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Regularity of solutions to non-uniformly characteristic boundary
value problems for symmetric systems

&1l IEZ (Masahiro Takayama)
BEREERKFE BTHE
(Faculty of Science and Technology, Keio University)

1. Introduction

The purpose of this paper is to the study of the regularity of solutions to boundary value
problems for first order symmetric systems with non-uniformly characteristic boundary.
Let © be a bounded open subset of R™ (n > 2) with smooth boundary 952. We consider
first order symmetric systems of the form

Lu= Zj: A(@)du+ By, A;@),B(z) € C=@), A(z) = A;(z)

i=1

where u = (uy, ...,uy) and §; = 8/0z;. We study the following boundary value problem;

L+XNu=f in Q
(BVP) {(u(x) e)l;\l(a:) at 00

where M(z) (z € 99) is a linear subspace of CV which is maximal non-negative in the
sense that

(Ap(z)v,v) >0 for all v € M(z),
dimM (z) = #{non-negative eigenvalues of A,(z) counting multiplicity}.

The boundary matrix is given by

n

Afz) = Y viAi(2) (= €09

Jj=1

where v = (v1, . ..,Vy) is the unit outward normal to 2.

A general theory for the boundary value problems (BVP) has been developed by many
authors. The case of non-characteristic boundary (that is, the boundary matrix A,(z)
is non-singular everywhere on 9Q) has been studied by Friedrichs [2], Lax-Phillips {5],
Tartakoff [16], Rauch-Massey III [12] and so on. The case of uniformly characteristic
boundary (that is, A,(z) is singular but has constant rank on f2) has been treated by
Lax-Phillips [5], Rauch [11], Yanagisawa-Matsumura (18], Ohno-Shizuta-Yanagisawa [10]
and so on.

Our main concern is the case of non-uniformly characteristic boundary (that is, A,(z)
changes the rank on 052). The existence of weak solutions to (BVP) is classical. The
regularity of solutions to (BVP) has been studied by Nishitani-Takayama [6], [7] and Secchi
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[14], [15]. To explain the details, assume that there is an embedded n — 2 dimensional
submanifold v of &Q such that the rank of Ay(z) is constant in each component of 92 \ .
The case when Ay(z) is positive definite on one side of 9Q \ v and negative definite on
the other side is studied in [6], [14].

In this paper, we consider the same problem when the rank of A,(z) changes simply
crossing . We study the following two cases:

(I) Ap(z) is non-singular in 99 \ v and definite on one side of 9 \ 7.
(IT) The rank of Ay(z) is constant in 9 \ v and A,(z) vanishes on 1.

In general, even for smooth f, solutions u to (BVP) is not necessarily regular because
singularities of u may occur on the characteristic curves passing through points of tangency
on the boundary (see [6, Example 2.1], [14, Example 4]). Hence, to get regularity results,
we impose further conditions (see Sections 2 and 3).

The case (I) is also studied in [7]. The result, expressed in terms of weighted conormal
Sobolev spaces, implies the normal regularity of weak solutions only at a part of the
boundary. In this paper we prove the normal regularity of weak solutions at the boundary
outside v under the same assumptions as in [6]. In the case (II), we can also obtain the
normal regularity of weak solutions outside v if A;(z) is non—smgular on 0N\ ta But we
need another observation different from that of the case (I).

The plan of this paper is as follows: We state our main results in Sections 2 and 3 with
several examples. From Section 5 through Section 7 we first study the case (I) and prove
Theorems 2.1, 2.2 and 2.3. From Section 8 to Section 10 we next study the case (II) and
prove Theorems 3.1 and 3.2.

In what follows, we denote by r(z) a smooth function with dr(z) 75 0 on 992 so that
= {r(z) > 0} and by h(z) a smooth function such that v = 82N {h(x) = 0} where
dh(a:) and v(z) are linearly independent on .

2. Assumptions and Main Results (I)

We first consider the case (I). We make our assumptions precise. Let us set
O*(07) ={z € 0 Ay(z) is positive (negative) definite}

and denote by ~* the smooth boundaries of O* in 8. In the case (I) we may assume that
v = 4t U~~ and that Ay(z) is non-singular outside y. We assume also that KerA,(z)
is a C* vector bundle over v. Let {vi(z),...,v,(z)} be a smooth basis for KerA,(x)
on v (we may assume that v;(z) is defined in a neighborhood of ). Since the matrix
((Ap(z)vi(z), v;(z)))ij=1,.p vanishes on -, so one can factor out h(z) so that
((As(z)vi(z), vi(2)))ij=1,..p = h(z)A,(z) in a neighborhood of =

where the right-hand side defines A, (z). We next define A,(z) by
An(z) = ((An(2)vi(2), v (2)))ij=1,...0

where An(z) = > _(8;h)(z)A;(z). In the case (I) our assumption is stated as:

i=1

(2.1) A,(z) and Ap(z) have the 'same definiteness on .
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Under this assumption we get an existence and a regularity result on (BVP).
Take an hy(z) € C*(Q) such that OFf = 802 N {h+(z) > 0} where dhi(z) and v(z)

are linearly independent on y*. Let us set

m(z) = {r(z)* + h(z)*}'/2, my(z) = {r(z)® + hs(z)?}'2,
¢+(z) = {r(z)? + h(z)? + ha(z)*}/? — hy(x).

