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1 Introduction
In the Eulerian description, the time evolution of the three macroscopic quantities-
the density $\rho(t, x)$ , the velocity $\vec{u}(t, x)$ , and the temperature $\theta(t, x)$ -characterizing the
state of afluid at agiven time $t\in I$ and aspatial point $x\in\Omega\subset R^{N}$ is governed by
the three fundamental principles of classical mechanics:

The conservation of mass

$\partial_{t}\rho+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\vec{u})=0$ (1.1)

The balance of momentum

$\partial_{t}(\rho\vec{u})+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\vec{u}\otimes\vec{u})+\nabla p=\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{T}+\rho\vec{f}$ (1.2)

The conservation of energy

$\partial_{t}(\rho\theta)+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\theta\vec{u})+\mathrm{d}\mathrm{i}\mathrm{v}\vec{q}=\mathrm{T}:\nabla\vec{u}-p\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}$ (1.3)

For Newtonian fluids, the viscous stress tensor $\mathrm{T}$ depends linearly on the velocity
gradient and one can write

$T=\mu(\nabla\vec{u}+\nabla\vec{u}^{T})+\lambda \mathrm{d}\mathrm{i}\mathrm{v}\vec{u}\mathrm{I}\mathrm{d}$

where $\mu$ and Aare viscosity coefficients.
The pressure $p$ is determined by ageneral constitutive law

$p=p(\rho, \theta)$ ,
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and the heat $fhrx$ $\vec{q}$ obeys the Fourier law

$\vec{q}=-\kappa\nabla\theta$ , $\kappa$ $>0$ .

Multiplying the continuity equation (1.1) by $b’(\rho)$ one obtains the renormalized
continuity equation

$\partial_{t}b(\rho)+\mathrm{d}\mathrm{i}\mathrm{v}(b(\rho)\vec{u})+(b’(\rho)\rho-b(\rho))\mathrm{d}\mathrm{i}\mathrm{v}u=0\prec$ (1.4)

for any function $b$ satisfying suitable growth restrictions. The concept of renormalized
solution -apparently motivated by the work of Kruzkhov on scalar conservation laws
-was introduced in the context of transport equations by DiPERNA and LIONS [2].
Though it might seem superfluous at first glance, it represents avery useful character-
ization of acertain class of weak (distributional) solutions of the problem.

Taking the scalar product of (1.2) with $\vec{u}$ and adding the result to (1.3) we deduce
the total energy conservation equation

$\partial_{t}(\frac{1}{2}\rho|\vec{u}|^{2}+\rho\theta)+\mathrm{d}\mathrm{i}\mathrm{v}((\frac{1}{2}\rho|\vec{u}|^{2}+\rho\theta)\vec{u}+p\vec{u})=\mathrm{d}\mathrm{i}\mathrm{v}(T\cdot\vec{u})+\rho\vec{f}\cdot\vec{u}-\mathrm{d}\mathrm{i}\mathrm{v}\vec{q.}$ (1.5)

Dividing (1.3) by 0and making use of (1.1) we get

$\partial_{t}(\rho\log(\theta))+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\log(\theta))+\frac{p(\rho,\theta)}{\theta}\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}+\mathrm{d}\mathrm{i}\mathrm{v}(\vec{\frac{q}{\theta}})=\frac{\mathrm{T}.\nabla\vec{u}}{\theta}.+\frac{\vec{q}\cdot\nabla\theta}{\theta^{2}}$. (1.6)

Now, assuming the dependence of $p$ on 0is linear, i.e.,

$p(\rho, \theta)=\theta p_{0}(\rho)$

one can express the term $p\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}$ in (1.6) with help of (1.4) to deduce the entropy
equation

$\partial_{t}(\rho S)+\mathrm{d}\mathrm{i}\mathrm{v}(\rho S\vec{u})+\mathrm{d}\cdot \mathrm{v}(\vec{\frac{q}{\theta}})=\frac{\mathrm{T}.\nabla\vec{u}}{\theta}.-\frac{\vec{q}\cdot\nabla\theta}{\theta^{2}}$ (1.7)

where the entropy $S$ is given by the formula

$S(t, x)= \log(\theta)+\frac{P_{0}(\rho)}{\rho}$

with $P_{0}$ solving the equation

$P_{0}(z)z-P_{0}(z)=p_{0}(z)$ , $z>0$ .

