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Abstract
This paper analyzes a simple discontinuous solution to non strictly hyperbolic 2
x 2 systems of conservation laws having quadratic flux functions and an isolated um-
bilic point where the characteristic speeds are equal. We study the Hugoniot curves
especially in Schaeffer-Shearer’s case I & II which are relevant to the three-phase
Buckley-Leverett model for oil reservoir flow. The compressive and overcompressive

parts are determined.
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1 Introduction
Let us consider a 2 x 2 system of conservation iaws in one space dimension:
U+ F(U), =0, (z,t)eRxR, ‘ (1)

where U = {(u,v) € Q for some connected region @ € R and F :  — R? is a smooth
map. We say that this system of equations is hyﬁerbolic, Whén the Jacobian matrix F'(U)
has real eigenvalues A, (U), A\y(U) for any U € Q. If, in pa,rticﬁlar, these eigenvalues are
distinct: A1(U) < Xo(U), the system is called strictly hyperbolic at U. A state U* € Q
is called an umbilic point, if A\;(U) = A(U) and F'(U) is diagonal at U = U*..In a
strictly hyperbolic region, we have a pair of characteristic fields Ry(U), Ry(U) which are
right eigenvectors corresponding to A(U), A2(U), respectively. We choose left eigepvectors

LY(U), L*(U) such that
LYU)R\(U) = LA(U)Ry(U) =1, L*(U)Ri(U) = L"U)Ry(U) = 0.

Suppose that U = U* is an isolated umbilic point. We have the Taylor expansion of

F(U) near U = U*:

FU)=FU)+XU-U*+QU - U)+o()|lU-U*P
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where A* = A\ (U*) = A(U*) and Q : R? — R? is a homogeneous quadratic mapping.
After the Galilean change of variables: £ — = — A\*t and U — U + U*, we observe that

the system of equations (1) is reduced to
U+QU).=0, (z,t)eRxR, (2)

modulo higher order terms. Now by a change of unknown functions V = §-U with a
regular constant matrix S, we have a new system of equations Vi + P(V), = 0 where

P(V) = S~'Q(SV). Thus we come to

Definition 1.1  Two quadratic mappings Q1(U) and Q2(U) are said to be equivalent,

if there is a constant matriz S € GLy(R) such that
Q(U) = S7'@,(SU) forall Ue R (3)

A general quadratic mapping Q(U) has six coefficients and GLz(R) is a four dimen-
_sional group. Thus by the above equivalence transformations, we can eliminate four
parameters. These procedures are successfully carried out by Schaeffer-Shearer [17] and

they obtained the following normal forms.

Let Q(‘U ) be a hyi;erbolic quadratic mapping with an isolated umbilic point U = 0, then
there exist two real parameters a and b with a # 1 + b* such that Q(U) is equivalent to

1VC where V = Y0,,0,) and
C(U) = }au® + buv + uv?. (4)

Moreover, if (a,b) # (o', V'), then the corresponding quadratic mappings: %VC and %VC’

are not equivalent.
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In the following argument, we shall confine ourselves to the quadratic mapping;:

1 1| au®+2buv +v*

Q) = VW) = 5 . 5)
bu? + 2uv

Geometric properties of the mappiﬁg Q(U), for example the integral curves of charac-
teristic véctof fields, cha.nge‘ as (d, b) varies in the ab-plane. Schaeffer-Shearer’s classifica-
tion in [17] is the following: Case I is a < 3p%; Case I1is 3b% < a < 1+ b2 for a > 1 + b2,
the boundary between Case I1I and Case IV is 4{4b%—3(a—2)}3—{ 166+9(1—2a)b}? = 0.
The drastic change across a = 1+ b® was recognized by Darboux [3] even in the 19th cen-
tury. We notice that these 2 x 2 system of hyperbolic conservation laws with an isolated
umbilic point is a general;zation of a three phase Bﬁckley—Leverett model for oil reservoir
flow where the flux functions are represented by a quotient of polynomials of degree two.
In Appendix of [17]: in collaboration with Marchesin and Paes-Leme, they show that the

quadratic approximation of the flux functions is either Case I or Case IL

The Riemann problem for (1) is the Cauchy problem with initial data of the form

U, for z<0, \

U(z,0) = " (6)

