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1Introduction
In nature, many kinds of spatial $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ temporal patterns are observed, some

of them are simple and the others axe complicated. To understand theoretically the
dynamics of such patterns, many model equations have been proposed and analyzed.
Among them, some sort of reaction- diffusion systems are one of the most familar
classes.

Recently, several reaction-diffusion model equations have been known as examples
exhibiting various complicated behaviors of solutions; self-replicating behavior of pulses
([8] and its references), refleciton of pulses ([4]), the behavior of pulses like elastic
objects $(\mathrm{e}.\mathrm{g}. [2], [5], [10], [9])$ .

In this report, we specially consider the particle like dynamics of pulses in two
dimensional space and give atheoretical basis to it.

In [5], following reaction-diffuison systems which has amoving localized solution in
two dimensional space was proposed:

(1.1) $\{$

$\sigma u_{t}$ $=$ $\epsilon\triangle u+\epsilon^{-1}f(u, v,w)$ ,
$v_{t}$ $=$ $\triangle v+u-v+h_{1}$ ,

$\tau w_{t}$ $=$ $d\triangle w+u-w+h_{2}$ ,

where $f(u,v,w)=ru-u^{3}-k_{1}v-k_{2}w$ . They showed numerically the existence of a
moving localized solution, say travelling spot , under suitable conditions (Fig.1). They
also showed numerically multi travelling spots interact like elastic objects (Fig 2).

Very recently, such particle like dynamics have been also observed in real experi-
ments and several model equations which exhibit similar dynamics have been proposed
([7], [1]).

In order to understand these phenomena, we first consider the existence of atrav-
elling spot in two dimensional space under suitable conditions. To show the existence

$\langle)\mathrm{f}$ such moving solutions, we assume the existence of stable (radially )symmetric
stationary solutions and when it loses the stability, we construct atravelling spot as
the bifurcating solutions ffom it.

Secondly, we analyze their interactions when there exist multiple travelling spots

数理解析研究所講究録 1249巻 2002年 9-17

9



u $\mathrm{v}$
$\mathrm{w}$

Figure 1: spatial profiles of atravelling spot. Parameter values are $\epsilon=0.1$ , $\sigma=0.04$,
$r=1.5$ , $k_{1}=1.0$ , $k_{2}=5.0$ , $h_{1}=1.0$ , $h_{2}=0.8$ , $\tau=0.01$ , $d=7.0$ .

As aconsequence, we can derive ODEs describing the particle like dynamics. The
reduced ODEs show how pulses interact and reflection occur.

2Construction of travelling spot

Let us consider general types of reaction-diffusion systems with bifurcation param-
eter $k$ ;
(2.1) $u_{t}=\mathcal{L}(u;k)$ , $x\in R^{2}$ , $t>0$ ,

where $\mathcal{L}(u;k)=D\Delta u$ $+F(u;k)$ , $u$ $\in R^{N}$ and $D$ is adiagonal matrix with elements
$\{d_{j}\}(j=1,2, \cdots, N)$ . We assume following assumptions.

Hl) There exist aradially symmetric standing solution $S(x)$ such that $\mathcal{L}(S(x);k)=0$

and $S(x)arrow 0$ as $|x|arrow\infty$ , where $0=(0, \cdots,0)\in R^{N}$ .

Let $X=\{L^{2}(R^{2})\}^{N}$ and let $L(k)=\mathcal{L}’(S(x);k)$ be the linearized operator of (2.1)
with respect to $S(x)$ and $\Sigma(k)$ be the spectrum of $L(k)$ . Note that $L(k)S_{j}=0(j=1,2)$

hold and 0is necessarily eigenvalue of $L(k)$ , where $S_{j}= \frac{\partial S}{\partial x_{j}}$ for $x=(x_{1},x_{2})$ .

H2) There exists $k=k_{\mathrm{c}}$ such that $\Sigma_{\mathrm{c}}=\Sigma(k_{\mathrm{c}})$ consists of two sets $\Sigma_{0}=\{0\}$ and
$\Sigma_{1}\subset\{z\in C;Re(z)<-\gamma_{0}\}$ for positive constant $\gamma_{0}$ . The generalized eigenspace
corresponding to $\Sigma_{0}$ , say $X_{0}$ , is given by $X_{0}=span\{S_{j}, \Psi_{j}\}(j=1,2)$ , where $\Psi_{j}$ are
functions satisfying $L_{\mathrm{c}}\Psi_{j}=-S_{j}(j=1,2)$ .

