
UNIFORM TIGHTNESS FOR TRANSITION PROBABILITIES
ON NUCLEAR SPACES

JUN KAWABE (河邊 淳)

Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

Abstract. The aim of this paper is to give anotion of uniform tightness for
transition probabilities on topological spaces, which assures the uniform tightness
of compound probability measures. Then the upper semicontinuity of set-valued
mappings are used in essence. As an important example, the uniform tightness
for Gaussian transition probabilities on the strong dual of anuclear real Prechet
space is studied. It is also shown that some of our results contain well-known
results concerning the uniform tightness and the weak convergence of probability
measures.

1. Introduction

Let $X$ and $\mathrm{Y}$ be topological spaces. In this paper, we present anotion of uniform

tightness for transition probabilities on $X\cross \mathrm{Y}$ which assures the uniform tightness

for compound probability measures $\mu\circ$ Adefined by

$\mu 0\lambda(D)=\int_{X}\lambda(x, D_{x})\mu(dx)$

for ameasure $\mu$ on $X$ and atransition probability Aon $X\cross \mathrm{Y}$ . We may consider that
the compound probability measure is ageneralization of the product measure or the

convolution measure, and have to notice that the weak convergence of convolution

measures has been looked into in great details by Csiszar $[2, 3]$ and Kallianpur

[6]. In Section 2we recall notation and necessary definitions and results concerning

probability measures on topological spaces, and then give anecessary and sufficient
condition for aprobability measure- alued mapping to be atransition probability

in terms of the measurability of its characteristic functional.

In Section 3we present anotion of uniform tightness for transition probabilities,

using the upper semicontinuity of set-valued mappings, so that the corresponding

set of compound probability measures is uniformly tight. We also give asufficient
condition for the weak convergence of anet of compound probability measures.
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In Section 4we study Gaussian transition probabilities on the strong dual of

anuclear real Frechet space as an important example of the uniform tightness for

transition probabilities. We also show that some of the results in this section contain

well-known results concerning the uniform tightness and the weak convergence of

probability measures.
Throughout this paper, we suppose that all the topological spaces and all the

topological linear spaces are Hausdorff.

2. Preliminaries

Let $(X, A)$ be ameasurable space and $\mathrm{Y}$ atopological space. We denote by $B(\mathrm{Y})$

the $\mathrm{c}\mathrm{r}$-algebra of all Borel subsets of Y. By aBorel measure on $\mathrm{Y}$ we mean afinite
measure defined on $B(\mathrm{Y})$ and we denote by $P(\mathrm{Y})$ the set of all Borel probability

measures on Y.
If $\mathrm{Y}$ is completely regular, we equip $P(\mathrm{Y})$ with the weakest topology for which

the functional
$\nu\in P(\mathrm{Y})\mapsto+\int_{Y}g(y)\nu(dy)$ , $g\in C_{b}(\mathrm{Y})$ ,

are continuous. Here $C_{b}(\mathrm{Y})$ denotes the set of all bounded continuous real-valued

functions on Y. This topology on $P(\mathrm{Y})$ is called the weak topology, and we say that

anet $\{\nu_{\alpha}\}$ in $P(\mathrm{Y})$ converges weakly to aBorel probability measure $\nu$ and we write
$\nu_{\alpha}arrow\nu w$ , if

$\lim_{\alpha}\int_{Y}g(y)\nu_{\alpha}(dy)=\int_{Y}g(y)\nu(dy)$

for every $g\in C_{b}(\mathrm{Y})$ .
Atransition probability Aon $X\cross \mathrm{Y}$ is defined to be amapping from $X$ into $P(\mathrm{Y})$

which satisfies
(T1) for every $B\in B(\mathrm{Y})$ , the function $x\in X\vdash\Rightarrow\lambda_{x}(B)\equiv\lambda(x, B)$ is measurable

with respect to $A$ and $B(\mathbb{R})$ .

In case $X$ is also atopological space we always take $A=B(X)$ .