Ur for >0
where Uy, Ug are constant states in . A jump discontinuity defined by
Uy, for z < st, o ' ‘ ‘
Ulz,t) = | o (7)
Ur for z > st :

is a piecewise constant weak solution to the Riemann problem, provided these quantities

satisfy the Rankine-Hugo,m’ot condition:

s(Up~Up) = F(Ug) — F(U). o (8)
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We say that the above discontinuity is a j-compressive shock wave (j = 1,2) if it

satisfies the Laz entropy conditions :
Aj(UR) <s< Aj(UL), Aj-l(UL) <8< Aj_H(UR) (9)

(Lax [11], [12]). Here we adopt the convention Ag = —00 and A3 = co. In Case II, we

shall also face with the overcompressive §hock wave: a jump discontinﬁity satisfying
M(Ug) < s <M(UL), X(Ur) <s<X(Up). - , (10)
The Hugoniot loci over Uy are the set of (U, s) satisfying
HuU,8) = (U~ U0 = (FO) - FO} =0, (aD)

Their projections on to the U-plane are called the Hugoniot curves through Up. If

Up is not an umbilic point, Lax [11] shows that there exist over Up two Hugoniot loci

{(Z;(n), ;())} (5 = 1,2) for small |u] satisfying
Z;(0) = Uo, 5;(0) = A;(Uo) (=1,2). (12

Their projections {Z;(u)} (j = 1,2) are called the j-Hugoniot curves through Up.

In this note, we shall confine ourselves to Case I and II of the representative quadratic
mapping F(U) = Q(U) defined by (5). Our aim is to determine rigorously compressive
parts of the Hugoniot curves. Although we have an extensive bibliography: Gomes [4],
Isaacson-Marchesin-Plohr-Temple [5], [6], (8], [9], Isaacson-Marchesin-Palmeira-Plohr (7,
Schaeffer-Shearer [17], [18], Shearer [19], Schaeffer-Shearer-Marchesin-Paes-Leme([20], etc.,
study of Hugoniot curves has been carried out mainly through numerical computations
so far and rigorous mathematical study wiH be appreciated. Chen-Kan [2] is mainly

concerned with Case IV, obtaining global in time solutions via compensated compactness
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method. In their argument, studies on the singular entropy equation and construction of
regular entropy functions are applicable also to Case I and IL. On the other hand, Gomes
[4] reports that there exist, on a detached branch of Hugoniot curves, compressive shock
waves that do not have viscous profiles. Canié¢-Plohr [1] treats systems of conservation
laws with general quadratic flux functions admitting a compact elliptic region. They
adopt the viscosity admissibility criterion: the discontinuous solution (7) has a viscous
profile. The boundary of the regién of admissible shock waves are shown to consist of
portion of loci ‘c0rresporidin'g' to the heteroclinic bifurcatidns, limit cycles, homoclinic
orbits, Bogdanov-Takens and Hopf 'biflirca,ti(')ns;‘ explicit formulas for certain parts of the
boundary are presented.

The Hugoniot loci are represented as an intersecf,ion of two quadratic surfaces and
the Hugoniot curves are plane cuﬁres v(-)f the; third ‘degnree. Incidentally, 'ti;ése cufveé are
‘rational curves, which is already pointed out by Schaeffer-Shearer [18]. Our study is
based on these facts and our main tools are Wendroff’s lemma, ﬁrs(t» proved Wendroff [23].
In section 3, we obt’a,in parametrizations of these curves by rational function's.v We éiso
review Wendroff’s lemma and its consequences. In section 4, we determine éomﬁfeséf\;e

and overcompressive parts of the Hugoniot curve.

2 Characteristic Fields

* Since F(U) = 3VC(U), the Jacobian matrix F'(U) is symmetric. The characteristic

equation of F'(U) is:

A —{(a+1)u+bv}x - {v* + buv + (B® — a)u?} = 0. - (13)
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We can readily see that the above equation has distinct roots unless u = v = 0. Let
R1(U), Ry(U) be linearly independent right eigenvectors of F'(U) which are called char-
acteristic fields. Then Li(U) = 'R;(U) (j = 1,2) are linearly independent left eigenvectors.

