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Another title of this article may be:

Searching for Stable Multi-Dimensional Patterns
in Reaction-Diffusion Systems.

This is astory of my research activities during the last few years, in searching for
multi-dimensional patterns for reaction-diffusion systems. As regard to stable pat-
terns, this is not a success story. It tells us, however, about the intricacies one faces in
dealing with multi-dimensional transition layers. In retrospect, one space-dimension
was a fortunate exception in which there is no extra dimension for instability to set
in. As soon as the dimension of the domain becomes higher than one, instabilities
creep in to transition layers from the extra dimension along interfaces.

1. REACTION-DIFFUSION EQUATION AND INTERFACE EQUATION

1.1. Reaction Diffusion System. Atwo component system of reaction-diffusion equa-
tions, such as

(R-D) $\{$

$\frac{\partial u}{\partial t}=$ $d_{1}\triangle u+f(u, v)$

$(x\in\Omega, t>0)$

$\frac{\partial v}{\partial t}=$ $d_{2}\triangle v+g(u, v)$

$\frac{\partial u}{\partial \mathrm{n}}=0=\frac{\partial v}{\partial \mathrm{n}}$ $(x\in\partial\Omega, t>0)$

has been widely employed to model various pattern formation phenomena $[4, 7]$ . The
domain $\Omega\subset \mathbb{R}^{N}$ here is assumed to be bounded and smooth, and $\mathrm{n}$ stands for outward
unit normal on $\partial\Omega$ .

According to various types of nonlinearity $(f, g)$ , the system above, dispite of its sim-
plicity, is capable of modelling multitude of pattern formation phenomena. In this article,
we deal with two types of nonlinearity. Prototypical examples of these are:

(AI) $f(u.v)=u-u^{3}-v$ , $g(u., v)=u$ –v

and

(CO) $f(u., v)=u-u^{3}+v$ , $g(u, v)=u$ -v.
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(AI)

FIGURE 1. Nullclines of $(f, g)$ for (AI) and (CO)

When does the system (R-D) produce patterns? Here, a pattern means a spatially
inhomogeneous solution. The following theorem gives us an insight in answering this
question.

Theorem 1 (Conway-Hoff-Srrrdller [3]). There exits a positive constant $d_{0}=d_{0}(\Omega, f, g)$

such that if $\min\{d_{1}., d_{2}\}>d_{0}$ then the solutions of (R-D) behaves approximately similar
to those of the ordinary differential equations

(ODE) $u_{t}=f(u.v)$ , $v_{t}=g(u, v)$ ,

after initial transients.

The theorem says that the diffusion forces the spatial homogenization of the solution of
(R-D). In this sense, the diffusion acts in accordance with our intuition, and when both
diffusion coefficients $d_{1}$ and $d_{2}$ are rather $1\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}_{\dot{\mathit{1}}}$ the system (R-D) does not create any
pattern. This in turn suggests that one of the diffusion rates must be small in order for
(R-D) to produce patterns.

Therefore, we assume in the sequel that the diffusion rate $d_{1}$ of $u$ is small while $d_{2}$

remains of order $O(1)$ as $d_{1}arrow 0$ :
$0<d_{1}=\epsilon^{2}\ll 1’$. $0<d_{2}=D=O(1)$ (as $\epsilonarrow 0$ ).

Then (R-D) is rewritten as

(1.1) $\{\begin{array}{l}u_{t}=\epsilon^{2}\triangle u+f(u,v)v_{t}=D\triangle v+g(u,v)\end{array}$ $x\in\Omega t>0$ .

In (1.1) (and also in the sequel), the reference to the boundary conditions is omitted, be-
cause we always deal with the homogeneous Neumann boundary conditions. The general
behavior of solutions to (R-D) with appropriate initial conditions

$(u(x.0).v(x.0))=(u_{0}(x).v\mathrm{o}(.?\cdot))$
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is well known [1]. For example, if the second component $v_{0}(x)$ of the initial condition
satisfies $|v_{0}(x)|\leq 2/(3\sqrt{3})$ for $x\in\overline{\Omega}$, then the solution $(u(x, t),$ $v(x, t))$ of (R-D) develops
internal layers as $tarrow\propto$ .