Note that ¢.(x) > 0 if z € © \ ¥ and that ¢.(x) = 0 if € ¥*. We now introduce the
following spaces: For q € Z, and 0,7 € R we define

q , .
Xon(@) = ¢TI HI(Q),
3=0 :
q - - I3
X2 _(2;09) = [) @5 i¢TH Hi(Q; 00
(o,7) i + ,

where H7(2) and H?(£2; 9) denote the usual Sobolev space of order j and the conormal

Sobolev space of order j with respect to 052 respectively (these conormal Sobolev spaces
are studied in Section 4 below).

Theorem 2.1. For q € Z, there is an s(q) > 0 such that for 0,7 > s(q) we can choose
a A(q,0,7) € R having the following properties: If f € X 7 (2;00) N ¢_L*(Q) and

ReX > A(g,0,7) then there ezists a weak solution u € X{_, ,(2;0Q)N¢_L*(Q) to (BVP)
which satisfies :

”U”xg_a,,)(n;an) + ¢~ ull2 () < C{IIfllxs

(=o7)

@o0) + 162 fll2@ }
where C = C(q,0,7,)),> 0 is independent ofr f and u. |

Further we can get a rough estimate of the asymptotic behavior of solutions near 4.
Theorem 2.2. For q € Z, there is an s(q) > 0 such that for o,7 > s(q) one can
take a A(g,0,7) € R with the following properties: If f € X7 , () N ¢_L*(2) and
Red > A(g,0,7) and if u € m_L*(Q) is a weak solution to (BVP) then it follows that
u € m™1¢7° ¢ HI(R).

Since m(z) > 0 and ¢ (z) > 0if z € {T\ 7%, this theorem implies the normal regularity
at 0N of weak solutions outside 7.
We remark that solutions u to (BVP) need not belong to H%(2) even for fecCy (Q)

Ezample 2.1 Let us set Q = {z? + 22 < 1} and consider

i=(50)a+(59)a+ (5 5) (s@=(% 2))

In this case, v consists of four points (%1,0),(0,£1). Note that the condition (2.1) is
fulfilled. A maximal positive boundary space M(z) is

C? if £,>0,z2>0

_J {0}xC if z,<0,z,>0
M(z) = {0} if 2;<0,z2<0
CX{O} if 1!1)0, T <0.
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Now let us choose a x € C°(R) so that
x(s)=1 if |s|]<e x(s)=0 if |s|> 2e 7
where € > 0 is small enough and define the functions g(z) = (g1(z),g2(z)) and v(z) =
(v1(z), v2(2)) in Q as '
91(2) = x(x1)x(z2), ga(z) =0,

w@) = [ xdsxtan), wle) = [ xtohds [7_xe)as

—00

Take a A € R and set f(z) = e~*@1+22) (1) and u(z) = e~A@1+22)y (). Then it is easy to
see that u is a weak solution to (BVP).

We now work near (1,0). If |z,] < € and z; > v/1 — € then vy(z) = co(z2 +4/1 _ z?)
where ¢o = [%, x(s)ds, and hence we have u ¢ H?*(Q) in spite of f € C°(). At the
same time, it is easily checked that

u€mUHM(Q), u¢mIHTHQ)

for ¢ € Z.. Thus this fact Suggests Theorem 2.3 is sharp in a sense.

3. Assumptions and Main Results (II)

We next consider the case (IT). We make our assumptions precise. Since A, (z) vanishes
on 7, so one can factor out h(z) so that

(3.1) Ap(z) = h(z)A,(z) in a neighborhood of
where the right-hand side defines A,(z). Our first assumption is:
(3.2) the rank of A,(z) is constant in a neighborhood of 4.

Moreover, to get regularity results, we impose another condition as follows:

(3.3) N Anp(zx) vanishes on v
where 44(z) = 3 (8;h)(2) 4 (x). -
=1
As for the b(;undary condition we can write
M(z) = My(z) on Ty :=00n{h(z)>0}
T\ Mo(z)  on T_:=00n {h(z) < 0}.

We assume that M, (z) is smooth in 'y up to the boundary and
(3.4) dim[M, (z) N M_(z)] is constant on ~.

Under the assumptions (3.2), (3.3) and (3.4) we get the following regularity results.
Let us set
-m(z) = {r(z)* + h(z)?}2
For ¢ € Z, we denote by H(;~) (resp. H?(€;85, 7)) the conormal Sobolev space
of order ¢ with respect to « (resp. 9Q and 7v) (these spaces are defined and studied in
Section 3).
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Theorem 3.1. For ¢ € Z, and 0 > 0 there is a A(g,0) € R having the following
properties: If f € m® H1(;09,7) and Rel > A(q,0) and ifu € L%(R2) is a weak solution
to (BVP) then it follows that u € m° H1(Q; 00, 7) and

lm ™ ull me(aiea,m < ClIlm™ fll a0,
where C = C(q,0,)) > 0 is independent of f and u.