Integral curves are obtained in the following way. It follows from direct computations

that the gradient z—: obeys the equation:

(bu +v) (-3%)2 +{a-Dutt}(E) - Gurv) =0 (14)
It is surprising that this type of equations is already investigated by Darboux [3]. He
solved the eqpation by using the Legendre transformation’:

dv
D=+
u

dv ,
,’q=uaz—'v=p'u-—v. (15)

Formal computations show that the above equation (14) is equivalent to

‘(ﬂ — q(p2+bp—1) (16)
B Pr2pP+t@—2p—b |

that can be integrated by sebé.ration of variables. Next lemma is useful.
dv

Lemma 2.1  The points at which the gradients of integral curves p = 3, are equal

constitute a line through the origin.

We notice that p = oo corresponds to the line: bu + v = 0. Let us denote by ®(p) the

denominator of the expressions (16):
®(p) =p* +20p* +(a—2)p—-b. - an

Since the equations are invariant for the substitution v — —v,b — —b, we may assume:

b>0.

11ts inverse transformation is: u = ﬁ‘%, v= pj‘% —q=pu—q.
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Lemma 2.2 Assume thata < 1+b2,b> 0. Then the equation ®(p) = 0 has three real

distinct roots py, pig, us. Moreover if b # 0, we have the following separation of the roots:

b

() m<b<-3<m<0<p if a<p (18)
b 3

(2) p1k<—b<u2<-§<0<u3 if Zb2<a<1+b2' (19)

Definition 2.1  The following three lines are called medians.
Mi:v=pu, My: v=ypou, Ms: v= Hsu. (20)
We can easily verify that a point U = (u,v) lies on a median if and only if
ULF(U)=0 where U= (—v,u).

We can consult [3] about complete description of solutions to (16). We can show that:
For every state U, ¢ U_, My, there e:m';s;ts a unique j -z‘ntegrdl (7 = 1,2) curve through U,.
This integral curve has three connected comp‘on'ents’and P ='7 g—z(p # w1 < l’us 3)isa
reqular parameter. Each median: M, ‘(1 <k< 3) is an asymptote for t':wo‘complonen’ts as
Pt ForUpe M, (1<k< 3), the median itself is an integral curve; the one for

other characteristic direction has two connected components.
- We say that the j—charactefiétié (1=1,2) ‘directbion is genm’ﬁely nonlinear at U, if
Y -:RJ-‘xU) £0. (21)
".I‘he set of U satisfying (V); - Rj)(U )= 0 is called the j-inflection locus, which is
denofed by IJ | : | | . | o

Proposition 2.1 ([17] Lemma 5.4)  Ifa < 3b?, there are three inflection loci, while

if 302 < a < 1+ b2, there is a single one: bu + v = 0.
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3 Hugoniot Loci

We first show that the Hugoniot loci are expressed by a single rational curve. Elimi-

nating s in the equa.tionr(ll), we have

{a(u® — ud) + 2b(uv — uowo) + (v? — v3)}(v — o)

= {b(u? — u2) + 2(uv — ugvo) }(u — u) (22)
that is the equation of the Hugoniot curve through Up = {uo, vo)- Introducing a parameter
£ by

v —vp = §(u — uo), (23)

we have

 2{b— (a— 1) — %Yo+ 21 —bE— o
UTth= B +2b2 + (a—2)E—b @)

(see also Schaeffer-Shearer [18]). Inserting the above expression into (23) and the original

equations (11), we obtain our rational parametrization.

Proposition 3.1  The Hugoniot loci through Uo have the following rational parametriza-

tion:

(€3 — af + buo +2(1 — b§ — )wo
B +2b24+(a—-2§¢-b
v = 2{b¢ — (a — 1) — b&*}uo + (—b+af — 63)vo (26)
£ +2b62+(a—2)6—b
s = (E2+bE+ 02— a)(uof —v) @7)
§3+2b£2+Q—2)§—b '

(25)

We notice that the denominators of the above expressions are equal to the polynomial
®(¢) defined by (17).
It follows from Proposition 3.1 and Lemma 2.2 that the Hugoniot curve has three

connected components namely:
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1-Hugoniot curve, 2-Hugoniot curve and detached Hugoniot curve.

