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Abstract

We review some recent results, obtained jointly with R. Kersner and G. Reyes, concerning
qualitative properties of solutions to the Cauchy problem for the equation $\rho(x)u_{t}=(u^{m})_{xx}-c_{0}u^{p}$,
where $m>1$ and $\mathrm{c}\mathrm{o},\mathrm{p}>0$. The initial data are nonnegative with compact support and the
density $\rho(x)>0$ satisfies suitable decay conditions as $|x|arrow\infty$ .

1Introduction
We discuss some recent results (see [KRT]) concerning support properties of solutions to
the Cauchy problem:

(1.1) $\{$

$\rho(x)u_{t}=(u^{m})_{xx}-c_{0}u^{p}$ in $R$ $\mathrm{x}(0, \infty)$

$u=u_{0}$ in $R$ $\mathrm{x}\{0\}$ ,

where
(i) m $>\mathit{1}$ , $c_{\theta}>\mathit{0}$ , p $>\mathit{0}$ ;

(ii) $\rho\in C^{\mathit{1}}(R)$ $\cap L^{\infty}(R)$ , $\rho>\mathit{0}$ in $Bl$ ;

(ii) $u_{\theta}\in C_{c}(R)$ , $u_{\mathit{0}}\geq \mathit{0}$ in In.
(by $C_{c}\langle R$) we denote the set of continuous, compactly supported functions on $R$). -A
typical choice for the density $\rho=\rho(x)$ is

(1.2) $\rho(x)=\frac{\overline{\rho}}{(1+|x|)^{k}}$ $(\overline{\rho}, k>0)$ .

Physical motivations of the model can be found in [KR1], [KR2], [GuHP] and references
therein; for instance, it arises in connection with aparabolic system suggested by plasma
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physics (see [BK]). Let us also mention that the related problem of uniqueness of solutions
to the positive Cauchy problem for diffusion equations with variable density has raised
much attention in recent years ( $e_{\ovalbox{\tt\small REJECT}}g\ovalbox{\tt\small REJECT}\rangle$ see [E], [GuHP], [KKT], [T] and references therein).

Solutions to problem (1.1) are always meant in the following weak sense.

Definition 1.1 By asolution to problem (1.1) we mean any bounded, nonnegative and
continuous function $u$ on In $\mathrm{x}[0, \infty)$ such that

$ff_{D^{\tau}}\{\rho u\phi_{t} +u^{m}\phi_{xx}-\mathrm{q}u^{\mathrm{p}}\phi\}dxdt=$

$= \int_{-f}^{r}$ $u(x, \tau)\phi(x, \tau)dx-\int_{-f}^{r}\rho u_{0}(x)\phi(x, 0)dx+$

$+ \int_{0}^{\tau}[u^{m}(r, t)\phi_{x}(r, t)-u^{m}(-r, t)\phi_{x}(-r, t)]dt$

for any $r$ , $T>0$ , $\tau\in[0, T]$ and $\phi$ $\in C_{x,t}^{2,1}(D\mathrm{r} ’)$ , $\phi\geq 0$ such that $\phi(-r, t)=\phi(r, t)=0$

in $[0, T]$ (here $D^{\tau}:=(-r, r)\mathrm{x}(0, \tau]$ , $\tau\in[0, T])$ .

Subsolutions of problem (1.1) are similarly defined, replacing $”=$ ”by $”\geq$ ”in the
above equality. On the other hand, supersolutions are meant in the following more re-
stricted sense (introduced in [B] to deal with the case $0<p<1$ ).

Definition 1.2 By asupersolution to problem (1.1) we mean any solution $\overline{u}$ to the prob-
lem

$\{$

$\rho(x)u_{t}=(u^{m})_{xx}-c_{0}u^{p}+h$ in $R\mathrm{x}(0, T]$

$u(x, 0)=\hat{u}_{0}(x)$ , $x\in R$ ,

for some $h\in L^{\infty}(S^{T})$ , $h$ $\geq 0$ , $\text{\^{u}}\geq u_{6}$ and $T>0$.

