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The Riccati equation for an optimization problem
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1 Introduction

Conjugate point is a global concept in the calculus of variations, and it is a key factor
of optimality conditions. In variational problems, the variable is not a vector z in R"
but a function z(t). Recently, we established a conjugate point theory for an elementary
extremal problem:

(P,)  Minimize f(z) z € R™.

In [3], we defined the Jacobi equation and (strict) conjugate points for (Fp), and we
described necessary- and sufficient optimality conditions in terms of conjugate points.
Furthermore, we extended the conjugate point theory to a constrained case in [4].

On the other hand, the Riccati equation also plays an important role in the classical
conjugate point theory. The aims of this paper are to introduce the Riccati equation to
(P,), and to discuss optimality in terms of the solution for the Riccati equation.

In Section 2, we briefly review the classical conjugate point theory. In Section 3, we
review the conjugate points for (P) presented in [3]. In Section 4, we define the Riccati
equation for (P), and we describe a sufficient optimality conditions for () in terms of
the Riccati equation. In Section 5, we clarify the algebraic meaning of the solution for
the Riccati equation.

2 The classical conjugate point theory

Let Z be a minimum for the simplest problem in the calculus of variations:

(SP) Minimize F(z) := A " Ft, (), 2(8)dt
subject to z(0) = A, z(T)=B

Then it satisfies the Euler equation: df:(t,Z(t),Z(t))/dt = fz(t,Z(t),Z(t)), and the
Legendre condition: P(t) := fis(t,Z(t), Z(t)) > 0.

Legendre attempted to prove that a sufficient condition for F(z) have a weak min-
imum at Z(t) is the strengthened Legendre condition: fs:(t,Z(t), Z(t)) > 0 in addition
to the Euler equation. Though Legendre did not get to the goal, his idea is fruitful, see
[2, p. 104]. His approach was to first write the second variation

1) = [ {P§?+ Ry}t for y(0) = y(T) = 0
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of F(z) at Z in the form

16) = [ {P#+ Ry? + Syt = [ (PP + 2y + (R+-i)dt, (1)

where w(t) is an arbitrary piecewise smooth function. Next, he observed that the
strengthened Legendre condition would be sufficient if it were possible to find a function
w(t) for which the integrand in (1) is a perfect square. However, this is not always
possible, since w(t) would have to satisfy the Riccati equation

P(R + ) = u?, | ()

and although the Riccati equation may not have a solution on the whole interval [0, T).
Furthermore, by the change of variable

w:‘—'y.'P, (3)

the Riccati equation is transformed into the Jacobi equation: d(Py)/dt = Ry, which
implies that the Riccati equation has a solution w(t) except zero points of a non-trivial
solution y(t) of the Jacobi equation.

In general, conjugate points are defined by the Jacobi equation:

& {Fost + Fasi} = Fuoy + s

If there exists a non-trivial solution y(t) of the Jacobi equation with y(0) = 0, then any
zero point ¢ > 0 of y(t) is said to be conjugate to 0.

THEOREM 1 (Jacobi) A sufficient condition for a feasible solution Z(t) be a minimum
is the combined condition of the Fuler equation, the strengthened Legendre condition,
and that there are no points conjugate to 0 on [0,T]. Conversely, if T is a minimum

and the strengthend Legendre condition is satisfied, then there are mo points conjugate
to0 on [0,7).

3 The Jacobi equation for (P))

In this section, we review the conjugate point theory for (F) presented in [3]. Ac-
cording to Sylvester’s criterion, an n x n-symmetric matrix A = (a;;) is positive-definite
if and only if its descending principal minors |Ax| (k = 1,...,n) are positive, where
Ak = (ai;) (1 <14, < k). '

The following lemma shows that the determinant of any square matrix is expanded
with respect to the descending principal minors.

LEMMA 1 ([3]) For any nxn-matrix A = (asj), its determinant is expanded as follows:

n—1

Al=>" > e(0)Gkr1pk+1)0k42pk42) - * Anp(n)| Akl (4)
k=0 pcS(k+1,n)
where |Ag| := 1, €(p) denotes the sign of p, and S(k + 1,n) denotes the set of all
permutations p on {k+ 1,...,n} satisfying that there is no £ > k such that p is closed
on{l+1,...,n}.
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DEFINITION 1 (/8]) For any n x n-matriz A = (a;;), we call the recursion relation on
Yor---2Yn

k-1
Yk = Z Z (0) it 1p(i41) Bit2p(i+2) * * * Chp(k)¥i> k=1,...,n (5)
=0 peS(i+1,k)

the Jacobi equation for A. We say that k is conjugate to 1 if the solution {y;} of the
Jacobi equation with yy > 0 changes the sign from positive to non-positive at k. Namely,

Y0>0, 91 >0, ..., yr_1 >0, and y, <O0. (6)

Concerning the reason why we call the recursion relation (5) the Jacobi equation, readers
may refer to [3, p. 57].

THEOREM 2 (/3]) For any n X n-symmetric matriz A, A > 0 if and only if there is no
point conjugate to 1.