Let us denote by H(Up) the Hugoniot curve through Up. For U € H(U,), the shock
speed s is denoted sometimes by s(Up, U). Now we review useful lemmas which are cited

from Isaacson-Marchesin-Plohr-Temple [5] Appendix and Schaeffer-Shearer [18].

Lemma 3.1 ([5] Appendix) Assume that Uy € H(Us) and Uy € H(Uo). If s(Us, Uy) =

S(Uo, Ug), then U, € H(Ul) and S(Ul, Uz) = S(Uo, Ul) = S(Uo, U2)

Lemma 3.2 ([5] Appendix, [18] Lemma 4.3) A state U is located on the Hugoniot
curve H(Up), if and only if the line segment joining Up and U is parallel to some J-

characteristic field at the midpoint %(U + Ub), unless U = —U,. Moreover

U+U

S(UO’ U) = AJ( 9

) even for U = —U,. : - (28)

We have a global parameter £ for the Hugoniot curve H(U). Denoting simply by
%U = U, we can see U(£) # 0 for U # Up. In fact, differentiating the equation (23), we
have © = £i + (u — ug) and U = 0 implies U = Up. Next lemma is due to Wendroff [23]

and the basic tool in this paper.

Lemma 3.3  LetU = U(§) € H(Uo) with corresponding shock speed s = s(€). Then we

have

sL(U)(U - Uo) = {N(U) = s} (U)U. (29)

Moreover assume that LI (U)(U — Up) # 0 and s # M\(U) (k # 7). Then DU #0

holds at £. In particular $ = 0 if and only if s = \;(U) and in this case U +R;(U).

Similarly we obtain
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Lemma 3.4 Let U = U(£) € H(U,) with corresponding shock speed s = s(€). Assume
that LI(U)(U — Up) # 0 and and s # \(U) (k # j). If$=0at{=§, then it follows

that
SU)U - Up) = LA(U)U ot =6 (30)

In particular § = 0 if and only if X,-(U) = 0. Moreover, if =0 and § =0 at { = &, then

it follows that
FU)U - Up) = N\D(U)U at £=&. (31)
In particular '§ = 0 if and only if \;(U) = 0.

Here we mention the bifurcation point relating to the condition: L7(U)(U — Up) # 0.

The Jacobian matrix of Hy, at (U, s) is expressed as
vo(U,8) = (sI — F'(U),U — V). (32)

We say that a state (U, s) is a bifurcation point of ’H(Uo), if

rank Hy, (U, s) < 2. | ] (33)
L)
Multiplying Hy;,(U) on the left with L(U) = , we have
LX)

‘(s - M)LYU) LYU)U — W)

L(U)Hy, (U, s) = (34)

(s = A)LA(U) LAU)U - Uy)
We find by this expression | |
Proposition 3.2 A state U is a bifurcation point of H(Uy) if and only if P(U)(U -

Up)=0 (j=1or2).



45

We can determine all the bifurcation points in the following way (see also [18] Lemma,

4.2).

Proposition 3.3  The state U, is a bifurcation point of H(Uo) (the primary bifurcation

point). There ezists a secondary bifurcation point of H(Up) if and only if Uy € Ud_, M.

Proof. If Uy € U}_ My, L¥(U)(U — Up) = 0 holds at the state of intersection of M; and
the integral curve for the direction in the opposite side. Conversely, assume for example
LYU)(U — Up) = 0, which means U — Uy ox +Ry(U). We find by Lemma 3.2 that
U—Us x £R;(3(U +Uy)),5 = 1 or 2. Then it follows from Lemma 2.1 that U, LU+ )
and Uy are located on a common line through the origin. Hence this is possible only when

these points are on a median.
From Proposition 3.2 and Proposition 3.3, we see easily

Corollary 3.1 Any state U # Uy on H(Up) satisfies Li(U)(U — Up) # 0 ] =1lor 2) if
and only if Uy & U3_ | M. 4 | | -4 |

We have a characterization of inflection points.
Proposition 3.4 ([18]) Let (U, s) be a Hugoniot locus through Uy. A state Uy is not an
inflection point if and only if $ # 0-at U = U,. In this case, the bifurcation is said to be
transcritical.

