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1 Introduction

In this note, we consider a system of the form

u = Au+ f(u,v) inQ,
0

FL=0 on QQ, . (1.1)

TV :./n 9(u,v)dz.

where u = u(z,t) € R and v = v(t) € R. This system is closely related to the
two-component reaction-diffusion system

U = A'LL+ f(U,'U),

P Jin Q, 1.2
T = DAY + |Q|g(u, v), ( )

with the homogeneous Neumann bbundary conditioné. In fact, the system (1.1)
appears as a limit of (1.2) as D — oo and is called the shadow system of (1.2).
See [3, 8] for a more precise relation between (1.1) and (1.2) concerning equilibria
and the dynamics. L ‘ an ”



Our main objective is to study the stability of stationary solutions of (1.1).
This work is motivated by earlier results on the one-dimensional shadow system.
It was shown by Nishiura [8] and Ni, Takagi and Yanagida [6] that systems of the
form (1.1) may have stable stationary solutions that are spatially inhomogeneous
and monotone (see also [2] for a discussion of similar results for scalar nonlocal
equations). In [6], it was also shown that a time-periodic solution may appear in
an autonomous shadow system through a Hopf bifurcation. A numerical compu-
tation by Fukushima and Yanagida (see the survey paper [5]) indicates that the
time-periodic solution is stable under some conditions if the solution is spatially
monotone. These results are in contrast to scalar reaction-diffusion equation for
which any stable periodic (or almost periodic) solution must be spatially homoge-
neous (cf. [4, 9, 10]).

On the other hand, Nishiura proved in [8, Theorem 4.1] that in one-dimensional
case, except for constant solutions and monotone solutions, there are no other
stable stationary solutions of (1.1). Recently, in [7], this result was extended to
any time-dependent solutions. More precisely, such solutions are unstable, unless
they are spatially constant or monotone.

In this article, we will consider the higher dimensional case. Let (u,v) =
(w(z), @) be a steady state of (1.1). Then (u,v) = (w(z),a) satisfies

Aw+ f(w,0)=0 in9,
0

Y= 0 on o9, (1.3)

/n 9(w(z),a)dr = 0.
Stability of the steady state can be analyzed by the eigenvalue problem

Ap=Ap+ fup+ f€ inQ,

0
WP = 0 ondN, (1.4)

TA = /ﬂ Jupdz + ngudxé ;

where ¢ = p(z) is a function on , £ is a scalar, and
fo=Zwena), =)o)
u - 6“ ’ ’ v 6’0 ’ ]

Gu = %(w(z),a), Gv = %(w(x),a)
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If there is an eigenvalue with a positive real part, the stationary solution is said
to be linearly unstable, while if all eigenvalues have negative real part, then the
stationary solution is said to be linearly stable. We note that for a wide class of
systems including the shadow system, the linear stability implies the nonlinearly
stability.

We observe that u = w(x) is a stationary solution of the scalar reaction-

diffusion equation
: u=Au+ f(u,a) inQ,
9 \ (1.5)

51&:0 on 012,

and the stability of u = w(z) can be studied by the eigenvalue problem
wp =AY+ fup inQ

) (1.6)
gl;w =0 on 0. ‘

As is well-known, all eigenvalues of this problem are real, and there exists a max-
imal eigenvalue, denoted by p;, which is simple and the associated eigenfunction
can be taken positive. It was shown by Nishiura [8] and Ni-Polacik-Yanagida.[7]
that when Q is an interval, the first eigenvalue does not play an important role for
the stability of the stationary solution in the shadow system. Rather, the second
eigenvalue, denoted by u2, plays a crucial role. More precisely, when w(z) is a
non-monotone fimction of z, (1,€,)) = (wz(x),O,pg) satisfies (1.4), whe;é Y(z)
is an eigenfunction aSsociated with 2. This result crucially depends on t‘hé"facyt
that the function w(z) is symmetric with respect to critical points, and cannot be
extended to the highef dimensional case. In fact, the second eigenvalue y, is not
necessarily an eigenvalue of (1.4). | '

Thus, the stability of stationary solutions in the shadow system is a very diffi-
cult problem in general. In this paper, we consider the stability question in the case
where the system has gradient /skew-gradient structure. We say that the shadow
system has gradient structure if the nonlinear functions f and g are given by

0 0
f= +£H(u,v), g= +55H(u,'v).

with some function H(u,v) : R? — R. In this case, the system has an energy
functional

E(u,v) = /Q {quI2 - H(u,v)}dx.’
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Indeed, if (u,v) satisfies (1.1), then
d
ZE@wo) = [{Vu-Vu - f(u,0)u - gu, v)u}ds
= [{-(Bu+ fu, ) - glu,v)ur}dz
= —/r;u.fdz—rvf <o.
On the other hand, we say that the shadow system has skew-gradient structure if
f and g are given by
f=+2Hww), ¢=-2Huw).
Su v
In this case, we have as in the above computation
d _ 2 2
aE(u,v) = —-/nutda: + TV;.
This implies that E(u,v) is not necessarily a non-increasing function of ¢.
Now we state the main result.

