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UNIFORM TIGHTNESS FOR TRANSITION PROBABILITIES
ON NUCLEAR SPACES

JuN KAwABE (& %)
Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

Abstract. The aim of this paper is to give a notion of uniform tightness for
transition probabilities on topological spaces, which assures the uniform tightness
of compound probability measures. Then the upper semicontinuity of set-valued -
mappings are used in essence. As an important example, the uniform tightness
for Gaussian transition probabilities on the strong dual of a nuclear real Fréchet
space is studied. It is also shown that some of our results contain well-known
results concerning the uniform tightness and the weak convergence of probability
measures.

1. Introduction

Let X and Y be topological spaces. In this paper, we present a notion of uniform
tightness for transition probabilities on X x Y which assures the uniform tightness

for compound probability measures p o A defined by

wo A(D) = /X A(z, D,)u(da)

for a measure p on X and a transition probability A on X xY. We may consider that
the compound probability measure is a generalization of the product measure or the
convolution measure, and have to notice that the weak convergence of convolution
measures has been looked into in great details by Csiszar [2, 3] and Kallianpur
[6]. In Section 2 we recall notation and necessary definitions and results concerning
probability measures on topological spaces, and then give a necessary and sufficient
condition for a probability measure-valued mapping to be a transition probability
in terms of the measurability of its characteristic functional.

In Section 3 we present a notion of uniform tightness for transition probabilities,
using the upper semicontinuity of set-valued mappings, so that the corresponding
set of compound probability measures is uniformly tight. We also give a sufficient

condition for the weak convergence of a net of compound probability measures.
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In Section 4 we study Gaussian transition probabilities on the strong dual of
a nuclear real Fréchet space as an important -example of the uniform tightness for
transition probabilities. We also show that some of the results in this section contain
well-known results concerning the uniform tightness and the weak convergence of
probablhty measures. '

Throughout this paper, we suppose that all the topologlcal spaces and all the

topological linear spaces are Hausdorff.

2. Preliminaries

Let (X, .A) be a measurable space and Y a topological space. We denote by B(Y")
the a—algebra of all Borel subsets of Y. By a Borel measure on Y we mean a finite
measure defined on B(Y') and we denote by P(Y’) the set of all Borel probability
measures-on Y.

If Y is completely regular, we equip P(Y) with the weakest topology for which

the functionals ;
veP®) - [ swrid), 90

are continuous. Here C,(Y) denotes the set of all bounded continuous redl—valued
functions on Y. This topology on P(Y) is called the weak topology, and we say that
a net {v,} in P(Y) converges weakly to a Borel probability measure v and we write
Ve —> v, if

hm / Y)Va(dy) = / 9(v)v(dy)

for every g € Cp(Y).

A transition probability A on X x Y is defined to be a mapping from X into P(Y")
which satisfies |

(T1) for every B € B(Y), the function z € X — A;(B) = A(z, B) is measurable
with respect to A and B(R). '
In case X is also a topological space we always take A = B(X).

Denote by C(Y) the set of all continuous real-valued functions on Y. For each
transition probability A on X x'Y and each h € C(Y'), we can define a measurable

function

z € X X[\, h](w) = /Y eh®) ) (m dy).

In the rest of this section we give a condition for a mapping A from X into P(Y)
to be a transition probability on X x Y in terms of the measurability of the above
function x[X, k](z). Denote by RN be the N-dimensional Euclidian space. For u =
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(uy, Uz, ,un), v = (v1,va,--- ,un) € RN, we set (u,v) = w10y +upva +- - - +unvy
and ||u|| = v/(u, u). We denote by K(R") the set of all continuous complex-valued
functions on RY with compact supports.

Lemma 1. Let (X,.A) be a measurable space and let A be a mapping from X
into P(RN). Then ) is a transition probability on X x RN if and only if for each
u = (uy,Us, - ,un) € RV, the function

TeX  A(u)= / e \(z, dv)
RN
1s measurable.

Recall that a topological space is called a Suslin space if it is the continuous image
of some Polish space and recall that a subset H of C(Y) is said to separate points
of Y if for each y;,y2 € Y with y; # y,, there exists a function h € H such that

h(y1) # h(y2)-

Proposition 1. Let (X,.A) be a measurable space and Y a completely regular
Suslin space, and let A be a mapping from X into P(Y). Assume that a linear
subspace H of C(Y') separates points of Y. Then X is a transition probability on
X xY if and only if for each h € H, the function x € X — X[, h](z) is measurable.

3. Uniform Tightness for Transition Probabilities

Let X and Y be topological spaces. Let us denote by 7(X,Y) the set of all
transition probabilities on X XY and denote by 7*(X,Y) theset ofall A € T(X,Y)
which satisfy the condition

(T2) for each D € B(X xY), the function £ € X — A(z, D,) is Borel measurable.
Here for a subset D of X xY and xz € X, D, denotes the section determined by z,
that is, D, = {y € Y : (z,y) € D}.

