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Group Topologies and Semigroup Topologies on the
Integers Determined by Convergent Sequences

I %EE (Masasi Higasikawa)
B ZF K% (Tokyo Woman’s Christian University)

Abstract

We address the strongest group topologies and semigroup topologies on the
integers with a certain sequence converging to 0 as investigated by Protasov and
Zelenyuk. These are useful for constructing topological groups with peculiar duality
properies and related to exponential Diophatine equations and additive bases.

1 Introduction

As in [10], for a group G and a sequence (an:n € N) of its elements, we denote by
(G| (an : n € N)) the topological group G with the strongest group topology in which
(an : n € N) converges to the neutral element; it is G{a,} in the notation of [14]. We
admit non-Hausdorff topologies as well. Similarly for a monoid G, we denote by

(G| {an : n € N)); the topological semigroup with the strongest semigroup topology sat-
isfying the convergence condition. o o

This article contains two themes concerning such topological (semi)groups as above;
they are relatively independent each other. First we exhibit a pair of topological groups
which witnesses that certain duality properties are not preserved under direct products
(see [4] for details). In the second part, we observe additive properties of the integers
through semigroup topologies.

In Section 2, we recall two duality properties we consider. Section 3 is for description
of the counterexample. The (sketchy) proof of nonproductivity is completed in Section
4 invoking a theorem on exponential Diophantine equations. These constitute the first
part. In Section 5, we characterize sequential convergence for such Abelian Hausdorff
groups and pose a parallel problem for Ty monoids. Some interconnection between T
semigroup topologies on the integers and and asymptotic bases are mentioned in Section
6. . : L
Most of groups or semigroups we treat are commutative. For them, we adopt the
additive notation and denote by 0 the neutral element, if any.

2 Duality Properties

All topological groups in Sections 2,3 and 4 should be Hausdorff and Abelian, and a
character is a continuous homomorphism into the torus T = R/Z, unless otherwise
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stated. A subgroup H of a topological group G is dually closed if for each g € G\ H,
there exists a character x of G that separates H and g, 1.e., x is identically zero on H
and x(g) # 0. We say that H is dually embedded if each character of H extends to one
of G.

Our concern is for the following two properties: “every closed subgroup is dually
closed” and “every closed subgroup is dually embedded.” We denote the former by X(1)
and the latter by X(2) after [1].

There is misunderstanding in the literature ([9]) that each of the above is preserved
under arbitrary direct products. We show that it is not the case.

3 Counterexample

Our counterexample consisits of (Z| (2 : n € N)) and (Z| (3" : n € N)). Their characters
and closed subgroups are explicitly described in [8] and in [14].
We have rather straightforward observations:

1. Both groups have X(1) and X(2);

2. The diagonal A = {(u,u) : u € Z} C (Z|(2" : n € N)) x (2] (3" : n € N)) and each
element lying outside cannot be separated by the characters;

3. The group of characters of A extendable to the whole product is properly contained
in the character group of A with the discrete topology.

In the next section, we see that A is discrete (and closed in the product). So it follows
that the product has neither X(1) nor X(2).

4 Reduction to Number Theory

Through sequentiality argument, the following statement implies the discreteness of A:

every sequence of integers converging to 0 both in (Z|(2" : n € N)) and in
(Z] (3" : n € N)) is eventually equal to 0.

We shall establish this relying on two lemmata; one is number-theoretic and the other
topological.

First recall a finiteness theorem for exponential Diophantine equations, a special case
of [11, Ch. V, Theorem 2A]. Let S be a finite set of primes. A rational number is said to
be an S-unit if it belongs to the multiplicative group generated by S U {—1}. The set of
S-units is denoted by Usg.

Theorem 4.1 Up to scalar multiplications, the equation x,+---+xz) = 0 has only finitely
many solutions (1, ...,zx) in S-units whose non-trivial subsums do not vanish. O

As a corollary, we also have finiteness for certain subsums.

Lemma 4.2 Suppose that S and T are disjoint finite sets of primes. Let the tuple
(T1y .oy Thy Y1y ..., Y1) Tun through the solutions of the equation z, + - - + T = n+t--+uy
with z; € UsU{0} and y; € UrU{0} for1 <i<k,1<j <l. Then the sum z1+---+xx
has only finitely many values.
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Next we need a result in [14] putting constraint on convergent sequences in topologial
groups of the form (G| (a, : n € N)).