In accordance with the basic principles of thermodynamics, the right-hand side of
(1.7) must be non-negative which yields the restrictions

$\lambda+\frac{2}{3}\mu\geq 0,\vec{q}\cdot\nabla\theta\leq 0$ . (1.8)

In ageneral $\mathrm{N}$-dimensional space setting, the first part of (1.8) read

$\lambda+\frac{2}{N}\mu\geq 0$ ,
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and it is very often replaced by amore general hypothesis

$\lambda+\mu\geq 0$ (1.9)

which, in turn, is more than sufficient from the purely mathematical point of view.
Note that, under this stipulation, the first term on the right-hand side of (1.6) is a
source of avery important a priori estimate, namely,

$\vec{u}$ bounded in $L^{2}(I;W^{1,2}(\Omega))$ (1.10)

which reflects the dissipative character of the momentum equation. Of course, we have
tacitly assumed that an upper bound on the temperature $\theta$ is available.

For ageneral barotropic fluid, the pressure depends solely on the density-p $=p(\rho)$ .
For example in the isentropic regime, the pressure density constitutive relation is given
by formula

$p(\rho)=a\rho^{\gamma}$ , $a>0$ (1.11)

where $\gamma>1$ is the adiabatic constant
The isotherrmal flow corresponds to the linear pressure density relation

$p(\rho)=c\theta_{0}\rho$. (1.12)

Despite its apparent simplicity, the mathematical theory for flows satisfying (1.12) is
less satisfactory than in the isentropic case (1.11) at least for large values of 7.

Even though it seems that (1.11), (1.12) cover basically all physically interesting
barotropic flows, there are situations when the pressure-density relation need not be
even monotone. Some zero temperature models of cold nuclear matter have been
derived to describe frontal collisions of heavy ions (see DUCOMET [3], TANG and
WONG [16] $)$ . In these models, the correct pressure is believed to be given by the
relation

$p(\rho)=a(1+\sigma)\rho^{2+\sigma}-b\rho^{2}$ (1.13)

where the parameters $0<b<a$ are fixed by experiments (see WONG [17]). The
coefficient $\sigma\in[0,1]$ characterizes the s0-called stiffness of the state equation.

Anon-monotone pressure-density state equation can describe ahot nuclear matter
in astrophysics by adding the high-temperature behaviour of aperfect Fermi gass. To
be more specific, one can use the finite-temperature Hartree-Fock theory (cf. FETTER
and WALECKA [12] $)$ to obtain the state equation

$p_{G}( \rho, \theta)=a(1+\sigma)\rho^{2+\sigma}-b\rho^{2}+k\theta\sum_{n\geq 1}B_{n}\rho^{n}$
(1.14)

where $k$ is the Boltzmann constant, and where the last series converges rapidly be-
cause of the fast decrease of the sequence Bn. In amore realistic situation, one takes
into account radiation -aphoton assembly is superimposed to the nuclear matter
background. If this radiation is in quasi-local thermodynamical equilibrium with the
(nuclear) fluid, one can show (see MIHALAS and WEIBEL-MIHALAS [15]) that the
resulting mixture nucleons-photons can be described by the state equation (1.14) plus
aStefan-Boltzmann contribution of “black-body” type
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$p_{R}(\theta)=c\theta^{4}$ . (1.15)

This approximation amounts to assume that the ratio between the total pressure $p=$

$p_{G}+p_{R}$ and the radiative pressure $p_{R}$ is apure constant. Although very crude, this
model is in good agreement with more sophisticated ones, in particular for the sun. In
such away, one can obtain ageneral pressure-density law of the form

$p(\rho)=c_{1}\rho^{3}-c_{2}\rho^{2}+c_{3}\rho^{7/4}$ (1.16)

where $c_{1}$ , $c_{2}$ , $c_{3}$ are strictly positive (cf. DUCOMET et al. [4]).