Let p € P(X) and A € T*(X,Y). Then we can define a Borel probability measure
poXon X xY, which is called the compound probability measure of u and A, by

o A(D) = /X Mz, D.)u(dz) for all D € B(X x Y).

Denote by u) the projection of p o A onto Y, that is, uA(B) = po M(X x B) for
all B € B(Y). By a standard argument, we can show that the Fubini’s theorem
remains valid for all Borel measurable and u o A-integrable functions f on X x Y;

£(z, y)1 0 Nde, dy) = /X /Y F(z, WAz, dy)u(dz).

XxY
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It is obvious that (T2) implies (T1), and (T2) is satisfied, for instance, if the
product o-algebra B(X) x B(Y) coincides with B(X x Y (this is satisfied if X and
Y are Suslin spaces; see [13], page 105). We also know that (T2) is satisfied for any
continuous T-smooth transition probability on an arbitrary topological space (see
Proposition 1 of Kawabe [7]). In what follows, for P C P(X) and Q C T*(X,Y),
weset PoQ = {uoA:pu € Pand ) € Q} and PQ = {pA: p € P and X € Q}.

Recall that a subset P of P(X) is said to be uniformly tight if for each € > 0,

there exists a compact subset K, of X such that
wX —-K,)<e forall ye P

(see Prokhorov [11]). It is easy to see that P o @ is uniformly tight if and only if P
and PQ are uniformly tight. However PQ and P o Q are not necessarily uniformly
tight even if P is uniformly tight and Q[z] = {X\; : A € Q} is uniformly tight for
each £ € X as is seen in the following example. In what follows, d, denotes the
Dirac measure concentrated on z, that is, 6,(B) =1 if z € B; §,(B) =0if z ¢ B.

Example. Let X =Y =R. For eachn > 1, put

0 for z<0
$2(z) = n?z for 0<z<1/n
" 2n —n’z  for 1/n<z<2/n
0 for 2/n <z

and define a transition probability A, on R x R by A\,(z,-) = N0, s2(z)], where
N[m,o?] denotes the Gaussian measure on R with the mean m and the variance
o?. We also put P = {81/»} and Q = {\,}. Then P is uniformly tight and Qlz] is
uniformly tight for each x € R, but PQ and P o Q are not uniformly tight.

We now present a notion of uniform tightness for transition probabilities. We
say that Q@ C T(X,Y) is uniformly tight if each € > 0, we can find an upper
semicontinuous compact-valued mapping A, : X — Y such that

Az, Y — Ac(z)) <€

for all z € X and A € Q. Recall that a set-valued mapping A : X —» Y is upper
semicontinuous if A*(F) = {z € X : A(z)NF # 0} is a closed subset of X for every
closed subset F' of Y. For the reader’s convenience, we collect some well-known facts
about upper semicontinuous set-valued mappings which will be used later (see [9],
pages 89 and 90).
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Proposition 2. LetT and A be upper semicontinuous set-valued mappings from
X toY. Then one has:

(1) If A is compact-valued then A(K) = |,k A(x) is compact for every compact
subset K of X.
- (2) If Y is a topological linear space, and T' and A are compact-valued, then the
mapping T € X — ['(z) + A(z) is compact-valued and upper semicontinuous.

The foIlowing theorem asserts that our notion of uniform tightness for transition
probabilities assures the uniform tightness of compound probability measures.

Theorem 1. Let X and Y be topological spaces. If P C P(X) and Q C
T*(X,Y) are uniformly tight, then P o Q C P(X x Y) is uniformly tight.

Let X be a topological space. Denote by C(X) the set of all continuous real-
valued functions on X. We say that a subset F' of C(X) is equicontinuous on a set
A of X if the set of all restrictions of functions of F' to A is equicontinuous on A.

A Borel measure p on X is said to be T-smooth if for every increasing net {Gq.}
of open subsets of X, we have u(lJ, Ga) = sup, #(Ga). Denote by P, (X) the set
of all 7-smooth probability measures on X. Every Radon measure is tight and 7-
smooth, and if X is regular, every 7-smooth measure is regular (see [15], Proposition
1.3.1). Conversely every tight and regular Borel measure is Radon. The proof of the
following lemma is an easy modification of the proof of Theorem 2 in [2], and so we
omit its proof.

Lemma 2. Let X be a completely reqular topological space and let {ua} be a
net in P(X) which is uniformly tight. Assume that a net {p.} in Cy(X) satisfies

(@) {pa} is uniformly bounded;

(0) {pa} is equicontinuous on every compact subset of X.

If p € P(X) and po —> p, and if p € Cp(X) and @a(z) = @(z) for each z € X,
then we have

lim /X a2 thaldz) = /X o(2)u(dz).

