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1 Introduction
This paper is devoted to the following system of chemotaxis, where $\Omega\subset \mathrm{R}^{n}$

is abounded domain with smooth boundary $\partial\Omega$ , $a>0$ is aconstant, and $\nu$

is the outer unit vector on $\partial\Omega$ :

$u_{t}=\nabla\cdot(\nabla u-u\nabla v)\}$ in $\Omega\cross(0, T)$

$0=\Delta v-av+u$

$\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0, T)$ (1)

$u|_{t=0}=u_{0}(x)$ on $\Omega$ (2)

It is asystem proposed by Nagai [14] as asimplified form of the ones given
by Keller and Segel [13] and Nanjundiah [16]. Here, $u=u(x, t)$ and $v=$
$v(x, t)$ , respectively, stand for the density of cellular slime molds and the
concentration of chemical substances secreted by themselves at the position
$x\in\Omega$ and the time $t>0$ .

The first equation describes the conservation of the mass, where the flux
of $u$ is given by $\mathcal{F}=-\nabla u+u\nabla v$ , as

$\frac{d}{dt}\int_{\omega}u=-\int_{\partial\omega}\mathcal{F}\cdot\nu$

holds for any subdomain $\omega$
$\subset\subset\Omega$ . Therefore, the effect of diffusion $-\nabla u$ and

that of chemotaxis $uVv$ are competing for $u$ to vary. On the other hand, the
microscopic derivation of this equation was done by Alt [1] from the biased
random walk
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Nanjundiah [16] proposed

$\tau v_{t}=\nabla v-\gamma v+\alpha uu_{t}=\nabla\cdot(\nabla u-\chi u\nabla v)\}$ in $\Omega\cross(0, T)$

$\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on an $\cross(0, T)$

$u|_{t=0}=u_{0}(x)$ , $v|_{t=0}=v_{0}(x)$ in $\Omega$ , (3)

where $u_{0}=u_{0}(x)$ , $v_{0}=v_{0}(x)$ are non-negative functions, and $\chi,\gamma$ , $\alpha$ , $\tau$ are
positive constants. This system is called the full system in this paper. Be
cause the time scales for $u$ and $v$ are different, the constant $\tau>0$ is usually
supposed to be small. Putting $\tau=0$ gives system (2), as anormal form by
the change of variables, that is, the dimensionless procedure.

Other simplified systems of parabolic-elliptic equations are proposed by
J\"ager and Luckhaus [12]:

$u_{t}= \nabla\cdot(\nabla u-\chi v)0=\Delta v+\alpha(u-\frac{u_{1}\nabla}{|\Omega|}\int_{\Omega}u)\}$ in $\Omega\cross(0,T)$

$\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0,T)$

$u|_{t=0}=u_{0}(x)$ in $\Omega$ ,

Diaz and Nagai [6] (in amodified form):

$u_{t}=\nabla\cdot(\nabla u-\chi u\nabla v)\}$ in $\Omega\cross(0, T)$
$0=\Delta v+\alpha u$

$\frac{\partial u}{\partial\nu}-\chi u\frac{\partial v}{\partial\nu}=v=0$ on $\partial\Omega\cross(0,T)$

$u|_{t=0}=u_{0}(x)$ on $\Omega$ ,

and Senba and Suzuki [21]:

$u_{t}=\nabla\cdot(\nabla u-\chi u\nabla v)\}$ on $\mathcal{M}$ $\cross(0, T)$
$0=\Delta v-\gamma v+\alpha u$

$u|_{t=0}=u_{0}(x)$ on $\mathcal{M}$ ,

where $\mathcal{M}$ denotes acompact Riemannian surface.
Sometimes the first equation is replaced by

$u_{t}=\nabla\cdot$ $(\nabla A(u)-u\nabla\chi(v))+f(u, v)$

104



in order to derive more realistic spatial patterns such as the streaming. This
case is referred to as the generalized system, where $\chi=\chi(v)$ acts as the
sensitive function. Among many works, let me just refer to Harada, Senba,
and Suzuki [8]. It says that if $f(u, v)=0$, $A(u)=au^{2}+u$ with $a>0$ , and
$\chi(v)=v$ , then the solution exists globally in time at least for $n\leq 7$ .