Suppose that Up & U3_, M;. ;Thény, from Cofollary 3.1, Loy -—(U’o) # 0 for U €
H(Uo) \ {Uo} We define:

H;_(Uo) = {U € H(Uo) : U?é Uo,vwlg)%j—]% > 0}

MH;(Uo) = {UeHUs): U+, oo < 0}
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Using Lemma 3.3, we can prove the following theorem whose proof is now obvious.

Theorem 3.1 Let U € H(Uy), and s corresponding shock speed. For U € H} (Uo), it

follows that
(1) >0 ifandonlyif s<A;(U) atU,

(2) 5<0 ifand onlyif s> X;(U) atU
and for U € H; (Ub),

(1) $>0 if and only if s> A;(U) atU,

(2) $<0 ifandonlyif s<Aj(U) atU.

Suppose that § = 0 and hence s = \; at £ = &:. Next theorem is a direct consequences
of the formula given in Lemma 3.4.
Theorem 3.2 Let U € H(Up) and s as above. Ass:u.me that § = 0 at £ = &. At
U € Hf (Uo), it follows that
(1) if VA;-R; >0 (£=4&), then s attains its local minimum,

(2) if VAj-R;j <0 (£=£&), then s attains its local mazimum,

and at U € H; (Uo),
(1) if VAj-R;j<0 (£=61), then s attains its local minimum,

(2) if VAj-R;j>0 (£=6), then s attains its local mazimum.

If V), - R; changes its sign at § = &1, then s is monotonic in a neighborhood of § = &;.

4 Compressive Parts of the Hugoniot Curve

Let U € H(Up). We recall that the jump discontinuity connecting Up and U is a

j-compressive shock wave (j = 1,2) if the Lax entropy condition:

)\J(U) < S(Uo, U) < Aj(Uo), Aj_l(Uo) < S(Uo, U) < Aj+1(U) (35)
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(see (9)) is satisfied. By the Theorem 3.1, the first one is equivalent to
5(Up,U)<0 if Ue ’H;-’(Uo), $(Uo,U) >0 if U e Hj(Uy). (36)

The classical theory assures that, if U is not an umbilic point and VA; - R; # 0 at
U = Uy, then one of the branch (u > 0 or p < 0) of the Hugoniot locus (Z;(u), s;(u))
through U = U, satisfies the Lax entropy conditiqn (35) and the other does not. We Qill
discuss with the global parameter € setting Uy = U(&). For simplicity assume that j = 1
and the 1-Hugoniot curve is compressive for & > & in a neighborhood of .Uo. As £ grows,
the entropy condition breaks at U = U, in one of the following way: |
L M) = s(Us, Us) < M(Wo), 2. (VL) < s(Us, Uy) = M (Uo),
| (37)
3. s(Uo, Ur) = X(U).
We can show that in Case ‘I and II (a < 1+ b?%), the above 1. is impossible and in Case

I, above 3. is also impossible.

Remark 4.1  We have thus shown that there is neither 1-shock-rarefaction wave nor
2-rarefaction-shock wave. If the entropy condition breaks in the way
Al(Ul) < S(Uo, Ul) = Al(Uo) » fOT l-waves, : (38)
)\Q(Ul) = S(Uo, Ul) < AZ(U()) fOT 2-w'aves, (39)

then U, is in a I-rarefaction-shock wave or 2-shock-rarefaction wave. These waves are

fully discussed in Liu [13].

For a given Up, the point U, is said to be a j-limit point if s(Us,U1) = \;(U;) and

J-overlap point, if s(Up, Uy) = A;(Us). We can show that there is neither 1-limit point nor
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92-overlap point. The j-double contact locus, denoted by D;, is the set of states Up such
that H(Up) has a point Uy, called a limit-overlap point, such that U, is a j-overlap point
with s(Up,U;) = A;(Up) and also a limit point with s(Up, Uy) = M(Uh) (k=1or2)
which isequivalent to 3 = 0 at Uj.