We give a sufficient condition for the weak convergence of a net of compound
probability measures. ‘ A

Theorem 2. Let X and Y be completely reqular Suslin spaces. Let H be a
linear subspace of C(Y) which separates points of Y. Assume that a net {\s} in
T(X,Y) and X € T(X,Y) satisfy
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(a) {A\o} is uniformly tight; ‘» .
-~ (b) for each h € H, the set {x[Aa,h]} of the functions z € X — X[Aq, hl(z) is
equicontinuous on every compact subset of X; !

(¢) x[Aa» A)(x) = X[\, hl(z) for each z € X and h € H.
Then for any uniformly tight net {u.} in P(X) converging weakly to p € ’P(X ), we
have fio © A — i 0 .

We have typical and somewhat trivial examples of uniformly tight transition prob-

abilities below. We study non-trivial examples in the following section.

Proposii:ion 3. Let X bea topological space and Y a completely reqular topo-
logical space.

(1) For each a, put Ao (,B) = vo(B) for all z € X and B € B(Y), where
{ve} CP(Y) is uniformly tight. Then the \o’s satisfy (T2), and {A.} is uniformly
tight.

(2) Let X =Y = G be a topological group. For each a, put Aa(z, B) = vo(Bz™")
for allz € G and B € B(G), where {va} C P-(G) is uniformly tight. Then the \o’s
satisfy (T2), and {A.} is uniformly tight.

4. Gaussian Transition Probabilities on Nuclear Spaces

In this section we study Gaussian transition probabilities on nuclear spaces, such
as the strong dual of the space of all rapidly decreasing functions, which are impor-
tant and non-trivial examples of uniformly tight transition probabilities.

Let ¥ be a nuclear real Fréchet space, ¥ the dual of ¥ and (-,-) the bilinear
form on ¥ x ¥'. Let us denote by ¥, and ¥}; the weak and strong dual of ¥ with
the weak topology a(\P’, ¥) and the strong topology G(¥’, ¥), respectively. For the
following properties which ¥} enjoys the reader will find more details and proofs in
Schaefer [12] and Fernique [4].

Proposition 4.
1) W) is @ Montel space, that is, it is a barreled space which every closed, bounded
subset is compact.
(2) U5 is a completely regular Suslm space n fact Lusm space.
(3) Ewvery closed, bounded subset of v s a compact and sequentzally compact
subset of W
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A seminorm p on ¥ is called Hilbertian (H-seminorm) if p has the form p(u) =
\/m , where p(u,v) is a symmetric, non-negative definite, bilinear functional on
¥ x ¥. Then the p-completion of ¥/ker p, denoted by ¥,, is a separable Hilbert
space, and its dual ¥ is also a separable Hilbert space with the norm P(n) =
sup{|(u, n)| : p(uv) < 1}.

Let p and ¢ be H-seminorms on ¥. Following It6 [5], we say that p is said to be
bounded by q, written p < g, if

(p: ) = sup{p(u) : g(u) < 1} < co.

We also say that p is said to be Hilbert-Schmidt bounded by gq, written p <pys g, if
p < q and

o 1/2
(p:qQ)us = (Zp(ej)z) < oo for some CONS {e,;} in (¥, q).
=1

It is well-known and is easily verified that P C P(¥}) is uniformly tight if and
only if for each € > 0, there exists a continuous H-seminorm p, on ¥ such that

p({n € ¥ : [(u,n)| < pe(u) forallu e ¥}) >1—¢

for all 4 € P. For the uniform tightness for transition probabilities we have:

Theorem 3. Let X be a topological space which satisfies the first aziom of
countability and Q a subset of T(X,¥},). Assume that for each € > 0 there erists a
mapping p. : X x ¥ — [0,00) satisfying ‘

(a) for each u € ¥, the mapping z € X — p.(x,u) is upper semicontinuous on
X;

(b) for each z € X, p.(z)(-) = p(z,-) is a continuous H-seminorm on ¥;

(c) Mz, {n € ¥ : [(u,n)| < pe(z,u) for allu € ¥}) > 1 —¢€ forallz € X and
AEQ.

Then Q is uniformly tight. Moreover in case ¥ = RN, the assumption that X

satisfies the first aziom of countability is superfluous.

A Borel probability measure x on ¥y is said to be Gaussian if for each u € ¥, the
function n € ¥’ — (u,n) is a real (possibly degenerate) Gaussian random variable
on the probability measure space (', B(¥}), u). For a Gaussian measure p on ¥,

we define its mean functional m and covariance seminorm s of u by

(wm) = [ (wnhu(an

62



s(u,v) = /w (u,n —m)(v,n — m)u(dn)

for all u,v € ¥ and we put s?(u) = s(u,u). We know that m € ¥’ and s is a
continuous H-seminorm on ¥ (see e.g., [5], Theorem 2.6.2).