This paper is concentrated on (2). The result stated below is valid to other
simplified systems with minor changes. Furthermore, we take the case $n–2$
only, although Herrero, Madina, and Velazquez [9], [10] obtained interesting
families of blowup solutions for $n=3$ . We assume also that the initial value
$u|_{t=0}=u_{0}(x)\geq 0$ is appropriately smooth. Then, we have aunique classical
solution $u=u(x, t)$ , $v=v(x, t)$ locally in time by the results of Yagi [30] and
Biler [4]. Henceforth, $T_{\max}>0$ denotes its existence time.

Let me recall the follwoing theorem by [20], where $\mathcal{M}(\overline{\Omega})$ denotes the set
of measures on $\overline{\Omega},$ $arrow \mathrm{t}\mathrm{h}\mathrm{e}*$-weak convergence there, and

$m_{*}(x_{0})\equiv\{$

$8\pi$ $(x_{0}\in\Omega)$

$4\pi$ $(x_{0}\in\partial\Omega)$ .

Theorem 1If $T_{\max}<+\infty$ , then there exists a finite set $S$ $\subset\overline{\Omega}$ and $a$

non-negative function $f=f(x)\in L^{1}(\Omega)\cap C(\overline{\Omega}\backslash \mathrm{S})$ such that

$u(x, t)dx$ $arrow$

$\sum_{x_{0}\in \mathrm{S}}m(x_{0})\delta_{x_{0}}(dx)+f(x)dx$
in $\mathcal{M}(\overline{\Omega})$ (4)

holds with
$m(x_{0})\geq m_{*}(x_{0})$ $(x_{0}\in S)$ . (5)

We have $||u(t)||_{\infty}arrow+\infty$ as $t\uparrow T_{\max}<+\infty$ and $S$ is actually the blowup set
of $u$ . That is, $x_{0}\in S$ if and only if there exist $x_{k}arrow x_{0}$ and $t_{k}\uparrow T_{\max}$ such
that $u(x_{k}, t_{k})arrow+\infty$ . Furthermore, we have

$||u(t)||_{1}=||u_{0}||_{1}$ $(t\in[0, T_{\max}))$ (6)

and hence
2# $(\Omega\cap S)$ $+\#$ $(\partial\Omega\cap S)$ $\leq||u_{0}||_{1}/(4\pi)$ (7)

follows from (4) and (5). Here and henceforth, $||$ $||_{p}$ denotes the standard
$L^{p}$ norm on $\Omega$ for $p\in[1, \infty]$ . In particular, we get the conclusion that
$||u_{0}||_{1}<4\pi$ implies $T_{\max}=+\infty$ . The final fact is related to the conjectur$\mathrm{e}$
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by Childress and Percus [5] concerning the threshold in $L^{1}$ norm of the initial
value for the blowup of the solution, and is proven independently by Nagai,
Senba, and Yoshida [15], Biler [4], Gajewski and Zacharias [7].

On the other hand relation (4) was conjectured by Nanjundiah [16] and is
referred to as the formation of chemotactic collapses. Inequality (7) indicates
that the phenomenon of threshold in $||u_{0}||_{1}$ concerning the blowup of the
solution can be aconsequence of the formation of coUapsae in the blowup
process. If equality holds in (5), then it means that the spore is formed with
the normalized masses. We may call it the quantized of blowup mechanism.
We have got the problem in Senba and Suzuki [19] by the study of stationary
solutions. See also Ohtsuka and Suzuki [17]. Now we realize that this problem
is related to the accuracy of concentration, or the blowup rate of local norms
([24]). Actually, [23] proved that the mass is quantized if the solution is
continued after the blowup time. Along the same line, the mass quantization
is proven if the solution blows-up in an infinite time.

In this connection, we have got an important suggestion from the sta-
tistical physics. Here will be agood occasion to describe the underlying
mathematical structures and physical backgroimds of this problem in order
to promote the study of the blowup mechanism. Meanwhile we get the second
conjecture that $f\in L\log$ $L(\Omega)$ in (4), where $L\log L$ denotes the Zygmund
space of Stein (see Rao and Ren [18]). This is related to the question on the
movement of the collapses after the blowup time.