2Basic estimates for barotropic flows
For Newtonian barotropic flows, the system (1.1)-(1.3) reduces to the first two equa-
tions

$\partial_{t}\rho+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\vec{u})=0$; (1.1)

$\partial_{t}(\rho\vec{u})+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\vec{u}\otimes\overline{u})+\nabla p=\mu\triangle\vec{u}+(\lambda+\mu)\nabla(\mathrm{d}\mathrm{i}\mathrm{v}\vec{u})+\rho\vec{f.}$ (2.2)

Assuming $p=p(\rho)$ and taking the scalar product of (2.2) with $\vec{u}$, one deduces the
energy inequality

$\frac{\mathrm{d}E}{\mathrm{d}t}+\int_{\Omega}\mu|\nabla\vec{u}|^{2}+(\lambda+\mu)|\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}|^{2}\mathrm{d}x\leq\int_{\Omega}\rho\vec{f}\cdot\vec{u}\mathrm{d}x$ (2.3)

with the total energy
$E=E[\rho,$ $u \urcorner=\int_{\Omega}\frac{1}{2}\rho|\vec{u}|^{2}+P(\rho)\mathrm{d}x$ (2.4)

where
$P( \rho)=\rho\int_{1}^{\rho}\frac{p(z)}{z^{2}}\mathrm{d}z$ . (2.5)

Having integrated by parts, we have tacitly assumed adissipative character of the pos-
sible boundary behaviour of the fluid. For instance, one can take the n0-slip boundary
conditions for the velocity

$\vec{u}|_{\partial\Omega}=0$ . (2.6)

The energy inequality can be shown to hold even in the class of weak (distributional)
solutions of the problem, more precisely, the existence of globally defined weak solutions
of the problem can be shown satisfying the energy inequality (2.3) in the sense of
distributions provided $P$ satisfies certain growth conditions for large values of argument.

One sees immediately that (2.3) yields three important a priori estimates for the
problem (2.1), (2.2), namely
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Now, let us examine more closely the cubic term $\rho\vec{u}\otimes u\prec$. Since $\vec{u}$ belongs to the
Sobolev space $L^{2}(I;W^{1,2}(\Omega))$ , one gets by the standard embedding theorems that

$\vec{u}\otimes\vec{u}$ bounded in $L^{1}(I;\mathrm{L}\mathrm{P}(\mathrm{Q}))$

where
$p$ arbitrary for $N=2$ , $p= \frac{2N}{2N-4}$ for $N=3$ , $\ldots$

Consequently, for this term to be at least integrable, one needs

$\rho\in L^{\infty}(I;L^{\gamma}(\Omega))$

where $\gamma$ is at least $N/2$ . In fact, this conditions amounts to the hypothesis

$P(\rho)\approx\rho^{\gamma}$ , $\gamma>N/2$

which will be discussed in what follows.
The estimates (2.7) -(2.9) represent “almost” all $a$ priori estimates available for

the problem (2.1), (2.2). In fact, one can do alittle bit better, more specifically, one
can deduce an estimate of the form

$p(\rho)\rho^{\beta}$ bounded in $L^{1}(I\cross\Omega)$ (2.10)

where
$\beta=\frac{2}{N}\gamma-1$ (2.11)

provided $P(\rho)\approx\rho^{\gamma}$ for $\rho$ large.
Clearly, to gain some improvent of (2.7), one must have $\gamma>N/2$ which seems

to be the limit of the (standard) methods. The estimate (2.10) can be obtained by
“computing” the pressure term from (2.2). The local form was proved by LIONS [14],
while the estimates “up to boundary” of $\Omega$ were obtained in [11] (see also LIONS [13])
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3The effective viscous flux

We introduce aquantity
$p-(\lambda+2\mu)\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}$

called the effective viscous flux playing an important role in the recent mathematical
theory of compressible fluid flows. This quantity enjoys some remarkable compactness
properties observed by LIONS [14] whose result we are going to discuss.