Finally, let $u\geq 0$ be any solution to problem (1.1); its interfaces are defined as follows:

$\zeta^{+}(t):=\sup\{x:u(x, t)>0\}$ , $\zeta^{-}(t):=\inf\{x:u(x,t) >0\}$ $(t \geq 0)_{\wedge}$

We also set:

$\zeta(t):=\sup\{|x| : u(x, t)>0\}=\max\{|\zeta^{-}(t)|, |\zeta^{+}(t)|\}$ .
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2Previous Results
Let us recall some well-known results for problem (1.1) in two particular cases: $\rho=1$ ,
$c_{0}>0$ , respectively $\rho=\rho(x)$ , $c_{0}=0$ .

2.1 Porous Medium Equation with Absorption

When $\rho=1$ , $c_{0}>0$ it is well known that (see [BKP], [CMM], [Ka]):
$\bullet$ the following estimates hold:

$|\zeta^{\pm}(t)|\leq constant$ for $1\leq p<m$ ,

$|\zeta^{\pm}(t)|\sim\log t$ for $p=m$,

$|\zeta^{\pm}(t)|\sim t^{\alpha}$ , $\alpha>0$ for $p>m$

(localization of the solution if $p<m$ , respectively positivity if $p\geq m$);
$\bullet$ if $0<p<1$ , there is extinction of the solution in finite time -namely, there exists

$T^{*}\in(0, \infty)$ such that $u\equiv 0$ in In $\mathrm{x}(T^{*}, \infty)$ .

Let us mention that the case $\rho=1$ , $c_{0}=c_{0}\langle x$) was also investigated (see [PT1],
[PT2] $)$ .

2.2 Inhomogeneous Porous Medium Equation
New interesting phenomena arise when $\rho$ depends on the space variable. Consider the
case $\rho=\rho(x)$ , $c_{0}=0$ . The main qualitative novelty is that, if $\rho(x)arrow 0$ “fast enough” as
$|x|arrow\infty$ , interfaces can run off in finite time -namely there possibly exists $\overline{T}\in(0, \infty)$

such that
$\zeta(t)arrow\infty$ as $tarrow\overline{T}^{-}$

In fact, the following holds ([KK], [GuHP], [GKK]; see also [GK], [P]).

Theorem 2.1 Let $c_{0}=0$ , $|x|\rho(x)\in L^{1}(R)$ . Then for any solution to problem (1.1)
there exists $\overline{T}\in(0, \infty)$ such that

$\zeta(t)arrow \mathrm{o}\mathrm{o}$ as t $arrow\overline{T}^{-}$

The above theorem is related to the following convergence result ([KR2]).

Theorem 2.2 If $\rho\in L^{1}(R)$ , there holds

u(.,$t)arrow\varpi$ $:= \frac{||\rho u_{0}||_{1}}{||\rho||_{1}}$ as t $arrow\infty$ ,

tie convergence being uniform on compact subsets of R.
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Sketch of the Proof of Theorem 2.1: If supp $u(\cdot,t)$ is compact for any $t>0$ , the following
equalities can be proven:

$\acute{R}\rho(x)u(x,t)dx=\int_{R}\rho(x)u_{0}(x)dx$ ,

$\frac{1}{t}\int_{0}^{\infty}x\rho(x)[u(x,t)-u_{0}(x)]dx=\frac{1}{t}\int_{0}^{t}u^{m}(0,\tau)d\tau$.

$(t>0)$ . Since $u(\cdot,t)arrow\overline{u}>0$ as $tarrow\infty$ by Theorem 2.2, acontradiction arises if
$\zeta(t)<\infty$ for any $t>0$ . This proves the result. $\square$

Remark 2.3 Tie above proof cannot be adapted to the case $\alpha$ $>0$ .
The criterion of Theorem 2.1 is extended to higher space dimension as follows. Let

$\rho\sigma\in L^{1}(R^{n})$ , where

$\sigma(x):=\{$

$\int x\int$ if $n=1$ ,

$log(|x|)$ if $n=2$,

$|x|^{\frac{2-n}{m}}$ if $n\geq 3$ ;
then supp $u$ becomes unbounded in finite time ({GuHP], $[\mathrm{G}\mathrm{i}\mathrm{T}]$ ).

For the choice
$\rho(x)=\frac{\overline{\rho}}{(1+|x|)^{k}}$

it can be proved by comparison methods that blow-up occurs if and only if $k>2$ (see
[KK] $)$ . In fact, for any $k$ $\leq 2$ there exist $\mathrm{a}\mathrm{o}$ , $b_{0}>0$ such that:

$|\zeta^{\pm}(t)|\sim a_{0}t^{\frac{1}{2-k}}$ as t $arrow \mathrm{o}\mathrm{o}$ if k $<2$ ,

$|\zeta^{\pm}(t)|\sim e^{kt}$ as t $arrow \mathrm{o}\mathrm{o}$ if k $=2$ .
Hence critical value for the case $\alpha$ $=0$ is k $=2$ .