2Mathematical Structures
Several mathematical structures are known to (2) and some of them are valid
to the full system (3). For the moment, we describe them for (3) but they
are valid for (2) if the initial value $v_{0}$ is taken as $(-\Delta_{N}+a)^{-1}u_{0}$ and $\tau$ is put
to be zero.

First, the positivity of the solution is preserved so that $u_{0}(x)\geq 0$ , $u_{0}(x)\not\equiv$

$0$ , and $\mathrm{u}\mathrm{o}(\mathrm{x})\geq 0$ imply $u(x,t)>0$ and $v(x,t)>0$ for $(x, t)\in\overline{\Omega}\cross(0,T_{\max})$ .
This gives the total mass conservation (6) by

$\frac{d}{dt}\int_{\Omega}u=\int_{\Omega}u_{t}=0$ , (8)

which follows from the first equation
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Amore important feature is the existence of the Lyapunov function

$W(u, v)= \int_{\Omega}(u\log u-uv+\frac{1}{2}|\nabla v|^{2}+\frac{a}{2}v^{2})$ .

To see this, for example let us write the first equation of (3) as

$u_{t}=\nabla\cdot u\nabla(\log u-v)$ .

Then, in use of the boundary conditions we obtain

$\int_{\Omega}u_{t}(\log u-v)=-\int_{\Omega}u|\nabla(\log u-v)|^{2}$ ,

where the left-hand side is equal to

$\frac{d}{dt}\int_{\Omega}(u\log u-uv)-\int_{\Omega}u_{t}+\int_{\Omega}uv_{t}$ .

Here, we have (8) and

$\int_{\Omega}uv_{t}=\int_{\Omega}(\tau v_{t}-\Delta v+av)v_{t}=\tau||v_{t}||_{2}^{2}+\frac{1}{2}\frac{d}{dt}(||\nabla v||_{2}^{2}+a||v||_{2}^{2})$ .

Therefore,

$\frac{d}{dt}W(u, v)+\tau||v_{t}||_{2}^{2}+\int_{\Omega}u|\nabla(\log u-v)|^{2}--0$ $(t\in[0, T_{\max}))$ (9)

follows. In particular, $W(u, v)$ is aLyapunov function and we have

$W(u(t), v(t))\leq W(u_{0}, v_{0})$ $(t\in[0, T_{\max}))$ .

The first term of $W(u, v)$ , that is $\int_{\Omega}$ $u$ logu, is related to the Zygmund
norm, as we have

$||w||_{L\log L} \sim\int_{\Omega}|w|\log(e+\frac{|w|}{||w||_{1}})$ .

This relation is shown in Iwaniec and Verde [11]. We note that the Orlicz
spaces $L\log L(\Omega)$ and $Exp(\Omega)$ form aduality. Actually, it is regarded as a
local version of that between the Hardy space $H^{1}$ and the BMO. We can
regard the second term of $W(u, v)$ , that is $\int_{\Omega}uv$ , as aparing of this dual-
ity. This observation is useful, because the third term of $W(u, v)$ , that is
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$\frac{1}{2}||\nabla v||_{2}^{2}+\frac{a}{2}||v||_{2}^{2}$ , is associated with the $H^{1}$ norm and we have the inclusion
$H^{1}\subset BMO$ in the case of two space dimensions. See Suzuki [26] for an
application of this observation.

Relation (9) is also useful in the formulation of the stationary problem:
$u=u(x)$ , $v=v(x)$ . Because we are interested in the non-trivial case $u>0$ ,
it gives that $\log u-v=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ on Q. This unknon constant is prescribed by
$||u||_{1}=\lambda$, which is reasonable from relation (6) concerning the non-stationary
problem. Consequently, the relation

$u= \lambda e^{v}/\int_{\Omega}e^{v}$

is obtained, and thus the stationary problem of (3) arises from the second
equation as

$- \Delta v+av=\lambda e^{v}/\int_{\Omega}e^{v}$ in $\Omega$ , $\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega$ , (10)

where $\lambda=||u_{0}||_{1}$ . This is actually the formulation of Childress and Percus
[5]. On the other hand, problem (10) has several relatives such as the mean
field equation of vortex points, the prescribed Gaussian curvature equation
on compact Riemannian manifolds, the limiting equation in the gauge theory
of Chern-Simons-Higgs, and so forth. See [17] and the references therein for
their details.