Furthermore, if A, (z) is non-singular on 7, we obtain

Theorem 3.2. For ¢ € Z, and o > 0 there is a A(g,0) € R having the following
properties: If f € m*HY(S%;) and Re) > A(g, o) and if u € L*(R) is a weak solution to
(BVP) then it follows that u € m° HY(§);y) and

Im=ullregey < Cllm™ fllaa(asm)
where C = C(g,0,)) > 0 is independent of f and u.

To get regularity results we could not replace H? (; 89, v) and HY(S; ) by H?(S;00)
or H4(?) in Theorems 3.1 and 3.2. ‘ :

Ezample 3.1 Let us consider L = 720, — 2,0, in © = R% with h(z) = =z Since
As(z) = —T3, An(z) = —z1 and v = (0,0) so the conditions (3.2) and (3.3) are fulfilled.
The maximal positive boundary space M(z) is

_ {0} if $1=0,$2>0
M(":)—{ C if 7,=0,3,<0.

Now let us take a A > 0 and choose a x € C$°(R?) so that x = 1 near the origin. We
define v(z) in R2 as v(z) = A7!(1 - eMtan™}(z2/21)-7/2)) and set u = xv and f = x +vLx.
Then w is a weak solution to (BVP). On the other hand we have u ¢ H' (R2;0R2%) in
spite of f € H*(R2).

We give another example of vector field showing an analogous result above of which
flow, though, is completely different from that of Example 3.1.

Ezample 3.2 Let us consider L = 200, +710, In ) = Ri with h(z) = z,. Similarly, since
Ay(z) = —x2, An(z) = 71 and v = (0,0) so the conditions (3.2) and (3.3) are fulfilled.
The maximal positive boundary space M (z) is the same one as in Example 3.1 above.
Let us take a A > 0 and choose a x € C°(R?) so that x =1 near the origin. We define
v(z) in R? as

T2+ 11

-1 _ T2 — I /2 .
v(m)z{x (1— (B=2ype) i 0<z <o
2! otherwise

and set u = xv and f = x +vLx. Then u is a weak solution to (BVP). On the other
hand we have u ¢ H'(R%;0R2) in spite of f € H? (R?) (taking A > 0 large enough we
may assume q > 1).
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4. Preliminaries

For the proof of main results, we shall localize the problem. Let {U;}, {x;} and {t;} be
the covering of (2, the coordinate systems and the partition of unity, respectively. Suppose
that v € L*(Q) is a weak solution to (BVP). Then u; = ;u is also a weak solution to
(BVP). Therefore it suffices to show main results with u; instead of u. The proof of the
case U; Ny = 0 is much easier than that of the case of U; Ny # 0. Thus the interesting
patches are at . In what follows, we write simply .U, u for U;, u; and consider the case
of U N7y # 0. Performing a change of independent variables we are led to the case that

Q=R} ={z€R" 2, >0}, v={(0,0,z"); =" € R*?}
r(x) =1, h(z)=1x,, U={|z| <1}, suppucC RTNU

where z = (z1,2') = (21, 22,2") = (21, T2, T3, .. ., Tp).
By o, a’ we denote multi-indices, that is, a € Z",a’ € Z?+2. With

Z = (Zl, N , Zn) = (33181,82, . ,8,,),
Z' = (Zi, ceey Z1I1,+2) = (.'13161,113262,63, “e ,8,,,:1:102,:1:261)

we set , . o
[+ o4
Z8 =7y 20, 2% =271 "Z'ni52-

We now introduce the conormal Sobolev spaces. For q € Z; we set .
HY(RL;0RE) = {we LAR1); Zow € LA(RY), |of < g},
HY(R%;7) = {weL*R}); Z%w e L*(RY), o] < q}
HY(R};0RE,7) = {we LAR}); 27w e L(RY), |o] < q, oy =0}

These allow us to norm HY(R%;0R%), HY(R%;v) and HY(R?;0R",7) as follows:

||w||Hq(Rn ORZ) T Z ||Z w”Lz(Rn),

lel<g
a

Nwllre @ = > 127 WIILz(m

v le’|<q

”w”Hq(R" OR% ) T Z ||Z'.a w“L’*‘(R;z)- :
lo'|<q
n+2_0

As for the operator L, we may assume that

Lu=3A(@)0u+ Blehu, A;(z),B(z) € B(RE), A) = A(z)

=1

(note that Ay (z) = Az(z)). Since As(a’) = —A;(0,2) for (0,2') € AR ‘we can 'v;é;ité

(4.1) Lu = —Ay(z)01u + A(z) Zyu + iAj(:L')Zju + B(z)u, A(z) € B~(RT).