3Results
Now the question arises: How do absorption and variable density cooperate to influence
the situation depicted in Section 2? In particular, which phenomena arising when $\rho=\rho(x)$

and $c_{\mathrm{O}}=0$ are structurally stable with respect to the parameter $c_{0}\geq 0$?

As we shall see below, the following answer can be given:
(i) As in the case of constant $\rho$ , there is localization of the solution if $p<m$ , positivity

if $p>m$ . In the latter event, the behaviour of interfaces is the same as in the case $c_{0}=0$ ,
yet with adifferent critical value of $k$ , namely

$k^{*}:=2 \frac{p-1}{p-m}$

.
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(observe that $k^{*}arrow 2$ as $parrow\infty$).
(ii) The convergence result in Theorem 2.2 is not structurally stable; in fact, solutions

to problem (1.1) go to zero uniformly as $tarrow\infty$ for any $c_{0}>0$ .
The results summarized above are proved by comparing solutions to problem (1.1) with

suitable suk and supersolutions (possibly suggested by aproper splitting of domains).
We only sketch belowthe proof of Theorem 3.9, referring the reader to [KRT] for complete
proofs. As already remarked (see Remark 2.3) the techniques used for the case $c_{0}=0$

(which rely on mass conservation; see [KK]), cannot be adapted to the present situation.
Concerning the critical values $k=2$ (if $\mathrm{c}$ $=0$ ) and $k=k^{*}$ (if $c_{0}>0$ , $p>m$), observe

that:
$(i’)$ the function $u(x, t)=f(xt^{-\frac{1}{2-k}})$ is asimilarity solution to the equation

$|x|^{-k}u_{t}=(u^{m})_{xx}$

if $k–2$ ;
$(ii’)$ the function $u(x,t)=t^{\alpha}f(xt^{-\beta})$ with

$\alpha:=-\frac{2}{(p-m)(k^{*}-k)}$ , $\beta:=\frac{1}{k^{*}-k}$

is asimilarity solution to the equation

$|x|^{-k}u_{t}=(u^{m})_{xx}-c_{0}u^{p}$

in the case $c_{0}>0$ , $p>m$ if $k=k^{*}$ .
Analogous results hold at $k=2$ and $k=k^{*}$ .

3.1 Well-Posedness and Comparison
The basic theory for problem (1.1)-as well as for initial-boundary value problems related
to the differential equation in (1.1) -was studied in [RT]; in particular, this includes
comparison results for solutions to the first boundary value and to the Cauchy-Dirichlet
problems, in regions whose lateral boundaries may be curvilinear, which are needed to
prove several statements listed below. Let us mention the following results.

Theorem 3.1 Let m $>1$ , p $>0$ , $\rho\in C^{3}(R)\cap L^{\infty}(R)$ , $\rho>0$ and $u_{0}\in C(R\rangle\cap L^{\infty}(R)$ .
Then there exists aunique solution to the Cauchy problem (1.1).

Theorem 3.2 Let tz be asubsolution, $\overline{u}$ asupersolution to the Cauchy problem (1.1).
Then $\underline{u}\leq\overline{u}$ .

121



3.2 Asymptotic Behaviour
As already mentioned, the convergence result in Theorem 2.2 is not structurally stable;
moreover, there is extinction of the solution in finite time if $0<p<1$ . In fact, the
following result can be proven.

Theorem 3.3 Let $u$ be any solution to problem (1.1). Tien
$||u(\cdot,t)||_{\infty}arrow 0$ as $tarrow\infty$ .

Moreover, if $0<p<1$ there exists $T^{*}\in(0, \infty)$ such that $u(\cdot, t)=\mathrm{O}R)rt$ $>T^{*}$ .

3.3 Localization and Positivity
The results of this subsection show that there is localization in the range $p<m$ , positivity
in the range $p>m$ ;namely, in this respect the qualitative situation is the same as in the
case $\rho=1$ (see Subsection 2.1).

Theorem 3.4 Let p $<m$ . Then for any solution u to problem (1.1) there exists L $>0$

(depending on m, p, a), $u_{0})$ such that
$|\zeta^{\pm}(t)|\leq L$ for any t $\geq 0$ .