Denote by $C(\mathrm{Y})$ the set of all continuous real-valued functions on Y. For each

transition probability Aon $X\cross \mathrm{Y}$ and each $h\in C(\mathrm{Y})$ , we can define ameasurable

function
$x \in X\vdasharrow\chi[\lambda, h](x)\equiv\int_{Y}e^{ih(y)}\lambda(x, dy)$ .

In the rest of this section we give acondition for amapping Afrom $X$ into $P(\mathrm{Y})$

to be atransition probability on $X\cross \mathrm{Y}$ in terms of the measurability of the above

function $\chi[\lambda, h](x)$ . Denote by $\mathbb{R}^{N}$ be the $N$-dimensional Euclidian space. For $u=$

57



$(u_{\mathit{1}},u_{2_{\rangle}}\ovalbox{\tt\small REJECT}$

.\rangle
$u_{N})_{\mathrm{t}}\mathrm{y}\ovalbox{\tt\small REJECT}$ $(\mathrm{t}\ovalbox{\tt\small REJECT}_{1}, V_{2_{\rangle}}\ovalbox{\tt\small REJECT}$.

\rangle
$v_{N})\ovalbox{\tt\small REJECT} \mathrm{E}$ ”\rangle we $\mathrm{s}\mathrm{e}\mathrm{t}/’ \mathrm{u}$, v) $\ovalbox{\tt\small REJECT} \mathrm{f}\mathrm{z}_{1}v_{1}$

$+u_{2}v_{2}- \mathit{4}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ $+u_{N}v_{N}$

and $||\mathrm{t}\mathrm{z}||\ovalbox{\tt\small REJECT}$
$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ We denote by $K(\mathrm{R}^{N})$ the set of all continuous complex-valued

functions on $x^{N}$ with compact supports.

Lemma 1. Let $(X, A)$ be a measurable space and let Abe a mapping from $X$

into $P(\mathbb{R}^{N})$ . Then Ais a transition probability on $X\cross \mathbb{R}^{N}$ if and only if for each
$u=(\mathrm{v}\mathrm{i},\mathrm{v}2, \cdots,u_{N})\in \mathbb{R}^{N}$ , the function

$x \in X\vdash*\hat{\lambda}_{x}(u)\equiv\int_{\mathrm{R}^{N}}e^{:(u,v\}}\lambda(x, dv)$

is measurable.

Recall that atopological space is caUed aSuslin space if it is the continuous image
of some Polish space and recall that asubset $H$ of $C(\mathrm{Y})$ is said to separate points
of $\mathrm{Y}$ if for each $y_{1}$ , $y_{2}\in \mathrm{Y}$ with $y_{1}\neq y_{2}$ , there exists afunction $h\in H$ such that
$h(y_{1})$ I $h(y_{2})$ .

Proposition 1. Let $(X, A)$ be a measurable space and $\mathrm{Y}$ a completely regular
Suslin space, and let Abe a mapping from $X$ into $P(\mathrm{Y})$ . Assume that a linear
subspace $H$ of $C(\mathrm{Y})$ separates points of Y. Then Ais a transition probability on
$X\cross \mathrm{Y}$ if and only iffor each $h\in H$ , the function $x\in X\vdasharrow\chi[\lambda, h](x)$ is measurable.

3. Uniform Tightness for Transition Probabilities

Let $X$ and $\mathrm{Y}$ be topological spaces. Let us denote by $\mathcal{T}(X, \mathrm{Y})$ the set of aU
transition probabilities on $X\cross \mathrm{Y}$ and denote by $\mathcal{T}^{*}(X, \mathrm{Y})$ the set of all $\lambda\in \mathcal{T}(X, \mathrm{Y})$

which satisfy the condition
(T2) for each $D\in B(X\cross \mathrm{Y})$ , the function $x\in X\vdash\neq\lambda(x, D_{x})$ is Borel measurable.