Theorem 1.1 Suppose that the shadow system (1.1) has gradient/skew-gradient
structure. If the second eigenvalue of (1.6) is positive, then the stationary solution
(u,v) = (w(z),a) is linearly unstable.

Thus, in gradient/skew-gradient systems, the positivity of the second eigen-
value of (1.6) implies the instability of a stationary solution of the shadow system,
although the second eigenvalue u, of (1.6) is not necessarily an eigenvalue of (1.4).

We can obtain a similar result for the system with variable diffusion:

= (d(2)us)z + f(u,v) in (a,b),
u, =0 atz=a,b, (1.7

b
rue= [ g(u,v)de,

where d(z) is a positive function in the class of C*([a,d]). Let (u,v) = (w(z), d)
be a stationary solution of this system Then the elgenva.lue problem in this case

is written as
= (d(ﬂﬂ)%)z + fup + f,€  in (a,b),

X = f gupdz + /" gudat.



Consider also the auxiliary scalar eigenvalue problem

pp = (d(z)hz)e + furp  in (a,b),
=0 atz=a,b.

(1.9)

Then we have the following result.

Theorem 1.2 Suppose that the shadow system (1.7) has gradient/skew-gradient
structure. If the second eigenvalue of (1.9) is positive, then the stationary solution
(u,v) = (w(z),a) is linearly unstable.

In Section 2, we give a fundamental properties of the eigenvalue problems.. In

Section 3, we give proofs of the above theorems.

2 Eigenvalue analysis

Let (u,v) = (w(z),a) be é,ny stationary solution of (1.1), and consider the
eigenvalue problem (1.4). Solving

xre = [ (gup + gu)da

with respect to &, we have

1
§= AT_%Lguwdx,
where ' ‘
To = /Q gudz.
Substituting this into the first equation of (1.4), we have
- ,

= u v u . 2.1
Ay Asp+f<p+AT_g;f/§lg<pdw K )

Let L, be a self-adjoint operator defined by .
Ll(p =A+ f u

subject to the homogerieous Neumann boundary condition, and let L, be a.linear
integral operator defined by

- Ly = fvfog;wdx-<
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Here we introduce an auxiliary eigenvalue problem
o® = L,® + sL,®, (2.2)
where s is a real parameter. For each s, we denote an eigenvalue of (2.2) by o(s).

Then ) is an eigenvalue of (1.4) if it satisfies

1
TA—0s

For self-adjointness of the integral operator L,, we have the following result.

o( )= A (2.3)

Lemma 2.1 The operator L, is self-adjoint if the shadow system (1.1) has gradient/skew-
gradient structure.

Proof. We have .
(L2, ) = /n {fv /n g.,tp_d.'c}wdx
= '[)fv"pdz ~/ﬂ Jupdz

= [ ¢{ou [ fovde}ds

= <90’ L;’lﬁ)
Hence the adjoint operator of L is given by

Ly = gu/‘; fobdz.
If the shadow system (1.1) has gradient /skew-gradient structure, then we have

#H #H
o= 5w %= Fouaw’
so that
fo = %9u.

Then the operator L, is self-adjoint. O
The following lemma is due to Freitas (see Propositions 3.1, 3.3 and 3.5 of [1]).

Lemma 2.2 Suppose that the operator L, is self-adjoint. Then there exist real
continuous functions oi(s), i = 1,2,3,..., with the following properties:
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(a) Each oi(s) is an eigenvalue of (2.1) and satisfies 0;(0) = pi, where p; is an
ith eigenvalue of (1.6).

(b) oi(s) is strictly increasing if
/Qf,,zp,-dac/ngucp,-dx >0,

strictly decreasing if ,
/n fopidx /r; gupidr < 0,
and identically equal to p; if

/Qf,,cp,'dx/nguw,-dx =0.

(c) If 0i(s) # m: and o;(s) # ;, then

{c;i(s); se€ R}N{o;(s);s € R} =0.