Let $Q_{\mathrm{c}}$ and $R_{\mathrm{c}}$ be projections at $k=k_{\mathrm{c}}$ with respect to $L_{\mathrm{c}}$ corresponding to the spectral
sets $\Sigma_{0}$ and $\Sigma_{1}$ , respectively. Define afunction $U(x;P, \zeta)=S(x-P)+\sum_{j=1}^{2}\zeta_{j}\Psi_{j}$ for
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Figure 2: Particle like behavior of travelling spots. Each spot corresponds to
location of each travailing spot.
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We consider (2.1) in the neighborhood of the parameter k $\ovalbox{\tt\small REJECT}$ $*\ovalbox{\tt\small REJECT},$ . To do so, we put
k $\ovalbox{\tt\small REJECT}$ $k_{c}+t)$ and rewrite (2.1) as

(2.2) $\mathrm{u}_{t}=\mathcal{L}_{\mathrm{c}}(u)+\eta g(u)$ ,

where Cc(u) $=\mathcal{L}(u;k_{\mathrm{c}})=D\Delta u+F(u;k_{\mathrm{c}})$ and Cc(u) $=\eta g(u;k)=\mathcal{L}(u;k)$ -Cc(u).
Then, we have the theorem:

Theorem 2.1 If the initial data $u(0)$ is in the neighborhood of $\mathcal{M}$ in $\{H^{2}(R^{2})\}^{N}$ ,
then the solution $u(t)$ of (2.2) satisfies

$||u(t)-U(\cdot, P(t),\zeta(t))||_{\infty}=O(|\zeta(t)|^{2}+|\eta|)$

as long as $|\zeta|<\zeta^{*}and|\eta|<\eta$. for constants $\zeta^{*}>0$ and $\eta^{*}>0$ . $P$ and $\langle$ are estimated
by

$\dot{P}=O(|\zeta(t)|+|\eta|^{2}),\dot{\zeta}=O(|\zeta(t)|^{2}+|\eta|^{2})$ .
To obtain more accurate dynamics of $P$ and $\zeta$ , we have to know the explicit form of
the projection Qc. In fact, the equation governing $P$ and $\zeta$ is formally derived in the
similar manner to [3] as

(2.3) $Q_{\mathrm{c}} \frac{d}{dt}U=Q_{\mathrm{c}}\mathcal{L}(U;k_{\mathrm{c}}+\eta)+h.\mathit{0}.t.$ ,

which is in general very difficult to calculate in explicit way.
In the following, we obtain the explicit form of $Q_{\mathrm{c}}$ under suitable assumptions and

show the dynamics of $P$ and $\zeta$ .
Since the standing solution $S(x)$ is radially symmetric, we write it as $S(x)=S(r)$ ,

where $r=|x|$ . Define the functional space consisting of radialy symmetric functions
by $X_{R}=\{L^{2}(0, \infty)\}^{N}$ with the inner product $\langle u, v\rangle_{R}=\int_{0}^{\infty}r(u(r),v(r)\rangle dr$ for $u$

and $v\in X_{R}$ .
Let $L_{R}(k)$ be the restriction of the linearized operator $L(k)$ on Xr, that is,

$L_{R}(k)u=D \{u_{rr}+\frac{1}{r}u_{r}\}+F’(S(r);k)u$

for $u\in D_{R}=\{u\in H^{2}(0, \infty)\cap X_{R};u_{r}(0)=0\}$ .

H3) The spectrum of $L_{R}(k)$ in $X_{R}$ is uniformly apart ffom the imaginary axis in the
left hand side for the parameter $k$ in the neighborhood of $k_{\mathrm{c}}$ .

Define an operator $\overline{L}(k)$ on $X_{R}$ by

$\overline{L}(k)u=D\{u_{r}+\frac{1}{r}u\}_{r}+F’(S(r);k)u$
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for uE D $\ovalbox{\tt\small REJECT}$ {ttC$H^{2}(0,$oo)1”1$X_{\mathrm{B}}\ovalbox{\tt\small REJECT} \mathrm{t}\mathrm{z}(0)\ovalbox{\tt\small REJECT}$0}. Here, we note that $L(k)S_{r}\ovalbox{\tt\small REJECT}$ 0 holds
while $L.(k)S_{r}\ovalbox{\tt\small REJECT} 70$ . This means 0is necessarily an eigenvalue of $L(k)$ . Let $L_{c}\ovalbox{\tt\small REJECT}$ $L(k_{c})$

and $\mathrm{I}_{c}$ be the spectrum of $L_{c}$ .