Namely, for large $t$ , $u(x.t)\approx h^{-}(v(x., t))$ for $x\in\Omega^{-}(t)$ and $u(x,t)\approx f^{+}(v(x_{\dot{J}}t))$ for
$x\in\Omega^{+}(t)$ , thus creating asharp transition of $u(x,t)$ from the left branch $u=h^{-}(v)$ to
the right branch $u=h^{+}(v)$ of the nullclien $\{f=0\}$ (cf. Figure 1) near the set $\Gamma(t)$ , called
interface. The development of the sharp transition layer is caused by the bistability of

$u(x.t)’\approx h^{-}(v(x,t))\Omega^{-}(t)$

$\}_{\Gamma(t)}\nu_{\Omega^{+}’(t)}u(x.t)\approx h^{+}(v(x,t))$

FIGURE 2. Development of interface

the scalar ordinary differential equation

$\frac{du}{dt}=f(u_{2}v)$

which is the first equation in (R-D) with the diffusion term being neglected. Note that
$u=h^{-}(\iota,,).\prime h^{+}(v)$ are stable equilibria of the scalar ordinary differential equation for
$|v|<2/(3\sqrt{3})$ .

1.2. Interface Equation. When the transition layer becomes so sharp that the diffusion
term $\epsilon\triangle u$ cannot be neglected, the location of the layer $\Gamma(t)\subset\Omega$ . called the interface at
$t>0$ which divides $\Omega$ into two regions $\Omega^{\pm}(t)$ (cf. Figure 3), starts migrating accordin$\mathrm{g}$
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to acertain law of motion where

$\Omega^{-}(t)--\{x\in\Omega|u(x, t)\approx h^{-}(v(x., t))\}$ . $\Omega^{+}(t)=\{x\in\Omega|u(x, t)\approx h^{+}(v(x, t))\}$ .

$\Omega$

FIGURE 3. $\Gamma(t)$ divides $\Omega$ into two parts, $\Omega^{-}(t)$ and $\Omega^{+}(t)$ .

In order to describe the motion law., let us consider the following nonlinear eigenvalue
problem:

$\phi’(z)+c\phi’(z)+f(\phi(z), v)=0$ $(z\in \mathbb{R})$ ,

$\lim_{zarrow-\infty}\phi(z)=h^{-}(v).$, $\lim_{zarrow+\infty}\phi(z)=h^{+}(v)$ , $\phi(0)=0$ .

It is known that the problem has aunique solution pair $(\phi(z), c(v))$ for $v\in(\underline{v}_{\dot{l}}\overline{v})$ . The
wave speed satisfies:

(WS) $\{$

$d(u)>0$ for (AI)
$c’(v)<0$ for (CO)

It turns out that the sign of $c_{J}’(v)$ plays acrucial role in the following discussions.
When the $u$-component develops internal layer it is either $u(x.t)\approx h^{-}(v(x., t))$ or

$u(x, t)\approx h^{+}(v(x., t))$ , on $\Omega^{-}(t)$ or $\Omega^{+}(t)$ . respectively. So it is natural to define $g^{*}$ by

$g^{\mathrm{x}}(v, xj\Gamma(t))=\{$

$g(h^{-}(v), v)$ if $x\in\Omega^{-}(t)$

$g(h^{+}(v)., v)$ if $x\in\Omega^{+}(t)$ .

The motion-law of the interface under the time scale of (1.1) is described by the following
system of equations:

(1.2-a) $\mathrm{v}(Xj\Gamma(t))=0$ $(x \in\Gamma(t), t>0)$ ,

(1.2-b) $v_{t}=D\triangle v+g^{\mathrm{x}}(v.xj\Gamma(t))$ $(x\in\Omega\backslash \Gamma(t)., t>0).$,

(1.2-c) $v(\cdot.t)\in C^{1}(\overline{\Omega})\cap C^{2}(\Omega\backslash \Gamma(t))$ .
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In (1.2-a), $\mathrm{v}(Xj\Gamma(t))$ is the speed of $\Gamma(t)$ at $x\in\Gamma(t)$ along the unit normal vector $\nu(x.t)$

pointing into $\Omega^{+}(t)$ . The condidion (1.2-c) is called a $C^{1}$ -matching condition, which is of
crucial importance.