Consider sequences $\rho_{n},\vec{u}_{n}$ , $p_{n}$ , and $\tilde{f_{n}}$ solving the equations (1.1), (1.2) in the sense
of distributions on an open time interval $I\subset R$ and aspatial domain $\Omega\subset R^{N}$ (shortly
in $D’(I\cross\Omega))$ . Assume that

$\{\begin{array}{llll}\rho_{n}arrow\rho \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{l}\mathrm{y} \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{n}L^{\infty}(I\cdot,L^{\gamma}(\Omega))\vec{u}_{n}arrow\vec{u} \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{n} L^{2}(I\cdot,W^{1,2}(\Omega)) p_{n} arrow p\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{i}\mathrm{n} L^{1}(I\cross\Omega)\cdot\end{array}\}$ (3.1)

and
$\vec{f_{n}}arrow\vec{f}\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{l}\mathrm{y}$ star in $L^{\infty}(I\cross\Omega)$ . (3.2)

Moreover, let $b$ be a(globally) bounded functions such that $b(\rho)$ solves the renormalized
continuity equation (1.4) in $D’(I\cross\Omega)$ . One can assume

$\mathrm{b}(\mathrm{g})arrow\overline{b(\rho)}$ weakly star in $L^{\infty}(I\cross\Omega)$ . (3.3)

The following result can be found in LIONS [14]:

Theorem 3.1 Let
$\gamma>\frac{N}{2}$ (3.4)

and let $\mathrm{g}\mathrm{n},\vec{u}_{n},$ $p_{n}$ , and $\vec{f_{n}}$ solve the equations (1.1), (1.2) in $\Psi(I\cross\Omega)$ where $I\subset R$ ,
$\Omega\subset R^{N}$ are open sets. Suppose, in addition, that the total kinetic energy

$\frac{1}{2}\int_{\Omega}\rho_{n}|\vec{u}_{n}|^{2}\mathrm{d}x$ is bounded $a.a$. on I independently of $n$ .

Finally, let (3.1) $-(\mathit{3}.\mathit{3})$ hold.
Then, passing to subsequences as the case may be, we have

$\lim_{narrow\infty}\int_{I}\int_{\Omega}\varphi(p_{n}-(\lambda+2\mu)\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}_{n})b(\rho_{n})\mathrm{d}x\mathrm{d}t=$ (3.3)

$\int_{I}\int_{\Omega}\varphi(p-(\lambda+2\mu)\mathrm{d}\mathrm{i}\mathrm{v}\vec{u})\overline{b(\rho)}\mathrm{d}x\mathrm{d}t$

$/or$ any smooth function $\varphi$ with compact support in $I\cross\Omega$ $(\varphi\in D(I\cross\Omega))$ .
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It seems interesting to note that there is amethod to prove Theorem 3.1 which
is based purely on the compensated compactness arguments. In fact, it is (relatively)
easy to show that the expression on the right-hand side of (3.5) equals that one on the
left-hand side plus aterm

$r= \lim_{narrow\infty}\int_{I}\int_{\Omega}\varphi u_{n}^{i}(\rho_{n}u_{n}^{j}\partial_{x_{i}}\triangle^{-1}\partial_{x_{j}}[b(\rho_{n})]-b(\rho_{n})\partial_{x_{i}}\triangle^{-1}\partial_{x_{j}}[\rho_{n}u_{m}^{j}])\mathrm{d}x\mathrm{d}t-$

$\int_{I}\int_{\Omega}\varphi u^{i}(\rho u^{j}\partial_{x_{i}}\triangle^{-1}\partial_{x_{j}}[\overline{b(\rho)}]-\overline{b(\rho)}\partial_{x:}\triangle^{-1}\partial_{x_{j}}[\rho u^{j}])\mathrm{d}x\mathrm{d}t$ .