Here for asubset $D$ of $X\cross \mathrm{Y}$ and $x\in X$ , $D_{x}$ denotes the section determined by $x$ ,
that is, $D_{x}=\{y\in \mathrm{Y} : (x, y)\in D\}$ .

Let $\mu\in P(X)$ and A6 $\mathcal{T}^{*}(X,\mathrm{Y})$ . Then we can define aBorel probability measure
$\mu\circ$ Aon $X\cross \mathrm{Y}$ , which is called the compound probability measure of $\mu$ and $\lambda$ , by

$\mu\circ\lambda(D)=\int_{X}\lambda(x, D_{x})\mu(dx)$ for all $D\in B(X\cross \mathrm{Y})$ .

Denote by $\mu\lambda$ the projection of $\mu\circ$ Aonto $\mathrm{Y}$ , that is, $\mu\lambda(B)=\mu\circ\lambda(X\cross B)$ for
all $B\in B(\mathrm{Y})$ . By astandard argument, we can show that the Pubini’s theorem
remains valid for all Borel measurable and $\mu\circ$ A-integrable functions $f$ on $X\cross \mathrm{Y}$ ;

$\int_{X\mathrm{x}Y}f(x,y)\mu\circ\lambda(dx,dy)=\int_{X}\int_{Y}f(x,y)\lambda(x,dy)\mu(dx)$ .
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It is obvious that (T2) implies (T1), and (T2) is satisfied, for instance, if the
product a-algebra $B(X)\cross B(\mathrm{Y})$ coincides with $B(X\cross \mathrm{Y})$ (this is satisfied if $X$ and
$\mathrm{Y}$ are Suslin spaces; see [13], page 105). We also know that (T2) is satisfied for any
continuous $\tau$ -smooth transition probability on an arbitrary topological space (see
Proposition 1of Kawabe [7] $)$ . In what follows, for $P\subset P(X)$ and $Q\subset \mathrm{B}(\mathrm{X})\mathrm{Y})$ ,
we set $P\circ Q=$ { $\mu\circ\lambda$ : $\mu\in P$ and A $\in Q$ } and $PQ=$ { $\mu\lambda$ : $\mu\in P$ and A $\in Q$ }.

Recall that asubset $P$ of $P(X)$ is said to be unifor$mly$ tight if for each $\epsilon$ $>0$ ,
there exists acompact subset $K_{\epsilon}$ of $X$ such that

$\mu(X-K_{\epsilon})<\epsilon$ for all $\mu\in P$

(see Prokhorov [11]). It is easy to see that $P\circ Q$ is uniformly tight if and only if $P$

and $PQ$ are uniformly tight. However $PQ$ and $P\circ Q$ are not necessarily uniformly
tight even if $P$ is uniformly tight and $Q[x]=$ { $\lambda_{x}$ : A $\in Q$} is uniformly tight for
each $x\in X$ as is seen in the following example. In what follows, $\delta_{x}$ denotes the
Dirac measure concentrated on $x$ , that is, $\delta_{x}(B)=1$ if $x\in B;\delta_{x}(B)=0$ if $x\not\in B$ .

Example. Let X $=\mathrm{Y}=\mathbb{R}$ . For each n $\geq 1$ , put

$s_{n}^{2}(x)=\{$

0for $x\leq 0$

$n^{2}x$ for $0<x\leq 1/n$

$2n-n^{2}x$ for $1/n<x\leq 2/n$

0for $2/n<x$

and define a transition probability $\lambda_{n}$ on $\mathbb{R}\cross \mathbb{R}$ by $\lambda_{n}(x, \cdot)=N[0, s_{n}^{2}(x)]$ , there
$N[m, \sigma^{2}]$ denotes the Gaussian measure on $\mathbb{R}$ with $tte$ mean $m$ and the variance
$\sigma^{2}$ . We also put $P=\{\delta_{1/n}\}$ and $Q=\{\lambda_{n}\}$ . Then $P$ is uniformly tight and $Q[x]$ is

uniforrmly tight for each $x\in \mathbb{R}$ , but $PQ$ and $P\circ Q$ are not uniformly tight.