The interface equation (1.2-a) above says that $\Gamma(t)$ does not move under the time scale
of (1.1), $\Gamma(t)\equiv\Gamma(0)$ . Therefore, (1.2-b) is a gradient system and its solutions approach
equilibrium solutions, i.e., solutions of

(1.2-Equil.) $\{$

$0=D\triangle v+g^{\mathrm{x}}(v, x;\Gamma(0))$ $(x\in\Omega\backslash \Gamma(0))$

$v(\cdot)\in C^{1}(\overline{\Omega})\cap C^{2}(\Omega\backslash \Gamma(0))$.
Does (2.1-Equil.) have a solution for a reasonable initial interface $\Gamma(0)$?The answer is
yes. 1Ve do not, however, dwell on this issue here.

The reason why the interface does not move in (1.2) is because the time scale of (1.1)
is too slow. Let us rescale time by $tarrow t/\epsilon$ to obtain:

(1.3) $\{\begin{array}{l}\epsilon u_{t}=\epsilon^{2}\triangle u+f(u,v)x\in\Omega t>0\epsilon v_{t}=D\triangle v+g(u.v)\prime\end{array}$

The interface equation for (1.3) is given by

(1.4-a) $\mathrm{v}(Xj\Gamma(t))=c(v(x, t))$ $(x\in\Gamma(t), t>0)$ ,
(1.4-b) $0=D\triangle v+g^{\mathrm{x}}(U.Xj\Gamma(t))$ $(x\in\Omega\backslash \Gamma(t)., t>0).$,

(1.4-c) $v(\cdot\dot{\prime}t)\in C^{1}(\overline{\Omega})\cap C^{2}(\Omega\backslash \Gamma(t))$ .

Note that the left hand side of (1.4-b) is equal to 0, but not to $v_{t}$ . This can be under-
standable if we recall that the limit $\epsilonarrow 0$ in (1.3) can have an effect of the limit $tarrow \mathrm{o}\mathrm{c}$

in (1.2) because of the rescaling of time.

Theorem 2(Nishiura [8] for $N=1$ . Chen [1] for $N\geq 2$)
(1) Let $(v_{0}(x), \Gamma(0))$ be a smooth initial condition for (1.4). There eist $T>0$ and $a$

unique solution $(v(x,t)\dot,$ $\Gamma(t))$ of (1.4) on $[0, T]$ .
(2) There exist a family of solutions $(u^{\mathrm{e}}(x.t), v^{\epsilon}(x, t))$ of (1.3) for sufficiently small $\epsilon>0$

sttch that

$\epsilon\varliminf_{0}v^{\epsilon}(x,t)=v(x.t)$ uniformly on $\overline{\Omega}\cross[0,T]$

$\epsilon\varliminf_{0}^{u^{\epsilon}(x_{l}t)=}.\{$

$h^{-}(v(x_{\dot{l}}t))$ unifomly on $\bigcup_{t\in[0,T]}\Omega^{-}(t)\backslash \Gamma_{\delta}(t)\cross\{t\}$

$h^{+}(v(x, t))$ uniformly on $\bigcup_{t\in[0,T]}\Omega^{+}(t)\backslash \Gamma_{\delta}(t)\cross\{t\}$

for each $\delta$ $>0$ , where

$\Gamma_{\delta}(t):=$ { $x\in\Omega|$ dist(x, $\Gamma(t))<\delta$ }
is the $\delta$ -neighborhood of $\Gamma(t)$ .

The last theorem says that the interface equation (1.4) does approximate the reaction-
diffusion system (1.3) on finite time intervals. Even if the solution $(v(x., t),$ $\Gamma(t))$ of (1.4)
exists on $[0\dot, \propto)$ . the approximation in the sense of Theorem 2(2) above is valid only on
afinite time interval $[0, T_{e}]$ (although $T_{\epsilon}arrow\infty$ as $\epsilonarrow 0$ may be the case). Therefor$\mathrm{e}$
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some of asymptotic information on the solutions of (1.3) may not be captured by only
analyzing the behavior of solutions of (1.4).

2. FREE INTERFACE PROBLEM AND EQUILIBRIUM TRANSITION LAYERS

Afirst step to analyze asymptotic (as $tarrow\propto$ ) behaviors of solutions to(1.3) is to
deal with equilibrium solutions, namely, solutions of the semilinear singularly perturbed
elliptic system:

(2.1) $\{$

0 $=$ $\epsilon^{2}\triangle u+f(u, v)\dot{\prime}$

$x\in\Omega$

0 $=$ $D\triangle v+g(u, v)’$.