3 Proofs of Theorems

" Now, from the properties of o(s), we have the following results concerning the

characteristic equation (2.3).

Proposition 3.1 Suppose that the shadow system (1.1) has gradient structure.
If iy > 0 and Ty > Gy, then (1.4) has a positive eigenvalue. :

Proof. Let : !

T)\—E;)

Then hy()) is continuous in A € (g5/7,00) and X € (—00,5y/7). Clearly, A is an
eigenvalue if hy(\) = A. Since hi(A) — 1 as A — +oo by Lemma 2.2, we have
hi(A) < X if A >0 islarge.

For gradient systems, we have

hi(A) := o1 (

2

fo = 94 (: Subv

H(u,v))

so that ;
f(odx (o.dx> .
/n v /ng“ ”‘ 20



First suppose that

Then, by Lemma 2.2, h,(]) is strictly decreasing in A € (g,/7,00) and h;(+00) =
i1 so that
hi(A) >y for A > g /7.

Since u; > G,/ by assumption, we have h;(\) > X if A = g;/7 + 0. Since
hi(A) < X for large A > 0, we have h;(A) = A for some A > 0. Hence there is a
positive eigenvalue of (1.4).

Next, suppose that

/ﬂ fopidz /n gupidz = 0.
Then hy(A) = iy for all A\. If Tuy # T, then A = p, satisfies hy(\) = A If

T = G, then (X, ¢, &) = (11,1, 0) satisfies (1.4) by direct substitution, where 9,

is an eigenfunction of (1.6) associated with u;. Hence A = y; > 0 is an eigenvalue
of (1.4). O

Proposition 3.2 Suppose that the shadow system (1.1) has gradient structure.
If ua > 0, then (1.4) has a positive eigenvalue.

Proof. By u; > 0 and Lemma 2.2, we have o2(s) = 2, > 0 for all s € R or
01(s) > 0 for all s € R. In the former case, A = u2 > 0 satisfies

1
0’2(1_/\ % =
Hence X = u, > 0 is an eigenvalue of (1.4).
In the latter case, ' ' .
h(}) == 01(,’_/\ — DZ)

is positive, continuous and nonincreasing in A € (—00,9y/7) and A € (g,/7),0),
and satisfies h;(+o0) = u; > 0. If §; < 0, we have h;()\) > A for small A > 0
and h;(\) < A for A > 0 sufficiently large. Hence there is a A € (0,00) such that
h(A)=A. If g, > 0 and

lim hy(\) > g5/, -

M /T
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we have hi(A) > A for A = g;/7 + 0 and h;(\) < A for A > 0 sufficiently large.
Hence there is a A € (g, /7, 00) such that A(\) = . If g, > 0 and

lim hy(A) < )
o 1A <@/7
we have hi(A) > A for A = g,/7 — 0 and h;(A\) < X for A = 0. Hence there is a
A € (0,95/7) such that A(\) = A
Thus, in any case, (1.4) has a positive eigenvalue. O

Proposition 3.3 Suppose that the shadow system (1.1) has skew-gradient struc-
ture. If puy > 0, then (1.4) has a positive eigenvalue.

Proof. By u; > 0 and Lemma 2.2, we have o3(s) = pp > 0 for all s € R or
o1(s) > 0 for all s € R. In the former case, A = py > 0 satisfies

1
02(7_)‘ — y;) =\
Hence A = ps > 0 is an eigenvalue of (1.4).
In the latter case,
hi(A\) =0
10) = a1(; gv)

is positive, continuous and nondecreasmg in A € (—0,0,/7) and X € (y_/r) 00),
and satisfies h;(£o0) = py > 0. If g, < 0, we have hy(\) > A for small X > Oand
hi(A) < A for A > 0 sufficiently large. Hence there is a A € (0,00) such that
h(A\) = X. If g7 > 0 and

, ,\}H.,I} hi(A) > g/,

we have hy(A) > A for A = g;/7 + 0 and h;(A) < A for A > O sufficiently large.
Hence there is a A € (gy/7,00) such that A(A) = A. If gy > 0 and

Alln} hi(A) < /T,

we define

ha(N) = 02( y;)

Then hz(O) > pip > 0 and ha(A) < A for A= g,,/'r 0. Hence thereisa A € 0,75/7)
such that hy(A) =
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Thus, in any case, (1.4) has a positive eigenvalue. O

Now, Theorem 1.1 is a direct consequence of Propositions 3.2 and 3.3. Theorem
1.2 can be proved in the same manner.
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