We now present anotion of uniform tightness for transition probabilities. We
say that $Q\subset \mathcal{T}(X, \mathrm{Y})$ is uniformly tight if each $\epsilon>0$ , we can find an upper
semicontinuous compact-valued mapping $\Lambda_{\epsilon}$ : $Xarrow \mathrm{Y}$ such that

$\lambda(x, \mathrm{Y}-\Lambda_{\epsilon}(x))<\epsilon$

for all $x\in X$ and A $\in Q$ . Recall that aset-valued mapping $\Lambda$ : $Xarrow \mathrm{Y}$ is upper
semicontinuous if $\Lambda^{w}(F)\equiv\{x\in X : \Lambda(x)\cap F\neq\emptyset\}$ is aclosed subset of $X$ for every
closed subset $F$ of V. For the reader’s convenience, we collect some well-known facts
about upper semicontinuous set-valued mappings which will be used later (see [9],
pages 89 and 90)
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Proposition 2. Let $\Gamma$ and Abe upper semicontinuous set-valued mappings from
$X$ to Y. Then one has:

(1) If Ais compact-valued then $\Lambda(K)=\bigcup_{x\in K}\Lambda(x)$ is compact for every compact

subset $K$ of $X$ .
(2) If $\mathrm{Y}$ is a topological linear space, and $\Gamma$ and Aare compact-valued, then the

mapping $x\in X\vdasharrow\Gamma(x)+\Lambda(x)$ is compact-valued and upper semicontinuous.

The following theorem asserts that our notion of uniform tightness for transition
probabilities assures the uniform tightness of compound probability measures.

Theorem 1. Let X and Y be topological spaces. If P $\subset P(X)$ and Q $\subset$

$\mathcal{T}^{*}(X,$Y) are unifomly tight, then $P\circ Q\subset P(X\cross \mathrm{Y})$ is unifomly tight.

Let $X$ be atopological space. Denote by $C(X)$ the set of aU continuous real-
valued functions on $X$ . We say that asubset $F$ of $C(X)$ is equicontinuous on a set
$A$ of $X$ if the set of all restrictions of functions of $F$ to $A$ is equicontinuous on $A$ .

ABorel measure $\mu$ on $X$ is said to be $\tau$-smooth if for every increasing net $\{G_{\alpha}\}$

of open subsets of $X$ , we have $\mu(\bigcup_{\alpha}G_{\alpha})=\sup_{\alpha}\mu(G_{\alpha})$ . Denote by $P_{\tau}(X)$ the set
of all $\tau$-smooth probability measures on $X$ . Every Radon measure is tight and $\tau-$

smooth, and if $X$ is regular, every $\tau$-smooth measure is regular (see [15], Proposition

1.3.1). Conversely every tight and regular Borel measure is Radon. The proof of the

following lemma is an easy modification of the proof of Theorem 2in [2], and so we
omit its proof.

Lemma 2. Let $X$ be a completely regular topological space and let $\{\mu_{\alpha}\}$ be $a$

net in $P(X)$ which is uniformly tight. Assume that a net $\{\varphi_{\alpha}\}$ in $C_{b}(X)$ satisfies
(a) $\{\varphi_{\alpha}\}$ is uniformly bounded ;
(b) $\{\varphi_{\alpha}\}$ is equicontinuous on every compact subset of $X$ .

If $\mu\in \mathrm{V}\mathrm{T}(\mathrm{X})$ and $\mu_{\alpha}arrow\mu w$ , and if $\varphi\in C_{b}(X)$ and $\varphi_{\alpha}(x)arrow\varphi(x)$ for each $x\in X$ ,

then we have
$\lim_{\alpha}\int_{X}\varphi_{\alpha}(x)\mu_{\alpha}(dx)=\int_{X}\varphi(x)\mu(dx)$ .