The stationary problem (10) has avariational structure. Namely, $v=$
$v(x)$ is asolution if and only if it is acritical value of

$J_{\lambda}(v)= \frac{1}{2}(||\nabla v||_{2}^{2}+a||v||_{2}^{2})$ -Alog $( \int_{\Omega}e^{v})$ $(v\in H^{1}(\Omega))$ ,

where the Trudinger-Moser inequality takes afundamental role. Further-
more, the linearized operator around the stationary solution $v=v(x)$ is
associated with the $\mathrm{b}\mathrm{i}$-linear form

$A( \varphi, \varphi)=\int_{\Omega}(|\nabla\varphi|^{2}+a\varphi^{2}-p\varphi^{2})+\frac{1}{\lambda}\{\int_{\Omega}p\varphi\}^{2}$ $(\varphi\in H^{1}(\Omega))$ ,

where $p= \lambda e^{v}/\int_{\Omega}e^{v}$ . In this way, the methods developed by Suzuki [25], use
of the complex variables, spectral analysis combined with the isoperimetric
inequalities on surfaces, control of Palais-Smale sequences by Struwe’s argu-
ment, and so on, are applicable to (10). See [19] and [17] concerning the
structure of the solution set obtained in those ways
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Here is akey identity controlling the stability of stationary solutions:

$W$ ($\lambda e^{v}/\int_{\Omega}e^{v}$ , $v)=J_{\lambda}(v)+\lambda\log$ A

For more details, see Suzuki [26] and Senba and Suzuki [23].
Simplified system (2) has one more remarkable structure, which may be

referred to as the compensated compactness via the symmetrization. In fact,
in use of the Green’s function $G(x, y)$ for $-\Delta_{N}+a$ the second equation is
converted to

$v(x, t)= \int_{\Omega}G(x, y)u(y,t)dx$

Then, taking $\psi$ $\in C^{2}(\overline{\Omega})$ satisyfing $\frac{\partial\psi}{\partial\nu}|_{\partial\Omega}=0$ as atest function, we get the
weak formulation,

$\frac{d}{dt}\int_{\Omega}\psi(x)u(x, t)dx-\int_{\Omega}\Delta\psi(x)u(x, t)dx$

$= \int_{\Omega}u(x, t)\nabla v(x, t)\cdot$ $\nabla\psi(x)dx$

$= \int\int_{\Omega \mathrm{x}\Omega}\nabla\psi(x)\cdot\nabla_{x}G(x, y)u(x, t)u(y, t)dxdy$

$= \frac{1}{2}\int\int_{\Omega\cross\Omega}\rho_{\psi}(x, y)u(x,t)u(y,t)dxdy$

where
$\rho_{\psi}(x, y)=\nabla\psi(x)\cdot\nabla_{x}G(x, y)+\nabla\psi(y)\cdot\nabla_{y}G(x, y)$ .

If we apply
$G(x, y)= \frac{1}{2\pi}\log\frac{1}{|x-y|}+K(x, y)$

with $K\in C^{1,\theta}(\Omega\cross\Omega)$ , we know that

$\rho_{\psi}(x, y)=-\frac{(\nabla\psi(x)-\nabla\psi(y))\cdot(x-y)}{2\pi|x-y|^{2}}+C^{\theta}(\Omega\cross\Omega)$ ,

where the first term of the right-hand side is in $L^{\infty}$ in $\Omega\cross\Omega$ although
it is not continuous. More delicate analysis is necessary near $\partial\Omega$ , but an
important consequence of the above expression is that the local $L^{1}$ norm of
$u$ has abounded variation in $t\in[0, T_{\max})$ . This actually gives the finiteness
of blowup points to the simplified system. See [20] for details
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3Physical Backgrounds
Parabolic-elliptic systems of cross diffusion are found in several areas. Here,
we mention two of them, the semi-conductor device equation and vortex
formulation of the Navier-Stokes equation. The first one is written as

$p_{t}=\nabla\cdot(\nabla p+p\nabla\varphi)n_{t}=\nabla\cdot(\nabla n-n\nabla\varphi)\}$ in $\Omega$ $\cross(0,T)$

$\Delta\phi=n-p$

$\frac{\partial \mathrm{n}}{\ovalbox{\tt\small REJECT}^{\nu},\partial\nu},-n\frac{\partial\varphi}{\partial\nu ff\mathrm{r}^{\nu}}=0+p\frac=0\}$ on $\partial\Omega\cross(0, T)$ ,
$\varphi=0$

where $n=n(x, t)$ and $p=p(x,t)$ are the densities of electron and positron,
respectively, and $\varphi=\varphi(x, t)$ is the electric charge field. The case $p=0$
is easy to treat. Then, we see that the electrons are subject to the self-
repulsive force, which makes the system to be dissipative. See Bank [2] for
more details.