Here the operators in the brackets can be written in the more abstract form as

$\vec{v}$ . $\nabla(\triangle^{-1}\mathrm{d}\mathrm{i}\mathrm{v})[\vec{w}]-\vec{w}\cdot\nabla(\triangle^{-1}\mathrm{d}\mathrm{i}\mathrm{v})[v]=$

$(\vec{v}-\nabla(\triangle^{-1}\mathrm{d}\mathrm{i}\mathrm{v})[v])\cdot\nabla(\triangle^{-1}\mathrm{d}\mathrm{i}\mathrm{v})[\vec{w}]-$

$(\vec{w}-\nabla(\triangle^{-1}\mathrm{d}\mathrm{i}\mathrm{v})[\vec{w}])\cdot\nabla(\triangle^{-1}\mathrm{d}\mathrm{i}\mathrm{v})[v]$ .

Here the first expression is always divergence free while the second one is agradient
so the $\mathrm{D}\mathrm{i}\mathrm{v}$-Curl lemma can be applied to obtain $r=0$ (see [6]). The reader will have
noticed this is nothing else but the Helmholtz decomposition of the corresponding
vector fields.

It seems also worth noting that the pressure term considered in this section was
not necessarily barotropic.

4Oscillations of the density
Similarly as in the preceding section, we consider asequence $\rho_{n}$ -the density component
of adistributional solution of the problem (1.1)- (1.3). To describe possible oscillations
we use adefect measure

$\mathrm{o}\mathrm{s}\mathrm{c}[\rho_{n}-\rho]_{p}(Q)=\lim_{narrow}\sup_{\infty}\int_{Q}|T_{k}(\rho_{n})-T_{k}(\rho)|^{p}\mathrm{d}x\mathrm{d}t$ (4.1)

where $T_{k}$ are the cut-0ff operators,

$T_{k}( \rho)=\min\{\rho, k\}$ , $k\geq 0$ .

For barotropic flows where the pressure $p$ depends only on the density $\rho$ and the
equations (1.1), (1.2) form aclosed system, the oscillations can be estimates as follows

143



Theorem 4.1 Let
$\gamma>\frac{N}{2}$ ,

and let $p=p(\rho)$ is independent of the temperature $\theta$ ,

$p\in \mathrm{C}[0, \infty)$ , $p(0)=0$ , $p$ locally Lipschitz on $(0, \infty)$ , $p’(z)\geq az^{\gamma-1}-b$ , $a>0$ .
(4.2)

Assume $\rho_{n},\vec{u}_{n}$ , and $\vec{f_{n}}$ solve the equations (1.1), (1.2) in $\mathcal{D}(I\cross\Omega)$ have $I\subset R$ ,
$\Omega\subset R^{N}$ are open sets. Suppose, in addition, that the total kinetic energy

$\frac{1}{2}\int_{\Omega}\rho_{n}|\vec{u}_{n}|^{2}\mathrm{d}x$ is bounded $a.a$. on I independently of $n$ .

Finally, let $($3. $\mathit{1})-(\mathit{3}.\mathit{3})$ hold.
Then for any $Q\subset I\cross\Omega$ , we have

$\mathrm{o}\mathrm{s}\mathrm{c}_{\gamma+1}[\rho_{n}-\rho](Q)\leq c(|Q|, \sup_{n\geq 1}|\nabla u_{n}|_{L^{2}(Q)})$ .

For the proof see [7].
At this stage, some “philosophical” comments are necessary. The boundedness of

the defect measure osc does not mean, of course, that $\rho_{n}-\rho$ belongs to the space
$L^{\gamma+1}$ . Intuitively, the message can be understood as follows. Either the convergence
of $\rho$ is strong or, if it is not the case, the amplitude of oscillations is bounded in $L^{\gamma+1}$ .
Of course, this is by no means an exact mathematical statement. The importance of
Theorem 4.1 lies in the fact that it makes possible to show that the limit functions
$\rho,\vec{u}$ satisfy the continuity equation in the sense of renormalized solutions (see below).
Up to now, the only method available has been that one developed by DiPERNA and
LIONS [2] which requires weak convergence of $\rho_{n}$ in $L^{2}(\Omega)$ .

