t_0\). Here \(A^{E_0}(t_0)\) is a subset of \(\mathcal{F}_b^t\) as follows:

Definition 4 If \(x_0 \in A^{E_0}(t_0)\), then all the solutions \(x\) of (E0) passing through \((t_0, x_0) \in \mathbb{R} \times \mathcal{F}_b^t\) satisfies

\[
\lim_{t \to \infty} d(x(t, \alpha), 0) = 0 \text{ for } \alpha \in I.
\]

It is clear that \(x_0 = 0 \in A^{E_0}(t_0)\) for any \(t_0 \in \mathbb{R}\). In the case that \(p_1(t, \alpha) \equiv p_2(t, \alpha) \leq 0\) and

\[
\lim_{t \to \infty} \int_{t_0}^{t} p_1(s, \alpha) ds = -\infty \text{ for } t_0 \in \mathbb{R}, \alpha \in I,
\]

it follows that \(A^{E_0}(t_0) = \mathbb{R}\) for \(t_0 \in \mathbb{R}\).

When \(p_1(t, \alpha) \neq p_2(t, \alpha)\), we have the following theorem.

Theorem 4 Consider Problem (E0) with \(p_1(t) \neq p_2(t)\). Let \(p_2(t, \alpha) \leq 0\) on \(\mathbb{R} \times I\) and

\[
\lim_{t \to \infty} \int_{t_0}^{t} p_2(s, \cdot) ds = -\infty
\]

for \(t_0 \in \mathbb{R}\). Then we have \(A^{E_0}(t_0) = \{0 \in \mathbb{R}\}\) for any \(t_0 \in \mathbb{R}\).

In the following example we get an extension of Theorem 3 with \(q(t) \equiv 0\).

Example 4 Consider the following problem

\[
x' = P_m(t)x, \quad x(t_0) = x_0 \quad (P_m)
\]

\(P_m : \mathbb{R} \to \mathcal{F}_b^t\) such that \(P_m = (-m-q_1, -m+q_2)\) satisfies

\[
m : \mathbb{R} \times I \to \mathbb{R}, \ m(t, \alpha) \geq 0,
\]
\[q_i : \mathbb{R} \times I \rightarrow \mathbb{R}, \]
\[0 \leq q_i(t, \alpha) \leq m(t, \alpha), \quad i = 1, 2. \]

Theorem 5 Suppose that for \(\alpha \in I, t_0 \in \mathbb{R} \)
\[
\lim_{t \rightarrow \infty} \int_{t_0}^{t} m(s, \alpha) ds = \infty,
\]
\[
\lim_{t \rightarrow \infty} e^{-\int_{t_0}^{t} m(s, \alpha) ds} x \int_{t_0}^{t} q(s, \alpha) e^{\int_{t_0}^{t} (2m(t, \alpha) + q(r, \alpha)) dr} ds = 0,
\]
where \(q(t, \alpha) = \max(q_1(t, \alpha), q_2(t, \alpha)) \). Then for any solution \(x = (x_1, x_2) \) of \((P_m) \) it follows that \(\lim_{t \rightarrow \infty} |x_1(t, \alpha) + x_2(t, \alpha)| = 0 \) for \(\alpha \in I \).

5 Boundary Value Problems of Fuzzy Differential Equations

Let \(J = [a, b] \subset \mathbb{R} \). In this section we consider the following fuzzy differential equation with fuzzy boundary conditions

\((F) \quad \frac{d^2 x}{dt^2}(t) = f(t, x, x'), \)

\((1) \quad x(a) = A, \)

\((2) \quad x(b) = B, \)

where \(t \in J, \ x = (x_1, x_2) \in \mathcal{F}_b^t, A = (A_1, A_2), B = (B_1, B_2) \in \mathcal{F}_b^t \). Then we get ordinary differential equations

\[
\frac{d^2 x_1}{dt^2}(t) = f_1(t, x_1, x_2, x_1', x_2')
\]
\[
\frac{d^2 x_2}{dt^2}(t) = f_2(t, x_1, x_2, x_1', x_2')
\]
\[
x_1(a) = A_1, \quad x_2(a) = A_2, \quad x_1(b) = B_1, \quad x_2(b) = B_2
\]

with conditions that \(x_j^{(i)}(t), i = 0, 1, 2; j = 1, 2, \) satisfy (i) - (iii) of Theorem 1.

By putting \(y_1 = x_1', y_2 = x_2' \) we have

\[
\begin{pmatrix}
 x_1' \\
 x_2' \\
 y_1' \\
 y_2'
\end{pmatrix} =
\begin{pmatrix}
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 y_1 \\
 y_2
\end{pmatrix}
\]
\[
+ \begin{pmatrix}
 f_1(t, x_1, x_2, y_1, y_2) \\
 f_2(t, x_1, x_2, y_1, y_2)
\end{pmatrix}
\]

Then, by denoting \(z = (x_1, x_2, y_1, y_2)^T \in \mathbb{R}^4 \), we get

\((S) \quad \frac{dz}{dt}(t) = Bz + F(t, z) \)

\((C) \quad L(z) = (A_1, A_2, B_1, B_2)^T \)

Here

\[
B = \begin{pmatrix}
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}, \quad F(t, z) = \begin{pmatrix}
 f_1(t, z) \\
 f_2(t, z)
\end{pmatrix}
\]

and \(L \) is a bounded linear operator from \(C(J) \times C(J) \) to \(\mathbb{R}^4 \) as follows:

\[
L(z) = (x_1(a), x_2(a), x_1(b), x_2(b))^T.
\]