$0=\partial u/\partial \mathrm{n}=\partial v/\partial \mathrm{n}x\in\partial\Omega$ .

As mentioned earlier., the result in Theorem 2guarantees the approximation of (1.3) by
(1.4) only on finite time intervals, and hence do not answer the following question:

If (1.4) has an equilibrium solution $(\Gamma_{0}, v(x;\Gamma_{0}))$ , then, does (2.1) have a cor-
responding equilibrium solutions for small $\epsilon>0$ ?

The answer to the question is affirmative when the space dimension $N=1$ . $\mathrm{M}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{r}\mathrm{a}_{!}$.
Tabata and Hosono [6] proved the existence of equilibrium transition layers, and Nishiura
and Fujii [9] established their stability property. According to Nishiura and Fujii [9],
the equilibrium transition layers are stable for $(\mathrm{A}1)$ -nonlinearity and ustable for $(\mathrm{C}\mathrm{O})-$

nonlinearity
An answer to the question above for ahigher dimensional case $(N\geq 2)$ is given in [10]

in ageneral situation, which we now describe by using interface equation.
The equilibrium solution of (1.4) gives rise to the following free interface problem:

(2.2-a) $0=D\triangle V^{*}+g^{*}(V^{*}.x;\Gamma_{0})$ $(x\in\Omega\backslash \Gamma_{0}).$,

(2.2-b) $\mathrm{L}^{\Gamma^{\mathrm{x}}}(x)=0$ on $\Gamma\circ$ and $\partial 1^{\gamma*}(x)/\partial \mathrm{n}=0$ on ac
(2.2-c) $V^{*}(\cdot)\in C^{1}(\overline{\Omega})\cap C^{2}(\Omega\backslash \Gamma_{0})$ ,

where the unknown is a pair $(V^{*}(x).\Gamma_{0})$ . Note that the nonlinearity $g^{*}(v, x;\Gamma_{0})$ has a
jump discontinuity along $\Gamma_{0}$ . The problem (2.2) is called afree interface problem because
the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}1\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}_{11}\mathrm{m}$ interface $\Gamma\circ$ is unknown. The $C^{1}$ -matching condition (2.2-c) forces that
the problem cannot have asolution for an arbitrarily given interface $\Gamma_{0}$ .

Remark 1. Note that the free interface problem (2.2-a, $\mathrm{b}.,$ $\mathrm{c}$ ) is different from the
problem (1.2-Equil.)in which $\Gamma(0)$ is arbitrarily given. In (2.2-b), the Dirichlet condition
$V^{\mathrm{x}}=0$ is to be satisfied on $\Gamma_{0_{i}}$ while in (1.2-Equil.)no such condition is imposed.

To the best of our knowledge, the existence of solutions of the free interface problem
(2.2) is not known in ageneral situation. We hereafter assume that (2.2) has asmooth
solution $(V^{\mathrm{x}}(x)\dot, \Gamma_{0})$ . Our question then is: Does this $(V^{\mathrm{x}}(x).\Gamma_{0})$ give rise toa transition
layer solution of (2.1)
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It turns out that (1.4) is not acorrect interface equation for (1.3), at least as regard
to equilibrium solutions. The correct one is given by replacing (1.4-a) by acurvature
dependent version

(1.4-a’) $\mathrm{v}(x;\Gamma(t))=c(v(x, t))-\epsilon\kappa(x;\Gamma(t))$ $(x\in\Gamma(t)., t>0).$,

where $\kappa(x;\Gamma)$ stands for the sum of principal curvatures of $\Gamma$ at $x\in\Gamma$ . Let us linearize
(1.4-a.,b.,c) at the solution $(V^{\mathrm{x}}(x), \Gamma_{0})$ of (2.2). Let $v^{\mathrm{x}}$ be such that $v(v^{\mathrm{x}})=0$ . Then, the
associated linearized eigenvalue problem is given by

(2.3-a) $\lambda p=\epsilon(\triangle^{\Gamma_{0}}+\sum_{j=1}^{N-1}\kappa_{\mathrm{j}}(x)^{2})p+c’(v^{\mathrm{x}})\frac{\partial V(x)}{\partial\nu(x)}.|_{\Gamma_{0}}p+c’(v^{\mathrm{r}})q|_{\Gamma_{0}}$ $x\in\Gamma_{0}$ ,