We give asufficient condition for the weak convergence of anet of compound

probability measures.

Theorem 2. Let $X$ and $\mathrm{Y}$ be completely regular Suslin spaces. Let $H$ be $a$

linear subspace of $C(\mathrm{Y})$ which separates points of Y. Assume that a net $\{\lambda_{\alpha}\}$ in
$\mathcal{T}(X, \mathrm{Y})$ and $\lambda\in \mathcal{T}(X, \mathrm{Y})$ satisf
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(a) $\{\lambda_{\alpha}\}$ is uniformly tight ;

(6) for each $h\in H$ , the set $\{\chi[\lambda_{\alpha}, h]\}$ of the functions $x\in X\vdasharrow\chi[\lambda_{\alpha}, h](x)$ is

equicontinuous on every compact subset of $X$ ;

(c) $\chi[\lambda_{\alpha}, \mathrm{h}](\mathrm{x})arrow\chi[\lambda, h](x)$ for each $x\in X$ and $h\in H$ .

Then for any unifor$mly$ tight net $\{\mu_{\alpha}\}$ in $P(X)$ converging weakly to $\mu\in P(X)$ , we

have $\mu_{\alpha}\circ\lambda_{\alpha}arrow\mu\circ w$ A.

We have typical and somewhat trivial examples of uniformly tight transition prob-

abilities below. We study non-trivial examples in the following section.

Proposition 3. Let $X$ be a topological space and $\mathrm{Y}$ a completely regular topO-

logical space.
(1) For each $\alpha_{f}$ put $\lambda_{\alpha}(x, B)=\nu_{\alpha}(B)$ for all $x\in X$ and $B\in B(\mathrm{Y})$ , where

$\{\nu_{\alpha}\}\subset P_{\tau}(\mathrm{Y})$ is uniformly tight. Then the $\lambda_{\alpha}$ ’s satisfy (T2); and $\{\lambda_{\alpha}\}$ is unifomly

tight.
(2) Let $X=\mathrm{Y}=G$ be a topological group. For each $\alpha$ , put $\lambda_{\alpha}(x, B)=\nu_{\alpha}(Bx^{-1})$

for all $x\in G$ and $B\in B(G)$ , where $\{\nu_{\alpha}\}\subset P_{\tau}(G)$ is uniformly tight. Then the $\lambda_{\alpha}$ ’s

satisfy (T2); and $\{\lambda_{\alpha}\}$ is unifomly tight.

4. Gaussian Transition Probabilities on Nuclear Spaces

In this section we study Gaussian transition probabilities on nuclear spaces, such

as the strong dual of the space of all rapidly decreasing functions, which are impor-

tant and non-trivial examples of uniformly tight transition probabilities.

Let $\Psi$ be anuclear real Fr\’echet space, $\Psi’$ the dual of 1and $\langle\cdot$ , $\cdot\rangle$ the bilinear

form on $\Psi$ $\cross\Psi’$ . Let us denote by $\Psi_{\sigma}’$ and $\Psi_{\beta}’$ the weak and strong dual of $\Psi$ with

the weak topology $\sigma(\Psi’, \Psi)$ and the strong topology $\beta(\Psi’, \Psi)$ , respectively. For the

following properties which $\Psi_{\beta}’$ enjoys the reader will find more details and proofs in

Schaefer [12] and Fernique [4].

Proposition 4.
(1) $\Psi_{\beta}’$ is a Montel space, that is, it is a barreled space which every closed, bounded

subset is compact.
(2) $\Psi_{\beta}’$ is a completely regular Suslin space, in fact, Lusin space.