Lemma 4.3 ([14, Lemma 2]) If g — 0 in (G| (an : n € N)), then there exists a pos-
itive integer k such that gm € {1 + -+ + & ¢ (Vi)(z: € {*an : n € N} U{0})} for
sufficiently large m. O e ~ ; X ‘ r A
Now suppose that a sequence (g : m € N) of integers convergesto0in (Z[(2" : n € N))

and in (Z] (3" : n € N)). By Lemma 4.3, there exists k such that gm'is a sum of less than
k numbers in {£2" : n € N} and in {£3" : n € N}, respectively, for sufficiently large m.
Due to Lemma 4.2, there are only finitely many such sums. Therefore gn, is eventually
equal to 0. Thus we are done. ' R

5 Characterizing Convergent Sequences

;From now on, we address commutative topological (semi)groups which need not be
Hausdorff. Let (a, : n € N) be a sequence in a group or in a monoid. We adopt some
notations as in [14]: : ; :
Ap = {an:n > m},
A;, = An U {0},
, A, ==A).
Lemma 4.3 may be restated as follows. -

Lemma 5.1 ([14, Lemma 2]) Suppose that (G| (an:n € N)) is a Hausdorff Abelian
group and that gm — O therein. Then there exists a positive integer k such that g, €
Al + -+ + A} for sufficiently large m. [ ‘ : “ : ’ :
N o’

k

- Improving the above, we have a necessary and suﬂicieht condition for a sequence in
(G| (an : n € N)) to converge to 0.

Theorem 5.2 In a Hausdorff Abelian topological group of the form (G| (an : n € N)), @
sequence {gn : m € N) converges to 0 if and only if there exists a natural number k such
that for every u € N, all g, except for finitely many m belong to A+ + A O
, N S
v : , Y ‘
For T; monoids, Lemma 5.1 has a counterpart.
Proposition 5.3 If (G| (a, : n € N))s is a T1 commutative monoid with gm — 0. Then
there exists a natural number k such that gn € A+ - -+ + Ag for sufficiently large m. a
k v ‘
For Hausdorff commutative cancellative monoids, Theorem 5.2 has a parallel. But we
do not know whether these assumptions are necessary.

Conjecture 5.4 Suppose that (G| (an : n € N))s is a Ty commutative monoid and

{(gm : m € N) is a sequence therein converging to 0. Then there exist a natural number

k such that A% + --- + A for every u € N includes all g, but for finitely many m.
—_— : :
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6 Additive Bases

Suppose that B is a set of natural numbers. Recall that B is, by definition, an asymptotic
basis of order h if B + --- + B, contains all but finitely many natural numbers (cf. [7]).

h
Form € N, let BS,, denote the set {n € B : n > m}U{0}. We treat an infinite subset
B of the natural numbers and its incresing enumeration (a, : n € N) interchangeably.
Note that A7, = B3, .
We have interrelations between asymptotic bases and semigroup topologies.

Theorem 6.1 Let B and (an : n € N) be as above. Then the implications (1) = (2) =
(3) hold.

(1) There ezists a fired natural number h such that BS,, for each m € N is an asymp-
totic basis of order h. '

(2) (Z|{an :n € N))s = (Z|(n : n € N));.
(3) Each BS,, is an asymptotic basis of finite order.

0O

Remark 6.2 The (apparent?) difference between (1) and (3) is vaguely indicated in [2,
p. 52]. We do not know whether these are truly inequivalent.
If Conjecture 5.4 is true, then (1) and (2) are equivalent.

Example 6.3 Let B be the set of the primes or of the k-th powers of the natural numbers
for some positive integer k. Then (1) in Theorem 6.1 holds. This is observed in several
ways as follows.

For powers, a short interval solution for Waring’s problem ([12, Theorem 1], cf. its
improvements [13], [5]) yields that for each exponent k € N there is a natural number
h and a function n — u(n) with lim, . u(n) = 0o such that a sufficiently large natural
number n has a representation n = m¥ + - -+ + m& with my, ..., ms > u(n).

As to primes, due to a short inverval version of Vinogradov’s three-prime theorem ([3,

Theorem A]), any set of the form B$,, is an asymptotic basis of order 4.
Probabilistic arguments as in [6, Theorem 1] also yield the result for powers.
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