Jj=2
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5. Proof of Main Results (I)

We start with the proof of main results (I). We first give the proof of Theorem 2.1
admitting the following proposition:

Proposition 5.1. For q € Z,, q > 1 there are cg = co(q) > 0 and s(q) > 0 such that for
0,7 > s(q) we can take a A(g,0,7) € R verifying the following properties: If

) f € m—2X( o+1,7+1) (Ri’ aR’_:_) n L2(R )
and ReX > A(q,0,7) and if
wem?XI, ., 41)(RE0RE) N LA(RY)

with suppu C {21 > 0, |z| < 1} and suppuNy~ = = 0 is a weak solution to (BVP), then it
follows that

(5.1) ¢56-"m*u € HI'(R};0RY)
and the estimate

(min(o,7) — S(Q))||¢+¢—’m Ul g-1,tam,6
< coll¢G¢="m*(L + )\)U"R" " q—1tan,s

+”m u"xq— ey _H)(R" ORT)’ + ||u“L2(R“)}
holds for 0 < 6 < 1 where C; > 0 depends only on g, 0, T, A and suppu. Here the norm
| - IRz g—1,an,6 @5 as in [7,Section 3].
Proof of Theorem 2.1. Proposition 5.1 implies that

Proposition 5.2. For q € Z, there is an s(q) > 0 such that for o, 7 > s(q) we can take a
A(q,0,7) € R having the following properties: If f € m_2X (Coum) (R%;8R%)NLA(RY) and
Re) > A(q,0,7) and if u € L*(R%) with suppu C {z, > 0, |z| < 1} and suppunNy~ =0
is a weak solution to (BVP) then it follows that u € m 2X(_, »(RE; ORL).

Using Proposition 5.2 and repeating the same arguments as in [7, Section 11}, we can
complete the proof of Theorem 2.1. 0

Theorem 2.2 follows easily from [7, Proposition 2.2] and Theorem 2.1. Theorem 2.3 is
an immediate corollary to Theorem 2.2 and Proposition 5.3 below.

Proposition 5.3. Let u € X{_, ,(R};0R%) and (L + MNu € X[, ) (R}) for some g €
Z. and 0,7 € R. Then it follows that u € m™X{_, ,(R%) and

Imoullxs |y < Clllullxe,  maomry) + 1L+ Nullxe, e}
where C = C(q,0,7,)) > 0 is independent of u.
The proof of this proposition is given in [8, Proposition 4.4].
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6. Estimate of Commutators

In what follows, we shall show Proposition 5.1. We may assume that h. = +z, and
that suppu C U1i—co,o with z = (z1,2') = (21, 22, 2") and {p > 0 small enough where

Upn={z; [z <R, 2120}, Ug,={z; |2| <R, 21 >0, 22+12>n}

with 0 < R <1 and 0 < 7 <1 (for convenience sake we use the notation U }*{m, whiéh
is actually independent of n). If U Ny* # @, then performing a change of dependent

variables we may assume that
Ab(ilI ) = ( 0 IN.-p )

for (0,2") € OR} = 0Q (see [7, Section 6]). If U Ny~ # 0, the boundary value problem
can be also transformed into a similar one.
We first examine (5.1) of Proposition 5.1. Since

6°(¢77)| < Co7T1 on {|a| < 1}

with some C = C(o,7,a) > 0, the assertion (5.1) is easily checked (see [7, Section 6]).
We turn to the estimate (5.2). For this purpose, we introduce the conormal mollifier. Let
us take a x € Cg°(R") so that suppx C {y; |y| < ¢o, ¥2 > 0} and set x.(y) = e "x(y/e)
for 0 < e < 1. We define J, : L*(R%}) — L*(R?) by

(6.1) Jaw(@) = [ wlze ™,z — y)e i x (y)dy

It is easily checked that [Z;, J] = 0 and J.w € H®(R?;6R") = 220 H(R%; ORT).
The following estimate is the key to proving Proposition 5.1 (see [9, Section 7]).

Proposition 6.1. There are c,sy > 0 such that for 0,7 > sy we can take a A(o,7) € R
with the following properties: If ReX > A(o,7) and if u € L*(R") with suppu C Ui Co.0
is a weak solution to (BVP) then there is a €y > 0 which depends only on suppu such that
the estimate '

(min(0,7) = 50)[16% 67 Jermullagmn) < cllmad=" (L + A)em?ulZa ay)
holds for all 0 < € < €.

To show Proposition 5.1, we must control terms such as z;(L + A)Jom?u (i = 1,2). Let
us recall that the maps # : L*(R}) — L*(R") and § : L*(R") — L®(R™) defined by
w#(z) = w(e™,z')e”/? and af(z) = a(e™,z’) which are norm preserving bijections. It is
easy to see that

(aw)# = d'w#, (Jaw)* = x xw#, 0;(a) =(Za) (=1,...,n),
() = § (G +wF/2 0 (=1)
05(w?) = { (Zyw)* (i=2...,m)

We now study (z;(L + A)Jom?2u)#.
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Lemma 6.2. Let u € Dli_co,o(R:t). Then for all 0 < € < 1 it follows that

supp(u® (z — y)xe(¥)) C {(z,¥); 7. <0, || < 1, |y| < Go}

where
D%, (R}) = {u € L*(Ry); Lu € L*(R}), suppu C Ug, }

for0<R<1and0<n<1l

Let us take a 1 € C°(R™ x R") such that ¢(z,y) =1if 2, <0, |z'| < 1 and |y| < (o
and suppy C {(z,v); 1 < 1, |z'| < 2, |y| < 2(o}. Lemma 6.2 implies that we may cut
off u# (z — y)x.(y)-by ¢ if necessary. We denote by a(z,y), which differs from line to line,
an element in £ (R™ x R") and by || - || the norm in L*(R%) or in L?(R") if there is no
confusion.