Let (X,.A) be a measurable space. A transition probability A on X x ¥} is said
to be Gaussian if for each z € X, A;(-) = A(z,-) is a Gaussian measure on ¥}. For
a Gaussian transition probability A on X x ¥); we define for each z € X and each
u,v €V,

m(z,u)= [ (w,mAlz, o)
s(z,u,v) = A’, {<u’ m - m(x,u)} {<U7 77) - m(a;, ’U)} A(.’E, dﬂ)?

and we put s*(z,u) = s(z,u,u). We say that the functions m : z € X — m(z,-)

and

and s : £ € X — s(z,-,-) are the mean function and the covariance function
of )\, respectively. Since a Gaussian measure is uniquely determined by its mean
functional and covariance seminorm (see [5], Theorem 2.6.3), it is easily verified
that a Gaussian transition probability A is also uniquely determined by its mean
function m and covariance function s, and hence we write A = TN [m, s?].

The following proposition asserts that a Gaussian transition probability can be

characterized in terms of the measurability of its mean and covariance functions.

Proposition 5.  Let A be a mapping from X into P(¥}) such that for each
x € X, A is a Gaussian measure on Vj; with its mean functional m(z,-) and
covariance seminorm s(x,-,-). Then X is a transition probability on X x ¥ and
A = TN[m, s?] if and only if for each u € W, the functions T eX — m(z,u) and

z € X — s%(x,u) are measurable.

The following theorem gives a sufficient condition under which a set of Gaussian
transition probabilities on X x ¥} is uniformly tight, in terms of mean and covariance

functions.

Theorem 4. Let X be as in Theorem 3 and Q a set of Gaussian transition
probabilities on X x ¥y with A = TN[my, s3], A € Q. Assume that there ezists a
mapping q : X X ¥ — [0, 00) satisfying ’ '

(a) for each u € ¥, the mapping z € X — q(z,u) is upper semicontmuous on X;
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(b) for each T € X, ¢,(-) = q(z,-) is a continuous H-seminorm on ¥.
Further, assume that there ezist non-negative upper semicontinuous functions M(z)
and S(z) on X such that for every r € X,

supg,(ma(z)) < M(z) and sup(sa(z): ¢-)us < S(z).
A€Q | A€Q |

Then Q- is uniformly tight.

In case ¥ = RN we have:

Corollary 1. Let X be a topological space and Q a set of Gaussian transition
probabilities on X x RN with A = TN[my, s3], X € Q. Assume that there ezist
non-negative functions M(z,u) and S(z,u) defined on X x RN which satisfy

(a) for each u € RY, the functions z € X — M(z,u) and z € X — S(z,u) are
upper semicontinuous on X;

(b) supxeq |{u, ma(z))| < M(z,u) and supyeq sa(z,u) < S(z,u) for all z € X
and u € RN,

Then @ is uniformly tight.

In the case when X is a one point set we have the following well-known result.

Corollary 2. Let P be a set of Gaussian measures on ¥ with mean functionals
m, and covariance seminorms s,, pt € P. Assume that sup,ep |(u, m,)| < oo and

SUp,cp su(u) < 0o for each u € ¥. Then P is uniformly tight.

Let ® be a nuclear real Fréchet space. In case X = ®;, combined Theorem 1 and
Corollary 1 with a well-known criterion for uniform tightness of probability measures

on nuclear spaces, we have:

Theorem 5. Let Q be a set of Gaussian transition probabilities on )3 x Vj; with
A = TN[ma, s3], A € Q. Assume that there exist non-negative functions M(,u)
and S(€,u) defined on ®' x ¥ which satisfy

(a) for each u € ¥, the functions £ € &+ M(€,u) and £ € P — S({,u) are
upper semicontinuous on ®;

(b) suDscg Ima(6, )] < M(€,u) and supseq sa(6,w) < S(E,u) for all £ € & and
uew. |
Then Po @ is dm’formly tight for any uniformly tight subset P of P(®%)-

For the weak convergence of compound probability measures we have:
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Theorem 6. Let A\, = TN[m,, s] be a net of Gaussian transition probabilities
on @ x Uy and A = TN[m,s’| a Gaussian transition probability on & x ¥,
Assume that in addition to assumptions (a) and (b) of Theorem 5,

(c) for each z € X, the sets {mq(-,u)} and {s2(-,u)} are equicontinuous on every
compact subset of ®/;

(d) limg mo(€,u) = m(€,u) and lim, s2(&,u) = s%(€,u) for each & € ¥ and
uev.

Then for any uniformly tight net {ua} in 'P(<I>’ ) converging weakly to p € P(®p),
we have piy © Ao —>p,o)\
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