H4) $\overline{\Sigma}_{\mathrm{C}}$ consists of two sets $\tilde{\Sigma}_{0}=\{0\}$ and $\tilde{\Sigma}_{1}\subset\{z\in C;Re(z)<-\gamma_{1}\underline{\}}$ for apositive
constant $\gamma_{1}$ . The generalized eigenspace corresponding to $\tilde{\Sigma}_{0}$ , say $X_{0}$ , is given by
$X_{0}=span\{S_{r}, \psi\}$ , where $\psi$ is afunction satisfying $\tilde{L}_{\mathrm{c}}\psi=-S_{r}$ .

Let $\overline{L}_{\mathrm{c}}^{*}$ be the adjoint operator of $\tilde{L}_{\mathrm{c}}$ in $X_{R}$ . Note that it is given by

$\tilde{L}_{\mathrm{c}}^{*}u=D\{u_{r}+\frac{1}{r}u\}_{r}+{}^{t}F’(S(r);k_{\mathrm{c}})u$.

$\overline{L}_{\mathrm{c}}^{*}$ has also similar properties to $\overline{L}_{\mathrm{c}}$ , that is, there exist eigenfunctions $\phi^{*}$ and $\psi^{*}$ in
$X_{R}$ satisfying $\overline{L}_{\mathrm{c}}^{*}\phi^{*}=0$ and $\overline{L}_{\mathrm{c}}^{*}\psi^{*}=-\phi^{*}$ .

Proposition 2.1 Eigenfunctions $\psi$ , $\phi^{*}$ and $\psi^{*}$ are uniquely determined by the nor-
rnalization

$\langle \psi, S_{r}\rangle_{R}=\langle\psi, \psi^{*}\rangle_{R}=0$ , $\langle S_{r}, \psi^{*}\rangle_{R}=1$ .

We assume eigenfunctions are normalized according to the proposition. Put

$\Psi(r)=\int_{0}^{r}\psi(r)dr-\int_{0}^{\infty}\psi(r)dr$, $\Phi^{*}(r)=\int_{0}^{r}\phi^{*}(r)dr-\int_{0}^{\infty}\phi^{*}(r)dr$ ,

$\Psi^{*}(r)=\int_{0}^{r}\psi^{*}(r)dr-\int_{0}^{\infty}\psi^{*}(r)dr$.

Then, it is easily checked that

$L_{\mathrm{c}}\Psi_{j}=-S_{j}$ , $L_{\mathrm{c}}^{*}\Phi_{j}^{*}=0$, $L_{c}^{*}\Psi_{j}^{*}=-\Phi_{j}^{*}$

hold for $j=1,2$ , where $\Psi_{j}=\frac{\partial\Psi}{\partial x_{j}}$ and so on. By this, we have

Proposition 2.2 The projection $Q_{\mathrm{c}}$ is given by

$\pi Q_{c}u$ $=$ $\int_{0}^{2\pi}$ $\langle u, \phi^{*}\rangle_{R}\cos\theta d\theta\cdot\Psi_{1}+\int_{0}^{2\pi}$ $\langle u, \psi^{*}\rangle_{R}\cos\theta d\theta\cdot S_{1}$

$+ \int_{0}^{2\pi}$ $\langle u, \phi^{*}\rangle_{R}\sin\theta d\theta\cdot\Psi_{2}+\int_{0}^{2\pi}$ $\langle u, \psi^{*}\rangle_{R}\sin\theta d\theta\cdot S_{2}$

for $u=u(r, \theta)\in X$ .

By using this expression of $Q_{c}$ , we can obtain the explicit dynamics of $P$ and $\langle$ .
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Theorem 2.2 Under assumptions $HI$) - $H\mathit{4}$), $P(t)$ and $\zeta(t)$ in theorem 2.1 satisfy

$\{$

$\dot{P}$

$=$ $\zeta+O(|\zeta(t)|^{3}+|\eta|^{\frac{3}{2}})$ ,
$\dot{\zeta}$ $=$ $-\nabla W+O(|\zeta(t)|^{4}+|\eta|^{2})$

as long as $|\zeta(t)|<\zeta^{*}$ and $|\eta|<\eta^{*}$ , where $W=W( \zeta)=\frac{1}{4}M_{1}|\zeta|^{4}+\frac{1}{2}M_{2}\eta|\zeta|^{2}$ for
constants $M_{1}$ and $M_{2}$ .