Proposition 6.3. For u € Di_ o(R}) we can write (z:(L + A)Jom*u)#, i = 1,2 as a
sum of the following terms:

(6.2) [ alz, y)(m* L+ Mw)* (@ - y)xw)dy,
(6.3) [ alz, »)(m*u)*(z - y)x(w)dy,

64) [ a(z, y)(@w* (= - )y xw)dy,

(6.5) A [ ale,»)(m*w)* (@ - Yy X w)dy,
(6.6) e [ a(z,y)(m*u)* (@ — vy (@) W)y,
(6.7) | [ alz,9)(@: (L + Vu)* (= - v xw)dy,
(6.8) [ a(z, yyut @ - vy xw)dy,

(6.9) A [ ao,y) @)t (z — vy x(v)dy,

(6.10) ! [ a(e,y)(@u)* (@ -y (Op0v)dy,
(6.11) (z:20)'(2) [ ale, y)u# (@ - y)xc(v)dy

whe,’"e i, =12, j=1,...,n, |a|=1, 18] = 2.

Proof. We can write

(zi(L + N)Jmu)# = ([z:(L + N), JJm?u)#

(6.12) +(Je[z:(L + N), m?|u)# + (Jzim?(L + Nu)*.

Clearly the third term on the right-hand side of (6.12) can be written as (6.2). Hence we
first study the second term on the right-hand of (6.12). Since

[z:(L + X), m?] = 22,21 A, + 2772 A,
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it suffices to examine I; ; = (J.z;zy Au)* with A(z) € B2°(R™). Note that we can write
Ly = & / e (Au)*(z — y)xe(v)dy,
Ly = €'z, / e (Au)*(z — y)x(y)dy — / (z14u)* (z — y)yax(y)dy,
Ly = 73 f (Au)*(z — y)x(y)dy — 2 / (z2Au)* (2 — y)yaxe(y)dy
— [(Aw* (@ - vixv)dy

From (Au)# = A%?# the second term on the right-hand side of (6.12) can be written as
a sum of (6.4), (6.8) and (6.11).

We turn to the first term on the right-hand side of (6.12). From (4.1) it sufﬁces to
study the following terms:

(A, JJm*uw)*,  ([AZ;, JJm*u)*, (DA, JIm*u)#, ([224u0y, JmPu)#*.

As argued in [7, Proposition 8.2], we see that these terms can be written as a sum of (6.3),
(6.5) and (6.6) except the last term which can be written as a sum of the following terms:

(6.13) / a(z,y)(Adrm*u)* (z — y)y*x.(y)dy,
(6.14) [ ale,y)@m*u)* @ - vy’xv)dy.

Recalling (4.1) and noticing 8,,u*(x — y) = —9,,u*(z — y) we can write (6.13) as a sum
of (6.3), (6.5), (6.6) and the following term: ., : .

[ @ (L + Nmtut(z - yyexw)dy

which again can be written as a sum of (6.2) and (6.4).
It only remains to examine (6.14). Since 8;m?u = 2z1u+ 1 Z7u + wzalu, we can write
(6.14) as a sum of (6.4) and the following terms: ~ :

(6.15) [ (@, 9)@) (@ - )(Zw)* (= - »yx@)dy,
(6.16) [ a9 E0w* @~y xw)d.

It is clear that (6.15) can be written as a sum of (6.4), (6.8) and (6. 10) Moreover using
513231 = (CQA( I)Ab( ,)61 with
/ I, 0
i@ =(§ o ) |
we can write (6.16) as a sum of (6.4), (6.7), (6.8), (6.9) and (6.10). o

7. Proof of Proposition 5.1

We complete the proof of Proposition 5.1. Let g € Z+, g 2> 1 and suppose that
u€m X} (R};6R%) N DT, (RD)

(—o+1,7+1)
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is a weak solution to (BVP) with f € m""XE’_a +1-41)(R3;0R%). We may assume that

0,7 > g+ 2. Moreover we assume that x in (6.1) satisfies

X&) =Oo(Kl*") (¢ —0),
x(t€) =0 forall teR implies &=0.

The following three lemmas will be frequently used in the following.

Lemma 7.1. There is a C = C(x,q) > 0 such that for all0 < ¢ <1,0< 6§ <1 and
w € HI"Y(R%; 0RY) it follows that

€0 .
”w"%l';_,q-l,tan,& S C{/O ”Jew”%"’(R'_"_)e—zq(l + 62/62) ldf/f + (1 + 6(—)_2)”'wIlzl?.""_,q—l,ta'n}
where the norms || - |rz g-1,¢ans and || - lIR2 g—1,tan are as in [7, Section 3.

Lemma 7.2. Let a(z,y) € B°(R"xR"™). Then fora € Z thereis aC = C(x,g,a,a) >
0 with the following properties: If w € H*"'(R%;0RY}) and if we set

We(z) = /R _a(z,y)w* (z — y)yx(v)dy

then for all 0 < ¢ <1 and 0 < § <1 we have

C"w”R",q 1,tan,é 1f |a| =
/ IWelPe29(1 + 6%/€*) " 'defe < C”w"m lal(R7 ;6R%) if 1<|a|l<q
CllwllZsgs) if laj>q+1.