(2.3-b) $0=D\triangle q+g_{v}.(V^{\mathrm{x}}(x),x;\Gamma_{0})q-[g^{\mathrm{K}}]p\otimes\delta_{\Gamma_{0}}$ $x\in\Omega$

for $p(x)$ (defined for $x\in\Gamma_{0}$ ) and $q(x)$ (defined for $x\in\Omega$ ), where $\triangle^{\Gamma_{0}}$ is the Laplace-
Beltrami operator on $\Gamma_{0}\dot,$ $\kappa j(x)(j=1_{\dot{J}}\ldots, N-1)$ are principal curvatures at $x\in\Gamma_{0}$ and
$[g^{\mathrm{x}}]$ is the jump of $g^{\mathrm{x}}$ across $\Gamma_{0}$ :

$[g^{\mathrm{x}}]=g(h^{+}(v^{\mathrm{x}}), v^{\mathrm{x}})-g(h^{-}(v^{\mathrm{x}})., v^{*})$ ( $v^{\mathrm{x}}=0$ in our examples (AI) and (CO)).

In the second equation above, the symbol $\delta_{\Gamma_{0}}$ stands for the Dirac-delta function supported
on $\Gamma\Downarrow.$

, and hence the equation should be interpreted in distributional sense. Therefore,
by writing it in weak form:

$0=-D \int_{\Omega}\nabla q(x)\cdot\nabla\eta(x)dx+\int_{\Omega}g_{v}^{*}(V^{\mathrm{r}}(x)’.x;\Gamma_{0})q(x)\eta(x)dx$

$-[g^{\mathrm{x}}] \int_{\Gamma_{0}}p(x)\eta(x)dS_{x}^{\Gamma_{0}}$

(with $\eta$ being atest function and $dS_{x}^{\Gamma_{0}}$ standing for the volume element on $\Gamma_{0}$ ), and
integrating by parts, one can recast (2.3-b) as concisely as

(2.3-b’) $\Pi_{0}q|_{\Gamma_{0}}+\frac{[g]}{D}.p=0$ $x\in\Gamma_{0}$ .

The operator $\Pi_{0}$ in the last equation is the $\mathrm{D}\mathrm{i}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}1\mathrm{e}\mathrm{t}- \mathrm{t}_{0_{\wedge}^{-}}\mathrm{V}\mathrm{e}\mathrm{u}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}$ map defined by

$\Pi_{0}q(x):=\frac{\partial v_{0}^{-}(x)}{\partial\nu}-\frac{\partial v_{0}^{+}(\tau)}{\partial\nu}$

.
$(x\in\Gamma_{0})$

in which $v_{0}^{\pm}(x)$ are solutions of the following problem:
$D\triangle\iota’,\pm+g_{1}.,(V^{\mathrm{r}}(x),x;\Gamma_{0})_{l’}^{\pm},=0$ $(x\in\Omega^{\pm})$ .

$v^{\pm}(x)=q(x)$ $(x\in\Gamma_{0})$ .

$\frac{\partial v^{\pm}(x)}{\partial \mathrm{n}}=0$
$(x\in\partial\Omega)$ ,

where $\Omega^{-}\cup\Omega^{+}=\Omega\backslash \Gamma_{0}$ .

Lemma 3([10]). Assume that $g_{t}.,$ $<0$ on $\Omega\backslash \Gamma_{0}$ .
(1) The operator $\Pi_{0}$ : $C^{2+a}(\Gamma_{0})arrow C^{1+a}(\Gamma_{0})$ is inveriible for $0<\alpha<1$ . and extends to

a self-adjoint operator on $L^{2}(\Gamma_{0})$ .
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(2) Eigenvalues of $\Pi_{0}$ are all positive:

$0<\pi_{0}<\pi_{1}<\ldots<\pi_{j}arrow\propto$ $(jarrow\propto)$ ,

where only distinct eigenvalues are listed.