In this case we get the fundamental matrix

\[
X_B(t) = e^{tB} = \begin{pmatrix}
 1 & 0 & t & 0 \\
 0 & 1 & 0 & t \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]

Let \(U_B \) satisfy

\[
L(X_B(t)z_0) = \begin{pmatrix}
 1 & 0 & a & 0 \\
 0 & 1 & 0 & a \\
 1 & 0 & b & 0 \\
 0 & 1 & 0 & b
\end{pmatrix} z_0 = U_Bz_0
\]
for $z_0 \in \mathbb{R}^4$. It follows that

$$U_B^{-1} = \frac{1}{b-a} \begin{pmatrix} b & 0 & -a & 0 \\ 0 & b & 0 & -a \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

We denote a norm in \mathbb{R}^4 by $\|z\| = |x_1| + |x_2| + |y_1| + |y_2|$. Then $\|U_B\| = \max(2, a + b)$ and $\|U_B^{-1}\| = \frac{b + 1}{b - a}$.

In the similar way of discussion in [14] the authors obtain the existence and uniqueness of solutions for boundary value problems of ordinary differential equations

$$(S_n) \quad \frac{dx}{dt}(t) = D(t)x + F(t,x),$$

$$(C_n) \quad L_n(x) = c,$$

where $t \in J, x(t) \in \mathbb{R}^n, c \in \mathbb{R}^n, L_n : C(J) \to \mathbb{R}^n$ is a bounded linear operator, $D : J \to \mathbb{R}^{n \times n}$ and $F : J \times \mathbb{R}^n \to \mathbb{R}^n$ are continuous.

Denote the fundamental matrix of (S_n) by X. Define a constant matrix U with $L(X(\cdot)x_0) = Ux_0$. Assume that U is nonsingular. Then we have the following existence and uniqueness thereoms.

Theorem 6 (cf. [14]) Let $K = e^{\int_0^T \|D(s)\| \, ds}$ and $K_1 = \sup_{0 \leq s \leq T} \|X(t)X^{-1}(s)\|$ and let a positive number δ satisfy $\delta < 1/(K \|U^{-1}\|)$. Assume that F satisfies

$$\liminf_{n \to \infty} \frac{1}{n} \int_a^b \sup_{\|z\| \leq n} \|F(s,z)\| \, ds < \frac{1}{1 - \delta K_1 ||U^{-1}||}.$$

If $\|c\| \leq \delta$, then $(S_n), (C_n)$ has at least one solution.

Theorem 7 (cf. [14]) Let

$$L(r) = \int_a^b \sup_{\|z\| \leq n} \|F(s,z_1) - F(s,z_2)\| \, ds$$

for $r > 0$. If there exists an $r_0 > 0$ such that $(K_1 \|L\| + 1)K_1L(r_0) < 1$ and $\|c\| \leq r_0$, then $((S_n), (C_n))$ has one and only one solution.

By applying the above theorems we get the existence and uniqueness theorems of $((S), (C))$.

Theorem 8 Let $\mathbb{R}^2 -$ valued function $f = (f_1, f_2)^T$ be continuous on $J \times \mathbb{R} \times \mathbb{R}$ and let $\delta_1 > 0$ satisfy $\delta_1 < 1/(e^{(b-a) + 1}).$ Assume that

$$\liminf_{n \to \infty} \frac{1}{n} \int_a^b \sup_{z \in \mathbb{R}^4} (|f_1(s,z)| + |f_2(s,z)|) \, ds < \frac{1}{1 + e^{b-a} ||L|| \frac{b+1}{b-a}}.$$

If $d(z_0,0) \leq \delta_1$, where $z_0 = (A_1, A_2, B_1, B_2)^T \in \mathbb{R}^4$, then $((S), (C))$ has at least one solution.

Theorem 9 Let $\mathbb{R}^2 -$ valued function $f = (f_1, f_2)^T$ be continuous on $J \times \mathbb{R} \times \mathbb{R}$ and let $L_1(r) = \int_a^b \sup_{d(z_1,0) \leq r, t \leq 1, 2} (|f_1(s,z_1) - f_1(s,z_2) + |f_2(s,z_1) - f_2(s,z_2)| \, ds$ for $r > 0$. If there exists an $r_1 > 0$ such that $(e^{b-a} ||L|| + 1)e^{b-a}L_1(r_1) < 1$ and $d(z_0,0) \leq r_1$, where $z_0 = (A_1, A_2, B_1, B_2)^T \in \mathbb{R}^4$, then $((S), (C))$ has one and only one solution.

In this study we have the following question: Do solutions of $((S), (C))$ are solutions of $(F), (1), (2)$, i.e., solutions of $((S), (C))$ satisfy conditions (i) - (iii) of Theorem 1.
References

Figure 1: Fuzzy number $\mu = (x_1, x_2)$

\[\mu \]

Figure 2: Fuzzy numbers $\mu = (x_1, x_2)$ in the following cases (i)-(iii)

i) $c_2 l(x_2 - m) = c_1 r(m - x_1)$
(ii) $c_2 l(x_2 - m)^2 = c_1 r^2 (m - x_1)$
(iii) $c_2^2 l^2 (x_2 - m)$
Figure 3: The solutions $x'(t, \cdot) = -x(t, \cdot)$