Lemma 7.3. For 0 < 5 < 1 There are ¢ = (1) > 0 and C = C(n) > 0 such that if
w € D, (RY) then it follows that

@)z —y+60y)<C, (¥)(z—y+6y)<C
for all (x,y) € supp(u#(z — Y)x(¥)), 0<e< e and 0 < H < 1.

Lemmas 7.1 and 7.2 follow from [4, Theorem 2.4.1] and [7, Lemma 9.3]. Lemma 7.3 is
easily checked.

Let €y = €o(n) > 0 as in Lemma 7.3. Throughout this section, we denote by ¢o constants
which depend only on ¢q and by C; constants which depend on g, o, 7, A and 7.

Proof of Proposition 5.1. It follows from Proposition 6.1 that
(min(o, T) — s0)[|¢56=" Jem®u||? < cl|me% ¢ (L + X)Jem ul®.

Now using Taylor’s formula we have
@ ImP @) = [(567 M) mPu)t (e — v)x)dy
> (607" [(ZP8567mPu) (o — y)y X (w)dy

181<q
+ Y (8)7Ma+1) [ alz,y)(mw)* (@ - Yy xcw)dy

|Bl=g+1

= Y Us(x)+ > Uslx)

18l1<q |Bl=¢+1
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25(2,9) = [(1 = 0428567 (w — y + Ou)db.

If |8] = 0 we can write

Us(@) = [ (#76=m*wH (@ - y)x(v)dy = (Jd 6~ mPu)* ().
This implies that N | |
(mino, 7) = so){ [ |5 - mPul%e (1 + 6%/e) " de/
+(1+ €5 165 6= m ull g g1 0an}
") <o /0 Mm@ 677 (L + A JemPulPe (1 + 62/€2)"de e
O [T N0l (1 + /) defe + (16567 mPullh 4y}

1<|BI<q+1

Recalling (5.1) and using Lemma 7.1 we can prove that the left-hand side of (7.1) is
bounded from below by

CEI (min(a, T) B 80) “¢i¢:7’m2u“%{1,q—l,tan,6'

We turn to the right-hand side of (7.1). We first consider the terms which contain Ug. If
1 < |B] < q then it follows from Lemma 7.2 that

€0
/0 1Usll*e?(1 + 82 /*)Mde/e < CO”(Zﬂ¢1¢:7)m27~‘”§{q—lﬂl(Rz;ani)

2
< Glmullxer, | waioms):

If |8] = ¢ + 1 then noticing 0,7 > ¢ + 2 and using Lemmas 7.2 and 7.3 we can obtain
L 10sle (1 4 6 /e) defe < €4 ul
0

Furthermore since ||¢% :Tmzulff‘;t a—1an < Ci]lm2ul| we have

2
q—1
X(—a+1,‘r+1) (R

1:0RY)
(min(a, T) - 80)l|¢i¢:Tm2u||%l1,q—1,tan,6
< o [ e 67 (L + N)JamPulPe (1 + /) de/e
0 .
2,112 2
+Cl{”m u||Xg_l+1,-r+1)(R1;aRi) + ”’U,” }

—a

We next consider the first term on the right-hand side. Note that
2
1M ¢~ (L + N JemPul> < ¢S g% ¢~ (L + A)JemZul)?
i=1

= e Y I + N Tt

=1
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Using Proposition 6.3 we estimate the right-hand side. In particular, we study the terms
of type (6.11). It follows from |z;zs| < cm? that |(z:z«)"| < ¢(m?)", and hence we have

16767 @) () [ al w0t (-~ 9)xe )yl
< (#5677 m?() [ al wut(- - vxw)dul’”
Applying Taylor’s formula to (¢5.¢="m?)*(z) and repeating the same arguments as above

we can get the desired estimate (5.2). Thus we complete the proof of Proposition 5.1, and
hence we obtain main results (I). O

8. Proof of Main Results (II)
Next we give the proof of main results (II). Theorem 3.1 follows from the following two
propositions.

Proposition 8.1. There is a A € R such that if f € L*(R%}) and ReA > A then a weak
solution u € L*(R?) to (BVP) is unique.

Proposition 8.2. For ¢ € Z, and o0 > 0 there is a A(g, o) € R such that if f €
m? H(R?; R7,7) and ReA > A(0) and if u € L*(RY) with suppu C {z, >0, |z| < 1}
is a weak solution to (BVP) then it follows that u € m® H4(R};0RY, ) and the following
estimate holds:

Im™ull gz omz ) < ClIlm™ fll ey omy )
where C = C(q, 0,)) > 0 is independent of f and u.

Proposition 8.1 is an immediate consequence of Lemma 8.3 below. Proposition 8.2 will
be proved in the following section.

Lemma 8.3. Let u € L2(R?) be a weak solution to (BVP) with f € L*(R}). Then we
can choose a {u,} C B*(R) with u, € M at ORY so that

U, = u, (L+MNu,—f in L*R}) as n— oo.