The second one is given, for example, by

$\omega_{t}=\nabla\cdot(\nabla\omega-\omega\nabla^{[perp]}\psi)\}$ in $\mathrm{R}^{2}\cross(0, T)$ ,
$-\Delta\psi=\omega$

where
$\nabla-=[perp](-\frac{\frac{\partial}{\partial\partial x_{2}}}{\partial x_{1}})$

for $x=(x_{1}, x_{2})$ . It comes ffom the Navier-Stokes system

$u_{t}-\Delta u+u\cdot\nabla u=\nabla p\}$ in $\mathrm{R}^{3}\cross(0,T)$ ,
$\nabla\cdot u=0$

where

$u=$ $(\begin{array}{l}u_{1}u_{2}u_{3}\end{array})$ and $\nabla=(\frac{\frac{\partial}{\frac{\partial x\partial^{1}}{\partial x\partial^{2}}}}{\partial x_{3}})$

denote the velocity and the gradient operator, respectively. If we take the
two dimensional model with $x=(x_{1}, x_{2},0)$ and $u_{3}=0$ , then we get

$\nabla\cross$ $u=$ $(\begin{array}{l}00\omega\end{array})$ for $\omega$ $=\omega(x_{1}, x_{2})$ .
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This system is also dissipative but some underlying chaotic features are ob-
served.

Directions of self-interacting forces of those systems, chemotaxis, semi-
conductor device, and vortices are different, but some common structures
are noticed. Let me recall that the principle of thermodynamics is that the
mean field of many particles is governed by the free energy in such away
that it always decreases. Its local minimum is the equilibrium state, while
transient dynamics are controlled by the critical points, especially, the non-
local minima.

We note that the free energy is given by the total energy minus the
entropy. If $\rho=\rho(x)\geq 0$ denotes the density of particles, the entropy on the
domain $\Omega\subset \mathrm{R}^{n}$ is given as

$- \int_{\Omega}\rho\log\rho$ .

On the other hand, the total energy is composed of the kinetic and the
potential energies so that is given as

$\frac{1}{2}\int\int_{\Omega \mathrm{x}\Omega}K(x, y)\rho(x)\rho(y)dxdy+\int_{\Omega}\rho V$ ,

where $K=K(x, y)$ and $V=V(x)$ denote the potentials of self-interactions
and external force, respectively. Note that Newton’s third law implies

$K(x, y)=K(y, x)$ .

If the self-interaction is caused by the gravitational force, we have

$K(x, y)=\{$ $\frac{\frac 12_{1}}{-2\pi}-y|1-y|\frac{\mathrm{o}\mathrm{g}|x1\mathrm{o}\mathrm{g}|x1}{4\pi|x-y|}$

$(n=2)(n=1)$

$(n=3)$ .
(11)

Thus, we get aphysical question: what is the mean field equation of which
free energy is given by

$F( \rho)--\int_{\Omega}\rho\log\rho+\frac{1}{2}\int\int_{\Omega\cross\Omega}K(x, y)\rho(x)\rho(y)dxdy+\int_{\Omega}\rho V$ ?

It has been known that such asystem is realized by introducing ffiction and
fluctuations of particles. Actually, we have mathematical papers such as
Bavaud [3] and Wolanski [28], [29]
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Recal that the classical theory starts with the Newton equation

$\frac{dx_{\dot{l}}}{dt}=v:$ , $m \frac{dv}{d}i=-\nabla_{x:}\{V(x:)+m\sum_{\mathrm{j}\neq\dot{l}}K(x_{j},x:)\}$

for $1\leq i\leq N$ . Now, letting $Narrow\infty$ with $M=mN$ preserved, we get the
kinetic model, referred to as the Jeans-Vlasov equation. In the normal form,
it is given as

$f_{t}=-\nabla_{x}\cdot(vf)+\gamma\nabla_{v}\cdot[f\nabla_{x}(U+V)]$

$U(x,t)= \int\int G(x,y)f(y,v, t)dvdt$

Here, making $\gammaarrow\infty$ corresponds to $(dv:)/(dt)arrow 0$ . This process is called
the adiabatic hmit and $f$ is supposed to approach the Maxwell distribution.
This implies the Euler equation; in the vorticity formulation we have

$-\Delta\psi=\omega$ , $\omega_{t}=-\nabla\cdot(\nabla^{[perp]}\omega)$ .