5Renormalized solutions of the continuity equa-
tion

We consider the renormalized continuity equation (1.4). We shall say that $\rho$ is a
renormalized solution of (1.1) if (1.4) holds in $D’(I\cross\Omega)$ for any function $b\in C^{1}(R)$

such that $b’(z)=0$ for all $z$ large enough, say, $z\geq z_{0}(b)$ .
The question we want to address now is whether or not alimit of aweakly conver-

gent sequence $\rho_{n}$ is arenormalized solution of (1.1). We report the following result

144



Theorem 5.1 Let Q., $\tau\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$. be a sequence of renormalized solutions satisfying (L4)
in $7)’(I\mathrm{x}0)$ and such that

$\rho_{n}arrow\rho$ weakly star in $L^{\infty}(I;L^{\gamma}(\Omega)),\vec{u}_{n}arrow\vec{u}$ weakly in $L^{2}(I;W^{1,2}(\Omega))$

$w$ here $\gamma>N/2$ . Suppose, in addition, that

$\mathrm{o}\mathrm{s}\mathrm{c}_{\gamma+1}[\rho_{n}-\rho](Q)\leq c(|Q|)$

for any bounded set $Q\subset I\cross\Omega$ .
Then $\rho,\vec{u}$ is a renomalized solution of (1.1), $i.e.$ , (1.4) holds in $D’(I\cross\Omega)$ for any
$b\in C^{1}(R)$ such that $b’\equiv 0$ for large values of the argument.

See [6].

6Propagation of oscillations for barotropic flows
Up to now, the behaviour of the fluid on the boundary of $\Omega$ has been irrelevant. In this
section, we consider abarotropic flow complemented by the n0-slip boundary conditions
for the velocity. More specifically, we shall assume for simplicity that

$p=p(\rho)=a\rho^{\gamma}$ , $\gamma>N/2$ , (6.1)

and
$\vec{u}|_{\partial\Omega}=0$ (6.2)

where $\Omega$ is abounded Lipschitz domain.
Accordingly, the system (1.1) $-(1.3)$ reduces (2.1), (2.2) complemented by the

boundary conditions (6.2).
We shall say that $\rho,\vec{u}$ is afinite energy weak solution of the problem (2.1), (2.2),

(6.2) on abounded time interval I if
$\bullet$

$\rho\geq 0$ , $\rho\in L^{\infty}(I;L^{\gamma}(\Omega)),\vec{u}\in L^{2}(I;W_{0}^{1,2}(\Omega))$ ;

$\bullet$ the total energy
$E[ \rho,\vec{u}]=\int_{\Omega}\frac{1}{2}\rho|\vec{u}|^{2}+\frac{a}{\gamma-1}\rho^{\gamma}\mathrm{d}x\mathrm{d}t$

is locally integrable and the energy inequality

$\frac{\mathrm{d}E}{\mathrm{d}t}+\int_{\Omega}\mu|\nabla u|^{2}+(\lambda+\mu)|\mathrm{d}\mathrm{i}\mathrm{v}\vec{u}|^{2}\mathrm{d}x\leq\int_{\Omega}\rho\vec{f}\cdot\vec{u}\mathrm{d}x$ (6.3)

holds in $D’(I)$ ;
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e the continuity equation (1.1) is satisfied $l\supset’(I$ x $\mathrm{f}\mathrm{f}^{N})$ provided the functions $\mathrm{Q}_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}$

were extended to be zero outside Q, the renormalized continuity equation (1.4)
holds in $T)’(I\mathrm{x}7^{\ovalbox{\tt\small REJECT}}?^{N})$ ;

$\bullet$ the equation of motion (1.2) holds in $D’(I\cross\Omega)$ .

Propagation of the density oscillations will be described by means of adefect mea-
sure

dffi $[ \rho_{n}-\rho](t)=\int_{\Omega}\overline{\rho\log(\rho)}-\rho\log(\rho)\mathrm{d}x$

where, as always, the bar denotes aweak $L^{1}$ -limit.
We claim the following result:

See [5], [10].
The uniform decay of oscillations stated in the above theorem depends, of course, in

an essential way on the monotonicity of the pressure. If the pressure is not monotone,
one can use aGronwall-type argument to show

$\mathrm{d}\mathrm{f}\mathrm{f}\mathrm{i}[\rho_{n} -\mathrm{g}](\mathrm{t})=0$ for all $t>0$ provided $\mathrm{d}\mathrm{f}\mathrm{t}[\rho_{n}-\rho](0)=0$ .