Proof. Let us take a x € C°(R) such that x = 1 near 0 and set
we = (1 — xtkm))u, fie = (L+ Nw = (1 = x(km)) f — X(km)m™" Anu

where %(t) = tx/(t). Then u; is also a weak solution to (BVP) with the right-hand side
fx. Moreover recalling (3.1) and (3.3) we can write -

(8.1) A(z) = 1A (2) + 7,A%(z),  Ax(z) = 1A% (z) + 1247 (2)
where A¥(z) € #*°(R%). Thus it follows from |[m™'Ap,| < c that
w—u, fe—f in L*R}) as k— oo

Therefore we may assume that suppu N~y = 0. Noticing that rankAs(z’) is constant for
(0,z') € ORNsuppu and using the same arguments as in [11, Theorem 4|, we conclude
the proof of Lemma 8.3. O

Theorem 3.2 follows from Theorem 3.1 and the following lemma which is easily checked.



163

Lemma 8.4. Let v € HY(R};0R%,v) and g = (L + om™'Ap, + A)v € HY(R7; 7). Then
it follows that v € HI(R% ;) and

(8:2) [vll ey < C{lvllemyorn 1) + |9l Hary i }
where C = C(q,0,)) > 0.

9. Proof of Proposition 8.2

For the proof of Proposition 8.2, we introduce the following boundary value problem:

(L+om A, +ANv=g in R
(BVP), { o(z) € M(z) at OR?

Furthermore, in order to get regularity results, we define the following function spaces.
Let w(z) be a function defined in R7;. We introduce the polar coordinates with respect
to z; and z, given by
yi =tan"'(z2/21), wo=(a}+2)"? yi=z; (=3,...,n)

where y; € I = (—r/2,7/2). We denote this change of variables by y = #(z) and write
W(y) = (wo ¢~ 1)(y). Note that w(y) is defined in R, = I x R, x R*2. Moreover let us
define ©’(y) in R=I x R"! as

oy _ [ i(y) i Ry
b (y) = { 0 elsewhere.
Using this notation we define |
YY(RL;0RY \7) = {w e Z'(R}); & € H'(R;0R)} (¢ € Zy)

where HI(R;0R) is the conormal Sobolev space of order q with respect to BR ThlS
allows us to norm Y?(R?; OR" \ v) as

Hwllyomyorg\y = 15 i)
We shall prove Proposition 8.2 admitting the following three propositions.

Proposition 9.1. For o € R there is a A(o) € R such that if g € L*(R") and Re) >
A(o) then there exists a weak solution v € L*(R?) to (BVP)_ satisfying

(9.1) _ (ReX = A(0))lvll72(gn) < C||9“%2(R1)H
where ¢ > 0 is independent of o, )\, g and v.

Proposition 9.2. For ¢ € Z, and 0 > 0 there is a A(g,0) € R such that if g €
Y4(RY;0RY \ v) and ReX > A(q,0) and if v € L*(R7}) with suppv C {z1 > 0, |z| < 1}
is a weak solution to (BVP)  then it follows that v € YI(R%; OR™ \ ).
Proposition 9.3. For ¢ € Z, and 0 € R there is a A(q,0) € R such that if g €
HYR%;0RY,v) and Rel > A(g,0) and if v € HY(RY;0RY:,v) is a weak solution to
(BVP), then it follows that ;

vl araomy. ) < CIL + om™ Am + A)vll oy om )

where C = C(q,0,A) > 0.
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Proof of Proposition 8.2. We first suppose that f € C°(R") and that u € L*(R%)
with suppu C {z; > 0, |z| < 1} is a weak solution to (BVP). Let us set ¢ = m~°f.
Applying Proposition 9.1 we can find a weak solution v € L*(R%}) to (BVP),. Then
m°uv is also a weak solution to (BVP). Therefore Proposition 8.1 implies that u = m°v,
and hence suppv C {z; > 0, |z] < 1}. Since it follows from Proposition 9.2 that
v € YI(R?;0R% \ 7), we have v € HY(R%;0R%,). Thus Proposition 9.3 implies that

vl reryomz ) < Cllgllemaiory -

This complete the proof. Next let f € HI(R%};0R?%,v). By standard limiting arguments
we can prove the assertion. O

Proposition 9.1 is easily checked. The proof of Proposition 9.2 will be given in the
following section. Proposition 9.3 follows from the standard a priori estimate (see [9,
Section 12]).

The following two lemmas will be used later.

Lemma 9.4. For 0 € R and 7 > 0 there is a A(0,7) € R such that if g € m"L*(RY)
and ReX > A(o,T) then there ezists a weak solution v € m™L*(R%) to (BVP), satisfying

(ReA — Ao, T))"m_T””%?(R’;) < C"m_Tg"%?(Rg)
where ¢ > 0 is independent of o, T, A, g and v.

Lemma 9.5. For o € R there is a A(c) € R such that if g € L*(R") and Re) > A(0)
then a weak solution v € L*(R%) to (BVP), is unigue.

Lemma 9.4 follows from Lemma 9.6 below. Lemma 9.5 is proved by the same arguments
as in the proof of Proposition 8.1.