Theorem 3.5 Let p $>m$ . Then for any solution u to problem (1.1) there exist a, b $>0$

(depending on m, p, $||\rho||_{\infty}$ , q}, $u_{0}$) such that
$|\zeta^{\pm}(t)|\geq b[\log(at+3)]^{1/2}$ for any t $\geq 0$.

3.4 Global Existence of Interfaces
Now suppose $p>m$ , so that positivity prevails (see Theorem 3.5 above). Does the
support of the solution remain bounded for any positive time? On the strength of the
case $c_{0}=0$ (see Subsection 2.2), it is expected that the dependence of the support on
time is influenced by the decay rate of the density $\rho$ as $|x|arrow\infty$ . In fact, if the exponent
$k$ in (1.2) is Msmall” -namely, if $k\leq k^{*}$ -both interfaces exist for any $t>0$ ;this is
the content of the following two theorems. On the other hand, the interfaces can blow
up in finite time if the exponent $k$ is “large” (namely, if $k>k^{*}$ ), as we shall see in the
following subsection.

Theorem 3.6 Let $p>m$ . Moreover, let $\rho$ satisfy the condition:

(3.3) $\frac{\rho_{1}}{(1+|x|)^{k}}\leq\rho(x)\leq\rho_{0}$ , $(\rho_{0}, \rho_{1}>0)$

where $0<k<k^{*}:=2(p-1)/(p-m)$ . Then there exists $C_{1}>0$ such that
$|\zeta^{\pm}(t)|\leq C_{\mathrm{I}}t^{\mathrm{E}^{\mathrm{r}^{1}}-\mathrm{I}}$ for any $t\geq 0$ .
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Theorem 3.7 Let $p>m$ . Moreover, let $\rho$ satisfy condition (3.3) with $k=k^{*}$ . Then
there exist $C_{2}$ , $\beta>0$ such that

$|\zeta^{\pm}(t)|\leq C_{2}e^{\beta t}$ for any $t\geq 0$ .

Theorem 3.8 Let $p=m$ . Moreover, let $\rho$ satisfy condition (3.3) with $k>0$ . Then for
any $\beta>0$ there exists $C_{3}>0$ such that

$|\zeta^{\pm}(t)|\leq C_{3}t^{\beta}$ for any $t\geq 0$ .

3.5 Blow-Up of Interfaces
In contrast with the previous situation, we prove below that the interfaces can blow up
in finite time if k $>k^{*}$ , at least for asuitable class of initial data.

Theorem 3.9 Let $p>m$ . Moreover, let $\rho$ satisfy the inequalities

$\frac{\rho_{1}}{(1+|x|)^{k}}\leq\rho(x)\leq\frac{\rho_{2}}{(1+|x|)^{k}}$ , $(\rho_{1}, \rho_{2}>0)$ ,

with $k>k^{*}$ . Then for any $h>0$ there exists $b_{0}=b_{0}(h)>0$ such that, if

$\frac{m}{m-1}u_{0}^{m-1}(x)\geq h[1-\frac{|x|}{b}]_{+}$

$with$ $b>b_{0}$ , then
$u(x, t)>0$ for any $x\in R$ , $t>1$ .

Sketch of the Proof: Consider the auxiliary function

$w(x, t):=(1+at)^{-\alpha} \lceil b^{2}-\frac{x^{2}}{(1+at)^{2\beta}}\rceil_{+}$ ,

where $a$ , $b$ , $\alpha$ and $\beta$ are positive parameters.
The following claim can be proved: There exist $a$ , $b$ , $\alpha$ , $\beta>0$ such that

$v\leq w$ in $G:=\{|x|>\sqrt{\frac{\alpha}{\alpha+\beta}}b(1+at)^{\beta},t>0\}$ ,

where $v:= \frac{m}{m-1}u^{m-1}$ . In fact, we can achieve

$-M\leq \mathcal{L}w\equiv-\rho(x)w_{t}+(m-1)ww_{xx}+w_{x}^{2}-cw^{q}\leq 0$ .

This implies
supp $v(\cdot, t)\subseteq(-b(1+at)^{\beta}, b(1+at)^{\beta})$

for any $t\geq 0$ . It is possible to choose $\beta=\frac{1}{k^{*}-k}$ ;then the conclusion follows. $\square$
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