Such aresult, though apparently weaker than Theorem 6.1, is sufficient for proving
global existence of weak solutions (cf. [7])
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7 Global existence theory for the weak solutions
We briefly address the problem of the existence of global in time weak solutions for
the problem (2.1), (2.2). To begin, let us remark there is agreat difference between
the cases $N=1$ and $N=2,3$ . While for $N–1$ there is asatisfactory global existence
theory for both weak and strong solutions (see e.g. the monograph by ANTONTSEV,
KAZHIKHOV and MONAKHOV [1] $)$ , the existence of globally defined weak solutions
for $N\geq 2$ was proved only recently by LIONS [14].

To be more specific, let us complement the problem (2.1), (2.2) by the n0-slip
boundary conditions

$\vec{u}|_{\partial\Omega}=0$ (7.1)
for the velocity field, and prescribe the initial values

$\rho(0)=\rho_{0}$ , $(\rho\vec{u})(0)=\vec{q}$ (7.2)

where $\rho_{0},\vec{q}$ satisfy the compatibility conditions

$\vec{q}(x)=0$ whenver $\rho_{0}(x)=0$ . (7.3)

Moreover in accordance with the energy estimates presented in Section 2, we shall
assume the initial energy to be bounded,

$\rho_{0}\geq 0$ , $P(\rho_{0})\in L^{1}(\Omega)$ , $\frac{1q\neg^{2}}{\rho_{0}}\in L^{1}(\Omega)$ . (7.4)

For simplicity, we take the right-hand side $\vec{f}$ a bounded measurable function.
We report the following result.

Theorem 7.1 Let $\Omega$ be a bounded Lipschitz domain. Assume that the pressure $p$

is a function of the density such that

$p\in C^{1}[0, \infty)$ , $p(0)=0$ , $\frac{1}{a}\rho^{\gamma}-b\leq p’(\rho)\leq a\rho^{\gamma}+b$ for all $\rho>0$ (7.5)

where $a,$ $b$ are strictly positive. Moreover, let

$\gamma>\frac{N}{2}$ . (7.6)

Let the initial data satisfy the conditions (7.3), (7.4).
Finally, let $\vec{f}$ be a bounded measurable function on $(0, T)$ $\cross\Omega$ .
Then the problem (2.1), (2.2) complemented by the conditions (7.2), (7.3) possesses
at least one finite energy $weak$ solution $\rho,\vec{u}$ on $(0, T)$ $\cross\Omega$ .

LIONS (see [14], [13]) proved Theorem 7.1 provided $p$ is non-decreasing and $\gamma$

satisfies amore restrictive condition $\gamma\geq 3/2$ for $N=2$ , $\gamma\geq 9/5$ if $N=3$ . The resul
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for the isentropic case $p(\rho)=a\rho^{\gamma}$ with $\gamma>N/2$ was obtained in [9] (see also [8] for
more general domains). The non-monote pressure term is treated in [7], [4].

The proof is based, of course, on the compactness results discussed in Sections 3-
6, in particular, on boudedness of the oscillations defect measure $\mathrm{o}\mathrm{s}\mathrm{c}_{\gamma+1}[\rho_{n}-\rho]$ .

In fact, these results are compatible with the three level approximation scheme
developed in [9]:

$\partial_{t}\rho+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\vec{u})=\epsilon\triangle\rho$, (7.7)

$\partial_{t}(\rho\tilde{u})+\mathrm{d}\mathrm{i}\mathrm{v}(\rho\vec{u}\otimes\vec{u})+\nabla(p(\rho)+\delta\rho^{\gamma})+\epsilon\nabla\vec{u}\nabla\rho=\mu\triangle\vec{u}+(\lambda+\mu)\nabla \mathrm{d}\mathrm{i}\mathrm{v}\vec{u}+\rho\vec{f.}(7.8)$

This system is first solved by means of the FaedO-Galerkin approximation, then we
let $\inarrow 0$ , and finally $\deltaarrow 0$ (see e.g. [9]).
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