The stationary state of this equation, $\omega$ $=\omega(x)$ is given as the eliptic problem

$-\Delta\psi=g(\psi)$

with the nonlinearity $g$ unknown. If the mass is concentrated as

$\omega=\sum\delta_{x_{j}(t)}(dx)$ ,

then it is reduced to the Hamiltonian system

$\frac{dx}{d}i=\nabla_{x}^{[perp]}.\cdot H(x_{1},x_{2}, \cdots, x_{N})$ $(i=1,2, \cdots, N)$ ,

where
$H(x_{1}, x_{2}, \cdots, x_{N})=\frac{1}{2}\sum\dot{.}R(x:)+\sum_{j\neq}\dot{.}K(x:,x_{j})$ ,

with $R(x)$ being the regular part of $K(x,y)$ . (We have $R(x)=0$ if $K(x,y)$ is
given as in (11).) However, the Newton equation is time reversible and this
hierarchy of systems is not subject to the free energy. This line is governed
by at least three laws of conservation, that is, those of mass, momentum,
and energy. As aconsequence, it has afeature of some chaotic motion of
particles
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The answer that we now know is to replace it by the Langevin equation,
under the assumption that the $N$-particles are subject to the friction and
random fluctuations:

$dx_{i}=v_{i}dt$

$mdv_{i}=- \nabla_{x_{i}}(V(x_{i})+m\sum_{j\neq i}G(x_{j}, x_{i}))-\beta vdt+(2\beta kT)^{1/2}dW_{t}$

Here, $k$ , $T$ , and $\beta$ are Boltzmann constant, temperature, friction coefficient,
respectively, and $W_{t}$ denotes the white noise. Its kinetic model, referred to
as the Fokker-Planck equation is given as

$f_{t}=-\nabla_{x}\cdot(vf)+\nabla_{v}\cdot[f\nabla_{x}(U+\beta V)]+\beta kT\Delta_{v}f$

$U(x, t)= \int\int G(x, y)f(y, v, t)dydv$ ,

where
$\rho(x, t)=\int f(x, v,t)dv$ and $M= \int\rho(x,t)dx$

stand for the density and the total mass, respectively. Then, in the adiabatic
limit, we have

$\beta\rho_{t}=\nabla\cdot(\rho\nabla U)+\nabla\cdot(\rho\nabla V)+kT\Delta\rho$.

It is regarded as asimplified system of chemotaxis.
As we have seen, its stationary state is described by the elliptic problem

with the exponential nonlinearity, and finally, we expect that the localized
densities are to be subject to agradient flow. In this way, this hierarchy
of equations starts with the free energy as aphysical principle, and as we
are convinced, is characterized by the quantization of blowup mechanism
mathematically.

Let me come back to the problem of mass quantizatioin in (2). First,
we have shown in [21] that any collapse is quantized if the post-blowup
continuation of the solution is possible. Next, it is known that the Fokker-
Planck equation has aweak solution globally in time if the initial value is
$L^{1}\cap L^{\infty}$ and has afinite second moment. See Victory, Jr. [27], and so forth.
Therefore, as aphysical suggestion, it seems that the mass quantization of
collapses always holds. To approach the problem, we take the scheme of [27]
and construct afamily of approximate solutions globally in time. For that
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approximate solutions, we can derive some inequality involving the localized
second moment. Then, in way of the limiting processes, we can derive some
informations. In this way, features of the Fokker-Planck equation and those
of its adiabatic limit are rather different, but stil share some underlying
structures.

Acknowledgement: Iexpress my thanks to Professor T. Nagai for draw-
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suggestions on statistical mechanicstive discussions. Thanks are also due to
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