For both of our nonlinearities (AI) and (CO), the condition $g_{v}^{*}<0$ is satisfied. There-
fore, thanks to Lemma 3, we can solve $(2.3- \mathrm{b}’.)$ in $q|_{\Gamma_{0}}$ and substitute it into (2.3-a) to
reduce the eigenvalue problem (2.3) to

(2.4) $\lambda p=A^{\epsilon}p$ on $\Gamma_{0}$ ,

where $A^{\epsilon}$ is defined by

(L) $A^{\epsilon}p:= \epsilon(\triangle^{\Gamma_{0}}+\sum_{j=1}^{N-1}\kappa_{j}(x)^{2})p+c’(v^{*})\frac{\partial V^{*}(x)}{\partial\nu(x)}|_{\Gamma_{0}}p-c’(v^{*})\frac{[g^{*}]}{D}\Pi_{0}^{-1}p$ on $\Gamma_{0}$ .

Theorem 4 ([10]).
(1) Let $(V^{*}, \Gamma_{0})$ be a smooth solution of (2.2). Suppose that the operator

$A^{\epsilon}$ : $C^{2+\alpha}(\Gamma_{0})arrow C^{\alpha}(\Gamma_{0})$ $(0<\alpha<1)$

is invertible uniformly in $\epsilon\in(0, \epsilon\circ]$ for some $\epsilon\circ\cdot$ When (2.1) has a family of solutions
$(u^{\epsilon}., v^{\epsilon})$ such that

$\varliminf_{\epsilon 0}v^{\epsilon}(x)=V^{*}(x)$ uniformly in $\overline{\Omega}$

$\lim_{\epsilonarrow 0}u^{\epsilon}(x)=\{$

$h^{-}(V^{*}(x))$ uniformly on $\Omega_{\delta}^{-}$

$h^{+}(V^{*}(x))$ uniformly on $\Omega_{\delta}^{+}$

for each $\delta>0$ , where $\Omega_{\delta}^{\pm}$ are defined by

$\Omega_{\delta}^{\pm}=$ { $x\in\Omega^{\pm}|$ dist( $x.$, $\Gamma_{0})\geq\delta$ }.

(2) When $c’(v)<0$ , the operator $A^{\epsilon}$ above is inveriible uniformly in $\epsilon>0$ small.
(3) The solutions in (1) are unstable.

Outline of Proof. The proof of Theorem 4 (1) consists of two steps.
Step 1is due to Ikeda [5]. It was shown in [5] that there exist two families of boundary

layer solutions $(u^{\epsilon,\pm}, v^{\epsilon,\pm})$ on $\Omega^{\pm}$ with transition layers along the common interface $\Gamma_{0}$ .
In Step 2., we match the two families of solutions as follows.

(2.5) $(u^{\epsilon,-},v^{\epsilon,-})=(u^{\epsilon,-},v^{\epsilon,+})$
$( \frac{\partial u^{\epsilon,-}}{\partial\nu},\frac{\partial v^{\epsilon,-}}{\partial\nu})=(\frac{\partial u^{\epsilon,+}}{\partial\nu}’.\frac{\partial v^{\epsilon,+}}{\partial\nu})$ on $\mathrm{r}_{0}$ .

It turns out that the matching conditions are equivalent to

(2.6) $A^{\epsilon}p=\mathrm{a}$ known function $\in C^{\alpha}(\Gamma_{0})$ $(0<a<1)$ .

The condition on the invertibility of $A^{\epsilon}$ enables us to solve $(2.6)\dot,$ which in turn allows us
to establish the matching conditions (2.5), completing the proof of (1).

The idea of proof for (2) and (3) will be explained below when we prove Theorems 6
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In $(\backslash 1^{\tau}\mathrm{S})$ in \S 1.2, we have shown that $c’(\iota’)<0$ for the nonlinearity (CO). Therefore,
Theorem 4applies to this case and the existence of a family of transition layer solutions
of (2.1) is established.

What is going on when the nonlinearity is of $(\mathrm{A}\mathrm{I})- \mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}^{?}$. when $c^{l}(v)>0$ , one can
show that the eigenvalue problem (2.4) has small eigenvalues. More pricisely, there exists
asequence $\{\epsilon j\}$ with $\epsilon_{1}>\epsilon_{2}>\ldots>\epsilon jarrow \mathrm{O}$ as $iarrow \mathrm{o}\mathrm{o}$ such that for each $\epsilon=\epsilon_{j}\dot,$

$0$ is an eigenvalue of the problem (2.4). This suggests that an infinite series of static
bifurcations of transition layer solutions may be taking place at each $\epsilon=\epsilon j$ . To prove the
last statement in ageneral situation is not so easy. So let us deal with aspecial case in
the next Section.