(3) Every closed, bounded subset of $\Psi_{\sigma}’$ is a compact and sequentially compact

subset of $\Psi_{\beta}’$ .
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Aseminorm $p$ on $\Psi$ is called Hilbertian ($H$-seminorm)if $p$ has the form $p(u)=$

$\sqrt{p(u,u)}$ , where $p(u, v)$ is asymmetric, non-negative definite, bilinear functional on
$\Psi\cross\Psi$ . Then the $p$ -completion of $\Psi/\mathrm{k}\mathrm{e}\mathrm{r}p$, denoted by $\Psi_{p}$ , is aseparable Hilbert
space, and its dual $\Psi_{p}’$ is also aseparable Hilbert space with the norm $p’(\eta)=$

$\sup\{|\langle u, \eta\rangle| : p(u)\leq 1\}$ .
Let $p$ and $q$ be $H$ seminorm on V. Folowing It\^o [5], we say that $p$ is said to be

bounded by $q$ , written $p\prec q$ , if

$(p:q)= \sup\{p(u) : q(u)\leq 1\}<\infty$.

We also say that $p$ is said to be Hilbert-Schmidt bounded by $q$ , written $p\prec_{HS}q$ , if
$p\prec q$ and

$(p:q)_{HS}=( \sum_{j=1}^{\infty}p(e_{j})^{2})^{1/2}<\infty$ for some CONS $\{e_{j}\}$ in $(\Psi, q)$ .

It is $\mathrm{w}\mathrm{e}\mathrm{U}$-known and is easily verified that $P\subset P(\Psi_{\beta}’)$ is uniformly tight if and
only if for each $\epsilon>0$ , there exists acontinuous $H$ seminorm $p_{\epsilon}$ on $\Psi$ such that

$\mu$( $\{\eta\in\Psi’$ : $|\langle u,\eta\rangle|\leq \mathrm{p}$ (u) for aU u $\in\Psi\}$ ) $\geq 1-\epsilon$

for all $\mu\in P$ . For the uniform tightness for transition probabilities we have:

Theorem 3. Let $X$ be a topological space which satisfies the first axiom of
countability and $Q$ a subset of $\mathcal{T}(X, \Psi_{\beta}’)$ . Assume that for each $\epsilon>0$ there $e$$\dot{m}tsa$

mapping $p_{\zeta}$ : $X\cross\Psiarrow[0, \infty)$ satisfying
(a) for each $u\in\Psi$ , the mapping $x\in X\vdasharrow p_{\epsilon}(x,u)$ is upper semicontinuous on

$X$ ;
(6) for each $x\in X$ , $p_{\epsilon}(x)(\cdot)\equiv p_{\epsilon}(x$ , $\cdot$ $)$ is a continuous $H$ seminorm on $\Psi$ ;
(c) $\lambda$ ( $x$ , $\{\eta\in\Psi’$ : $|\langle u$ , $\eta\rangle|\leq p_{\epsilon}$ ( $x$ , $u$) for all $u\in\Psi\}$ ) $\geq 1-\epsilon$ for all $x\in X$ and

$\lambda\in Q$ .

Then $Q$ is uniformly tight. Moreover in case $\Psi=\mathbb{R}^{N}$ , the assumption that $X$

satisfies the first axiom of countability is superfluous.

ABorel probability measure $\mu$ on $\Psi_{\beta}’$ is said to be Gaetssian if for each $u\in\Psi$ , the
function $\eta\in\Psi’\vdasharrow\langle u,\eta\rangle$ is areal (possibly degenerate) Gaussian random variable
on the probability measure space $(\Psi’, B(\Psi_{\beta}’)$ , $\mu)$ . For aGaussian measure $\mu$ on $\Psi_{\beta}’$ ,

we define its mean functional $m$ and covariance seminorm $s$ of $\mu$ by

$\langle u, m\rangle=\int_{\Psi’}\langle u, \eta\rangle\mu(d\eta)$
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$s(u, v)=\langle u, \eta-m\rangle\langle v, \eta-m\rangle\mu(d\eta)\acute{\Psi}’$

for all $u$ , $v\in\Psi$ and we put $s^{2}(u)=s(u, u)$ . We know that $m\in\Psi’$ and $s$ is a
continuous $H$ seminorm on](see e.g., [5], Theorem 2.6.2).