Proposition 4.1 ([18] Lemma 4.4) Ifa< %b2, the doublé contact locus is empty. If
352 < a < 1+ b?, then j-double contact locus is ezpressed as D;j = {U; Xj(U) =0}. For

Uo € Dj, the correspondihg limit-overlap point is —Up with s = 0.
From the equation (13), the set D; is characterized as following

Proposition 4.2  If 3b? < a < 1+ b?, the set D, U D consists of a union of two lines
through the origin with slope p where p is a root of
pPP+bp+b—a=0. © (40)

We also need the Hysteresis locus H that is the set of states Up such that there is a
state U; on H(Up) satisfying $(Up, U) = 8(Up, U) =0 at U = V. We find by Lemma 3.3,
Lemma 3.4 and Corollary 3.1 that H can be expressed as

H = {Uo;there is U; € H(Up) \ {Uo} such that s(Up, Ur) = X;(Uh),

(VAJ . R_,)(Ul) =0 for _7 =1or 2}

{U;U e H(U,) such that Uy # U, s(U, Uh) = X;(Uh),
(V- R;)(Uy) =0 for j =1 or 2}.
Let us now consider Case I. Since, for (u,v) # (0,0),

v+buv+ (2 —a)?>0 if a< %b{
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Lemma 4.1 Ifa< %b2, then the characteristic roots are separated from each other:
/\1(U) <0< )\Q(U) f07‘ U 7& 0. (41)

Proposition 4.3  Assume that Uy is not an umbilic point and (V); - R;)(U) # 0 at
U=U,. Ifa< %bz, then the Lazx entropy condition (85) does not break at U = U; in the

way:

s=X(Uh)  for 1-waves, (42)

s=M(Us)  for 2-waves. (43)

Proof. If s = Ay(U;), we have X\y(U;) < 0; hence U; = 0 and s = 0. Moreover,
0 = s < A (Up) < 0 shows Uy = 0 contradicting the assumption. In the same way, we can

prove the proposition for 2-waves.
In [4] Proposition 3.2, Gomes actually proved the following:

Proposition 4.4 Assume that a < 1+ b%. For each inflection locus I, there ezists a
corresponding hysteresis locus H such that
H = {U,U € H(Ul) such that U 7é U, S(U, Ul) = /\;(Ul)
Jorj=1o0r2 and U, € I}.
In particular, the hysteresis loci consist of three distinct lines in Case I and a single line

in Case II; opposite halves of these lines are associated with opposite families.

Now let us determine the compfessive part of the Hugoniof curve in Case I through

Us. We assume that:

Uo & (Ujoy M;) U (Ui ;) UH. | (44)
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Assuming for simplicity
2(l>u;», and uo > 0, (45)
U
we find that
1. 1-Hugoniot curve for u; < £ < o,
2. 2-Hugoniot curve for py < § < 3,
3. Detached Hugoniot curve for £ < p; and § > us3.

Let us first consider the 1-Hugoniot curve. Let Uy = U(&), & € (1, p2). Since Up is
not an inflection point, we have a classical configuration of Lax [11] in a neighborhood of

Us. Let the part for £ > & be compressive. Hence

M(U(E)) < s(€) < M(Uo) (46)

holds for £ > & in a neighborhood of &, showing also s(£) is decreasing there, due to
Theorem 3.1. It follows that there exists no 1-limit point. Then we find that the inedua.lity
(46) holds for all £ € (£, p2). Thus 1-Hugoniot curve is compressive for § € (o, 12)- Due
to classical configuration, for £ < & in a neighborhood of &, the 1-Hugoniot curve is not
compressive. However, since s(§) — —o0o as £ — pu1 +0, there is at least one £* € (p1,%o)
such that $(£*) = 0. Moreover, since U is not a hysteresis point, we have 3(&*) # 0,
which also shows, from Lemma 3.4, that A\ (U(£*)) # 0 and hence the graphs of s(¢)
and A (U(€)) cross transversally at £ = £*. Thus for £ < £* in a neighborhood of §* the
1-Hugoniot curve is compressive. There may be other local maxima or minima of s(£) but
it is important that there must be odd number of these points in (u1,&). Thus together

with the first result, we conclude that
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Theorem 4.1  Under the above assumptions, the 1-Hugoniot curve is compressive for

all € : & < € < po. For £ < &, this curve is ultimately 1-compressive as € — pu; +0.

Remark 4.2  The above discussion also covers the case Uy ¢ U_ M; U H but Uy €
U§=II,-. About € = & we have an alternative: 1-Hugoniot curve is compressive for both
sides or not for either side. We can show the curve is always compressive or ultimately

compressive for both sides.