THEOREM 3 (/8]) A sufficient condition for an extremal T to be a minimum for (Pp)
i3 that there is no point conjugate to 1 for the Hesse matriz f"(Z).

4 The Riccati equation for (/)

In this section, we define the Riccati equation for (Fp), and we clarify the relationship
between the Riccati equation and the Jacobi equation. As we saw in Section 2, the key
point to derive the (classical) Riccati equation was the perfect square. This idea works
very well when we define the Riccati equation for (Fp), too.

Let us first consider the case where A is a tridiagonal matrix.

a bl
A=t @ - . (7)
T T bn—l
b1 an

Suppose that the quadratic form 27 Az (r € R") is expressed as a summation of n
perfect squares

T Az = alx"l’ + aga:g +---+ a,.:z:?l + 2b1179 + 2bpx0x3 + - - - + 2bp_1Tp-_1Zn

b\ by \’
= (wla:l + —la:g) +---+ (w,,_lx,._l + == x,.) + wf,a:?,
wy Wn_1

for some wy, ..., w, € R/{0}. Then {wy} has to satisfy

wi=a;, wp=a——5+ (k=2,...n). (8)
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On the other hand, the Jacobi equation (5) for the tridiagonal matrix reduces to

Yk = QkYr-1 — by _1Yk—2. | 9)
Dividing (9) by yx_1, we get
Y k"‘b yk2 (10)
Yk-1 Y1
Comparing (10) with (8), we obtain
Yke—1

Hence there is no nonzero wy € R when yp_1yx < 0. ThlS fact matches the classma.l
result mentioned in Section 2.

For any matrix A, by dividing the Jacobi equation (5) by yx_1, we obtain the defi-
nition of the Riccati equation.

DEFINITION 2 For any n x n-matrit A = (a;;), we define the Riccati equation as
follows.

2
wy = an,

—1 " . s .
wi = ag+ _S_ z 8(p)‘azp(§)a§+1p(g+1)2 akp(k), k=2,...,n.
wiw?, - w
£=1 peS(L,k) e We 1 k—1

The following theorem states the relationship between conjugate points and the
Riccati equation.

THEOREM 4 Let k be conjugate to 1. Then the Riccati equation has a solution

wy, ..., wx_1 € R/{0}, but it has no solution w, € R/{0}. Conversely, ifw,..., wx_; €
R/{0} satisfy the Riccati equation, and if there is no wy € R/{0} satisfying the Riccati
equation, then k is conjugate to 1.

THEOREM 5 A sufficient condition for an extremal T to be a minimum for (Py) is that
the Riccati equation has non-zero real solution wi (k = 1,...,n) for the Hesse matriz

A= f"(z).

5 Perfect squares

As we have seen in the beginning of Section 4, when A is a positive-definite tridiagonal
matrix, the quadratic form 27 Az can be expressed as a summation of n perfect squares.
The aim of this section is to prove that the above observation is true for an arbitrary
positive-definite matrix A.

LEMMA 2 Let A be an n X n-symmetric matrir, and divide A as follows.

B a o s o R
= 1
where a € R, a € R*1, and B is an (n — 1) x (n — 1)-symmetric matriz. Then A > 0
if and only if @ > 0 and B — aa”/a > 0.
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THEOREM 6 Let A be a positive-definite matriz of order n. Then the quadratic form
1T Az is expressed as a summation of n perfect squares by the following procedure.

Step 1 Divide A and z as (12) and z7 = (z1, yT) € R x R, respectively.

T, \ % T
Step 2 2T Az = \/Ex1+9—y + 97 B-2% y
Va a

T
Step 3 Choose B — % as A, and go to Step 1.

Theorem 6 is rephrased as follows.

THEOREM 7 Let A = (ai;) be a positive-definite matrix of order n. Then the quadratic
form zT Az is expressed as a summation of n perfect squares

n n 2
T 2 j—k+1 Okj (k)z;
T Az = kz::lakk(k) {xk + axe (k) , (13)
where 2T = (z1,...,Z,) and a;;j(k) is inductively defined by
aij(1) :=ai, 124, j=mn, (14)
i(k)ax;(k .
ot +1) = aglh) - 2B 1< j<n (15)

The following theorem provides an explicit representation of a;;(k), and it clarifies
the algebraic meaning of {wy}.

THEOREM 8 Let A = (ai;) be a positive-definite matriz of size n, let a;;(k) be the
sequence defined by (14) and (15), and let {wy} be the solution of the Riccati equation.
Then

k-1 -

k) =+ Y E(p)acp(e)az+21p(§+1) Gk 1p(k=1) B (16)
£=1 peSij(Lk—1) WyWyyy ® - Wi

foranyk=1,...,n and k <1, j <n, where Sij(¢,k —1) denote the set of all bijections

p:{6,e+1,...,k—1,i} = {6,£+1,...,k—1,j} which satisfies that p({€', €' +1,... ., k—

Li}) #{€,¢ +1,...,k—1,5} for any £ < €' < k — 1. Furthermore,

w,zg = akk(k) (17)
foranyk=1,...,n.

The relation (17) guarantees that one may test the positive-definiteness of A by means
of the procedure in Theorem 2 or equivalently (14) and (15).
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