Let $(X, A)$ be ameasurable space. Atransition probability Aon $X\cross\Psi_{\beta}’$ is said
to be Gaussian if for each $x\in X$ , $\lambda_{x}(\cdot)\equiv\lambda(x, \cdot)$ is aGaussian measure on $\Psi_{\beta}’$ . For
aGaussian transition probability Aon $X\cross\Psi_{\beta}’$ we define for each $x\in X$ and each
$u$ , $v\in\Psi$ ,

and
$m(x, u)= \int_{\Psi’}\langle u, \eta\rangle\lambda(x, d\eta)$

$s(x, u, v)= \int_{\Psi’}\{\langle u, \eta\rangle-m(x, u)\}\{\langle v, \eta\rangle-m(x, v)\}\lambda(x, d\eta)$ ,

and we put $s^{2}(x, u)=s(x, u, u)$ . We say that the functions $m$ : $x\in X\vdash\Rightarrow m(x$ , $\cdot$ $)$

and $s$ : $x\in X\vdash+s(x, \cdot, \cdot)$ are the mean function and the covar iance function
of $\lambda$ , respectively. Since aGaussian measure is uniquely determined by its mean
functional and covariance seminorm (see [5], Theorem 2.6.3), it is easily verified
that aGaussian transition probability Ais also uniquely determined by its mean
function $m$ and covariance function $s$ , and hence we write $\lambda=\mathcal{T}N[m, s^{2}]$ .

The following proposition asserts that aGaussian transition probability can be
characterized in terms of the measurability of its mean and covariance functions.

Proposition 5. Let Abe a mapping from $X$ into $P(\Psi_{\beta}’)$ such that for each
$x\in X$ , $\lambda_{x}$ is a Gaussian measure on $\Psi_{\beta}’$ with its mean functional $m(x$ , $\cdot$ $)$ and
covariance seminorm $s(x, \cdot, \cdot)$ . Then Ais a transition probability on $X\cross\Psi_{\beta}’$ and
A $=\mathcal{T}N[m, s^{2}]$ if and only if for each $u\in\Psi$ , the functions $x\in X-rm(x, u)$ and
$x\in X\vdash\Rightarrow s^{2}(x, u)$ are measurable.

The following theorem gives asufficient condition under which aset of Gaussian
transition probabilities on $X\cross\Psi_{\beta}’$ is uniformly tight, in terms of mean and covariance
functions.

Theorem 4. Let $X$ be as in Theorem 3and $Q$ a set of Gaussian transition
probabilities on $X\cross\Psi_{\beta}’$ with A $=\mathcal{T}N[m_{\lambda}, s_{\lambda}^{2}]$ , A $\in Q$ . Assume that there exists $a$

mapping $q:X\cross\Psiarrow[0, \infty)$ satisfying
(a) for each $u\in\Psi$ , the mapping $x\in X\vdasharrow q(x, u)$ is upper semicontinuous on $X$ ;
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(b) for each $x\in X$ , $q_{x}(\cdot)=q(x$ , $\cdot$ $)$ is a continuous $H$-seminorrm on V.

Further, assume that there eist non-negative upper semicontinuous functions $M(x)$

and $S(x)$ on $X$ such that for every $x\in X$ ,

$\sup_{\lambda\in Q}q_{x}’(m_{\lambda}(x))\leq M(x)$
and

$\sup_{\lambda\in Q}(s_{\lambda}(x)$
:$q_{x})_{HS}\leq S(x)$

.