3. BIFURCATION OF TRANSITION $\iota \mathrm{A}\mathrm{Y}\mathrm{E}\mathrm{R}\mathrm{S}$

$\mathrm{Y}\mathrm{V}\mathrm{e}$ treat in this section the case where the domain $\Omega$ is the unit disk in $\mathbb{R}^{N}$ :
$\Omega=\{x\in \mathbb{R}^{r\mathrm{V}}||x|<1\}$ .

Theorem 5([11]).
(1) There eists $D_{0}>0$ such that the ffee interface problem (2.2) has a radially sym-

metric solution $(V^{*}(|x|)., \Gamma_{0})$ with $\frac{d}{dr}V^{\mathrm{x}}(r)>0$ for each $D\in[D_{0}., \infty)$ , where
$\Gamma_{0}=\{x\in \mathbb{R}^{N}||x|=R_{\wedge}\}$ $(0<R. <1)$ .

(2) For both nonlinearities (AI) and (CO), (2.1) has a family of radially symmetric
solutions $(u^{\epsilon}(|x|), v^{\epsilon}(|x|))$ with the same limiting behavors as in Theorem 4for each
$D\in[D_{0_{\dot{\prime}}}\infty)$ .

For aradially symmetric pair $(V^{\mathrm{x}}(r).\Gamma_{0}).$, the free interface problem (2.2-a, $\mathrm{b}$ , c) reduces
to aproblem described by an ordinary differential equation (ode). Based upon adetailed
analysis of the (ode), the proof of Theorem 5(1) is rather elementary.

The proof of Theorem 5(2) goes as follows. In the same manner as in the proof of
Theorem 4, the existence is equivalent to

$A_{0}^{\epsilon}p=\mathrm{a}$ known constant,

where $A_{0}^{\epsilon}$ is aconstant given by

$A_{0}^{\epsilon}=c’(0)[V_{r}^{\cdot}(R_{\mathrm{x}})- \frac{1}{D}\pi_{0}^{-1}]+O(\epsilon)\neq 0$

in which $\gamma_{10}$ is the first eigenvalue of the Dirichlet-t0-Neumann map $\Pi_{0}$ .

Theorem 6([11]). The equilibrium solutions $(u^{\epsilon}(|x|), v^{\epsilon}(|x|))$ of Theorem 5are unstable
with respect to (1.3). Moreover, there are (cf. Figures 4and 5)

$\bullet$ two unstable eigenvalues $\lambda_{0}>\lambda_{1}>0$ for $(CO)’ nonlinearity$;
$\bullet$ many unstable eigenvalues for (AI)-nonlinearity,

$\lambda_{0}<\lambda_{1}<0<\lambda_{2},\cdots$ . $\dot{\prime}\lambda_{j_{C}}$ ,

where $j_{\epsilon}=O(\epsilon^{-1/2})$ .
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$\lambda_{j}$

$j$

FIGURE 4. Eigenvalues for (CO).

FIGURE 5. Eigenvalues for (AI).

In the $above_{i}$ the multiplicity $m_{j}$ of the eigenvalue $\lambda_{j}$ is given by

$,n_{j}= \frac{(2j+\grave{\wedge}-\prime 2\prime)(j+\sim^{l}\backslash ^{r}-3)!}{j!(\wedge\prime\backslash -2)!}$.
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which is the dimension of the space of spherical har monics of degree $\ovalbox{\tt\small REJECT}$ . Moreover, eigen-

function associated with $\mathrm{A}_{\ovalbox{\tt\small REJECT}}$ are of the form $p(|\mathrm{r}|)\mathrm{O}(y)with|y|\ovalbox{\tt\small REJECT}$ ) and 0 being a spherical
harmonics of degree $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ .

We now state abifurcation result.