Next we consider the 2-Hugoniot curve for & € (ug,u3). Since s(€) — oo as & —

p2 + 0, u3 — 0, we have

Theorem 4.2  Under the above assumptions, the 2-compressive part of the 2-Hugoniot

curve is contained in a bounded region.

Finally we study the detached Hugoniot curve. In Case I, s(¢) = 0 if a;ld only if
§ = 2. We can see easily $(%) # 0. In our case, we can see moreover $(32) > 0.
Because, if § < 0, there must be another point such that s = 0. At £ = ﬁg, we have
A1(U) < 0 =s. We find as above that there are even number of points £ = £*: $(U*) =0
in (us, ﬁ%) Hence we eventually obtain A\;(U(€)) < s as £ — uz + 0. Since, obviously,

s < A1(Uo) as & — u3 + 0, we conclude

Theorem 4.3  Under the above assumptions, in the detached Hugoniot curve, the part:

s < 0 is ultimately 1-compressive as §€ — u3 + 0.

Remark 4.3 We can easily check above all compressive shock waves are admissible in

the sense that they satisfy the Liu-Oleinik condition:

s(&) < s(&')  for any & between & and €. ; RN C 9
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These three theorems give a mathematical account of fantastic pictures in Gomes [4]
and Shearer [19].

Let us now consider Case II. We can show that there is no 2-overlap point. Thus
there is no 2-double contact locus unless Uy is an umbilic point and (V- R;)(U) = 0 at

U = Up. We make the same assumption (44) and (45) as in Case I. Recall that

_ (€= 91)(€ — 92)(uo€ — vo)

(- m)E—p)(€—ps)’ <P <pp <2< ps (48)

s(¢)

We investigate the behavior of the eigenvalues \; (U(€)), A2(U(€)) in neighborhoods of
€ = p; (1 < j < 3). The representations by parametrization (25), (26), (27) imply that,
as £ tends to p; either from left or from right, |u|(£§) and |v|(§) tend to the infinity, the

sign of u(£) and v(£) being kept. From the direct computation (j = 1,2):
M(U) = 2{(@+ D+ bo} £ 3 [{(a+ 1w+ b} + 4% + buo + & — Duhl,

we find that the sign of A\, (U(€)) and A2(U(€)) does not change as £ — u; £ 0 and that
their product —{u? + bu; + b* — a}u? is negative for j = 1,3 and positive for j = 2. Thus

we have

Proposition 4.5 Let U = U(¢) € H(U,) with the rational parametrization (25), (26),

(27). If 30 < a < 1+, then
M(U(€)) = —o0, A(U(§)) » 0 as§ — p1 £0, u3 £0 - (99)

As Isaacson-Temple [9] have already mentioned in Case II with b = 0, the qualitative
features of solutions change when Uj across the lines A; =0 (5 =1,2) in Case II. We

need thus an improvement of Proposition 4.2 characterizing these lines.

Proposition 4.6 If3b? <a<1+b* andb> 0,
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1. the pieces of the double contact loci with u > 0

ie. {Ujv="9;u,u>0,j=1,2} is ezactly the set of {U; \,(U) = 0}.

2. the pieces of the double contact loci with u < 0

ie. {Ujv=195u,u<0,j=1,2} is ezactly the set of {U; A\o(U) = 0}.

Let us first consider the Hugoniot curve for p; < & < pp. Let Uy = U(&o), &0 € (1, p2)-
Since Up is not an inflection point, we have a classical configuration of Lax [11] in a

neighborhood of Up. Let the part for £ < & be 1-compressive. We can show

Theorem 4.4  Under the above assumptions, the 1-Hugoniot curve for £ < & is ulti-
mately 1-compressive as £ — p;+0 and its overcompressive part is contained in a bounded

region.

Next we consider the 2-Hugoniot curve for € € (g, u3). Let Uy = U(&), & € (12, p3)

and the part for £ < & be 2-compressive. Then we can show

Theorem 4.5 = Under the above assumptions, the compressive part of the 2-Hugoniot
curve is contained in a bounded region and the 2-Hugoniot curve is ultimately overcom-

pressive as‘f — p2 + 0.

As pointed out in Remark 4.3, all compressible shock waves obtained here in Case II

also satisfy Liu—Oleinik condition (47).
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