Then Q is uniformly tight

In case $\Psi=\mathbb{R}^{N}$ we have:

Corollary 1. Let $X$ be a topological space and $Q$ a set of Gaussian transition

probabilities on $X\cross \mathbb{R}^{N}$ with A $=\mathcal{T}N[m_{\lambda}, s_{\lambda}^{2}]$ , A $\in Q$ . Assume that there exist

non-negative functions $M(x, u)$ and $S(x, u)$ defined on $X\cross \mathbb{R}^{N}$ which satisfy

(a) for each $u\in \mathbb{R}^{N}$ , the functions $x\in X\vdash+M(x, u)$ and $x\in X\vdasharrow S(x, u)$ are
upper semicontinuous on $X$ ;

(b) $\sup_{\lambda\in Q}|\langle u, m_{\lambda}(x)\rangle|\leq M(x, u)$ and $\sup_{\lambda\in Q}s_{\lambda}(x, u)\leq S(x,u)$ for all $x\in X$

and $u\in \mathbb{R}^{N}$ .
Then $Q$ is uniformly tight

In the case when X is aone point set we have the foUowing well-known result.

Corollary 2. Let $P$ be a set of Gaussian measures on $\Psi_{\beta}’$ with mean functional
$m_{\mu}$ and covariance seminorms sM, $\mu\in P$ . Assume that $\sup_{\mu\in P}|\langle u, m_{\mu}\rangle|<\infty$ and
$\sup_{\mu\in P}s_{\mu}(u)<\infty$ for each u $\in\Psi$ . Then P is unifomly tight

Let $\Phi$ be anuclear real Frechet space. In case $X=\Phi_{\beta}’$ , combined Theorem 1and

Corollary 1with awell-known criterion for uniform tightness of probability measures
on nuclear spaces, we have:

Theorem 5. Let $Q$ be a set of Gaussian transition probabilities on $\Phi_{\beta}’\cross\Psi_{\beta}’$ with

A $=\mathcal{T}N[m_{\lambda}, s_{\lambda}^{2}]$ , A $\in Q$ . Assume that there exist non-negative functions $M(\xi,u)$

and $S(\xi,u)$ defined on $\Phi’\cross \mathrm{I}$ which satisfy

(a) for each $u\in\Psi$ , the functions $\xi\in\Phi_{\beta}’\vdash*M(\xi,u)$ and $\xi\in\Phi_{\beta}’\vdasharrow S(\xi, u.)$ are
upper semicontinuous on $\Phi_{\beta}’$ ;

(b) $\sup_{\lambda\in Q}|m_{\lambda}(\xi, u)|\leq M(\xi,u)$ and $\sup_{\lambda\in Q}\mathrm{q}\mathrm{x}(-)u)\leq \mathrm{S}(\mathrm{x})u)$ for all 46+’ and
$u\in\Psi$ .
Then $P\circ Q$ is uniformly tight for any unifomly tight subset $P$ of $P(\Phi_{\beta}’)$ .

For the weak convergence of compound probability measures we have:
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Theorem 6. Let $\lambda_{\alpha}=\mathcal{T}N[m_{\alpha}, s_{\alpha}^{2}]$ be a net of Gaussian transition probabilities
on $\Phi_{\beta}’\cross\Psi_{\beta}’$ and A $=\mathcal{T}N[m, s^{2}]$ a Gaussian transition probability on $\Phi_{\beta}’\cross\Psi_{\beta}’$ .
Assume that in addition to assumptions (a) and (b) of Theorem 5,

(c) for each $x\in X$ , the sets $\{m_{\alpha}(\cdot, u)\}$ and $\{s_{\alpha}^{2}(\cdot, u)\}$ are equicontinuous on every
compact subset of $\Phi_{\beta}’$ ;

(d) $\lim_{\alpha}m_{\alpha}(\xi, u)=m(\xi,u)$ and $\lim_{\alpha}s_{\alpha}^{2}(\xi, u)=s^{2}(\xi, u)$ for each $\xi\in\Phi’$ and
$u\in \mathrm{I}$ .
Then for any uniformly tight net $\{\mu_{\alpha}\}$ in $P(\Phi_{\beta}’)$ converging weakly to $\mu\in P(\Phi_{\beta}’)$ ,
we have $\mu_{\alpha}\circ\lambda_{\alpha}\mu\circ\underline{w}$ A.
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