Theorem 7([11]). Assume that $N=2$ and the nonlinearity in (2.1) is of (AI)-type.
There eists a sequence $\{\epsilon_{j}\}$ for sufficiently large $j$ , say $j\geq O(\epsilon_{0}^{-1/2})$ , with

$\epsilon_{j-1}>\epsilon_{j}arrow 0$ (as $jarrow\infty$ )

such that when $\epsilon$ passes $\epsilon_{j}$ , a non-radial solution $(u^{\epsilon,j}, v^{\epsilon,j})$ of (2.1) bifurcates from the
trivial branch $(u^{\epsilon_{!}}.v^{\epsilon})$ . Moreover,

(1) the symmetry group of the bifurcated solution $(u^{\epsilon,j}., v^{\epsilon,j})$ is the dihedral group $\mathrm{D}_{j}$ of
order $2j$ :

(2) the bifurcation points $\epsilon_{j}$ are explicitly characterized as:

$\epsilon_{j}=c’(v^{\mathrm{x}})\frac{W}{dr}.(R_{\mathrm{x}})\frac{1}{j^{2}}+O(\frac{1}{j^{4}})$ (as $jarrow\propto$ ).

Remark 2. The restriction $N=2$ in Theorem 7is only for the sake of avoiding the
algebraic complication in identifying subgroups of the orthogonal group $O(N)$ which have
$a$ one-dimension$al$ fied point subspace. Similar results hold for $N\geq 3$ with more intricate
statements.

Outline of proof of Theorems 6and 7.
We linearize (1.3) around the trivial branch $(u^{\epsilon}(|x|)\dot, v^{\epsilon}(|x|))$ and consider the associated

eigenvalue problem:

(3.1) $\{\begin{array}{l}\epsilon\lambda\phi=\epsilon^{2}\Delta\phi+f_{u}^{\epsilon}\phi+f_{v}^{\epsilon}\psi\epsilon\lambda\psi=D\Delta\psi+g_{v}^{\epsilon}\psi+g_{u}^{\epsilon}\phi_{\dot{r}}\end{array}$

where $f_{u}^{\epsilon}$ etc. are evaluated at the trivial branch. The eigenvalues of (3.1) are divided
into two classes, critical and non-critical eigenvalues. An eigenvalue $\lambda^{\epsilon}$ of (3.1) is called
non-critical if

${\rm Re}\lambda^{\epsilon}arrow-\propto$ (as $\epsilonarrow 0$).

From this definition, we only need to examine the critical eigenvalues to determine the
stability of the trivial solutions $(u^{\epsilon}., v^{\epsilon})$ .

The key is the following:

{critical eigenvalues of (3.1)} $\approx\sigma(A$
‘ ).

Namely, the critical eigenvalues are well approximated by the eigenvalues of the operator
$A^{\epsilon}$ . In our radially symmetric case, the eigenvalues of $A^{\epsilon}$ are explicitly given by

(3.2) $\lambda_{j}=c’(\iota^{\mathrm{x}}’.)[\frac{d\mathrm{L}^{r}/}{dr}.(R_{\mathrm{x}})-\frac{1}{D}\frac{[g]}{\gamma_{1j}}.]-\frac{\epsilon}{R^{2}}.(j-1)(j-1+-\nwarrow^{\vee})$ $(j=1.2.. )’\ldots$
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$\frac{-1}{R_{\mathrm{x}}^{2}}(j-1)(j-1+N)$

is the $j$ -th eigenvalue of the Jacobi operator

$\triangle^{\Gamma_{0}}+\sum_{k=1}^{\mathit{1}\backslash ^{r}-1}\kappa(x)^{2}$ on $\Gamma_{0}=\{x\in \mathbb{R}^{N}||x|=R_{\star}\}$ .

Let us recall here that $\pi_{j}$ is the $j$-th eigenvalue of the Dirichlet-t0-Neumann map $\Pi_{0}$ , and
it is asymptotically characterized ([10]) as

(3.3) $\lim_{jarrow\infty}\frac{\pi_{j}}{\sqrt{j(j+l\mathrm{V}-2)}}=\frac{2}{R_{*}}$ .

Moreover thanks to the maximum principle ([10]), one can prove that

(3.4) $\frac{dV^{*}}{dr}(R_{*})-\frac{1}{D}\frac{[g^{*}]}{-\pi_{j}}\{$
. $<0$ if $j=1,2$
$>0$ if $j\geq 3$ .

From (3.2), (3.3) and (3.4), the statements in Theorem 6follows immediately.
The proof of Theorem 7is furnished by the equivariant branching lemma due to Van-

derbauwhede [12] and Cicogna [2], The characterization of the critical eigenvalues as in
(3.2)-(3.4) plays adecisive role in verifying the conditions of the branching lemma.
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