Lemma 9.6. For o > 0 there is a A(0) € R such that if f € m°L*(R%}) and ReA > A(0)
then there ezists a weak solution u € m° L*(R?%) to (BVP) satisfying

(Rex — A(0)Im™ullZamy) < cllm™ fllz2ms)

where ¢ > 0 is independent of o, A, f and u.

Proof. Let us set ¢ = m™°f. Applying Proposition 9.1, we can find a weak solution
v € L*(R%}) to (BVP), satisfying (9.1). Then u = m°v is a desired weak solution to
(BVP). ) O

10. Proof of Proposition 9.2

In order to prove Proposition 9.2, we introduce the following norm which is equivalent
to || - ”Yq(R'_:_;aR_'_:_\»y): For 0 < 4§ <1 we set

lwllye(rz orn\n.6 = 18°]IR g tan,s

where || - ||r,q,tan,s are as in (7, Section 3].
Proposition 9.2 is an immediate consequence of Proposition 10.1 below.
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Proposition 10.1. Forge€ Z,, g > 1 ando > 0 there is a A(g, o) € R having the follow-
ing properties: If g € Y2 '(R};0R% \ ) and ReX > A(g,0) and ifv € Y9 1(RT; ORT \ )
with suppv C {z1 > 0, |z| < 1} is a weak solution to (BVP)_ then the estimate
(ReA — A(g, 0))l|vlf3o- LR} ;0RT\7),0
< co{llgllye-t (R2;0R7\7),6 T [ (R ;0R7 \y), 5}
+Cl{”g||Yq— (R2;0R2\y) T ||U||Yq L(R2;0R™ \7)}
holds for 0 < 6 < 1 where co = co(q, 0) > 0 and C; = Cy(q,0,A) > 0.
Admitting Proposition 10.1 we give the proof of Proposition 9.2.

Proof of Proposition 9.2. We proceed by induction on g. From Lemmas 9.4 and 9.5 the
case ¢ = 0 is trivial. Inductively assume the statement is true up to ¢g—1. Proposition 10.1
gives ||v||y,,_1(Rn oR7\y),s < C with some C > 0, and hence we have v € Y"(Ri, OR% \ 7)

(see also [7, Section 3]). This proves the assertion for q. O

Proof of Proposition 10.1. Noticing (3.2) and (3.4) and performing a change of dependent
variables we may assume that

Ap(z ’) = ( 0 f?(m) ) with some non-singular A(z’),
Mi((B’):M:L. on F:}:

where M. is a constant liner subspace of CV which is independent of z.
Now by the change of variables y = ¢(z), it follows that U, R} and I'y. are transformed
into

U=1Ix(0,1)x{jy"| <1}, RE =R, and Ti={xn/2} xR, x R

respectively. Moreover L is transformed into L = Y7, A;(y)d,, + B(y) where
Ai(y) = sinys cosyi(—AT(y) + AR(y)) — sin® y1 A2(y) + cos” y1 A% (y),
Aa(y) = ya{cos® y1 AT (y) + sin® y1 AP (y) + sinys cos y (A2 (y) + A% (y))},
Aiy) = Aily) (G=3,...,n)

Note that if we set B(y) = (m~'A,,) o ¢~1(y) then it follows that B(y) = y5 ' As(y), and
hence B(y) € C°(R). Thus the boundary value problem (BVP)_ is transformed into

{(E+UB+/\)6=Q in Ry

(BVP)} U E Mﬂ: at F:t.

| The boundary matrix 4,(y) is given by
:i:Al(y) = 0 0 ; ) if /RS f‘:{:
As(y) = 0 +A(y)
-A(y) = 0 if yelx{0}xR"2

Therefore the boundary condition of (BVPJ, is maximal positive. Furthermore 9, § €
L?(R,) and ¥ is a weak solution to (BVPY)j.
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Let us extend the boundary value problem (BVPY, as follows: We still denote by I,
the set {£7/2} x R*"'. Since a(y) = a(yz cosy;, Y2 siny;,y”) so we may assume that
A;, B, B, H € C*(R). Then the new boundary matrix A,(y) is given by

A0 = ayy ) i vels

Thus we can find a smooth maximal positive boundary space Mi(y), Yy € ', such that
My(y) =M. if yely, y>0.
Moreover noticing that A;(y) = 0 on y, = 0 we have
(L+oB+XNi®=g" in R.
Therefore #° is a weak solution to the following boundary value problem:

{(i+aB+,\)ﬁ°=g° in Ry

0
(BVP)U ’60 € M:t at P:i:-

By arguments similar to those in [7] we obtain

Lemma 10.2. Forg€ Z,, q > 1 and o > 0 there is a A(g,0) € R having the following
properties: If i° € HT"Y(R;0R) and ReX > A(q,0) and if ° € H*Y(R;9R) is a weak
solution to (BVP)g then the estimate

(ReX — A(g, g)gllﬁ°ll%,q—1,tan.§o \ —oy12 7|12
< co{13°112 g1 tams + 17° 101 tams} + Co{lTNes riomy + 19U er riomy }

holds for 0 < § < 1 where co = co(g,0) > 0 and Cy = C1((g,0,A) > 0.

This concludes the proof of Proposition 10.1.
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