Remark 2.1 The values of constants $M_{j}$ in Theorem 2.2 are obtained in explicit forms
while we ill not show them in this report, which will be written in [2]. For (1.1), it is
numerically checked that both $M_{1}$ and $M_{2}$ are positive.

Remark 2.2 Theorem 2.2 suggests that $\zeta$ denotes the velocity of the spot $S$ because $P$

denotes the location of the spot. $\zeta$ also stands for the deformation ffom radial symmetr$ry$

of spot since the solution $u(t, x)$ is close to the function $U(x;P(t), \zeta(t))$ as in Theorem
2. 1.

Corollary 2.1 Suppose $M_{1}$ and $M_{2}$ are positive. $If\eta>0$ , there exists a stable standing
spot with profile $S(x)+O(|\eta|)$ while if $\eta<0$ , there exists a travelling spot with velocity
$(|\zeta(t)|=)\sqrt{\frac{-2M_{2}\eta}{M_{1}}}(1+o(1))$ .

3Interaction of two spots

Let us consider how two travelling spots interact.

H5) The standing spot $S(x)$ has an aysmptotic form $S(r) arrow\frac{1}{\sqrt{r}}e^{-\alpha r}a(rarrow\infty)$ for a

constant $\alpha>0$ and anonzero vector $a\in R^{N}$ .

Remark 3.1 The asymptotic form in $H\mathit{5}$) is true for many model equations in $R^{2}$

such as the Gierer-Meinhardt model $([\mathit{3}J)$ and the Gray-Scott model $([\mathit{1}\mathit{1}J)$ .

Define afunction

$U(x;P_{1}, P_{2}, \zeta_{1}, \zeta_{2})=\sum_{j=1}^{2}\{S(x-P_{j})+\langle\zeta_{j}, \nabla_{x}\Psi(x-P_{j})\rangle\}$

for $P_{j}$ , $\zeta_{j}\in R^{2}$ and define aset

$\Lambda\Lambda(h^{*})=\{S(x-P_{1})+S(x-P_{2})\mathrm{j}|P_{1}-P_{2}|=h>h^{*}\}$ .
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Theorem 3.1 There exists a sufficiently large $h^{*}>0$ such that if the initial data $u(0)$

is sufficiently close to the set $\Lambda\Lambda(h^{*})$ , then the solution $u(t)$ of (2.2) keeps close to
$U(x;P_{1}, P_{2}, \zeta_{1}, \zeta_{2})$ with

$u(t)=U(x;P_{1}, P_{2}, \zeta_{1}, \zeta_{2})+O(e^{-\alpha h}+|\zeta_{1}|^{2}+|\zeta_{2}|^{2}+|\eta|)$

and for $j=1,2$

(3.1) $\{$

$\dot{P}_{j}$ $=$ $\zeta_{j}\mp M_{0}\frac{1}{\sqrt{h}}e^{-\alpha h}e+O(e^{-2\alpha h}+|\zeta_{1}|^{3}+|\zeta_{2}|^{3}+|\eta|^{\frac{3}{2}})$ ,

$\dot{\zeta}_{j}$ $=$ $-\nabla W(\zeta_{j})$ % $\overline{M}_{0}\frac{1}{\sqrt{h}}e^{-\alpha h}e+O(e^{-2\alpha h}+|\zeta_{1}|^{4}+|\zeta_{2}|^{4}+|\eta|^{2})$

hold as long as $h>h^{*}$ , $|\zeta_{j}(t)|<(^{*}$ and $|\eta|<\eta^{*}$ for constants $M_{0}$ and $\overline{M}_{0}$ , where

$h=|P_{2}-P_{1}|$ and $e= \frac{1}{h}(P_{2}-P_{1})$ .

Remark 3.2 Constants $M_{0}$ and $\overline{M}_{0}$ are obtained in explicit way as constants $M_{1}$ and
$M_{2}$ stated in Remark 2.1 while we will not show them in this report, which will be
written in [2]. For (1.1), it is numerically checked that both $M_{0}$ and $\overline{M}_{0}$ are positive.

In the rest of this report, we will intuitively consider the dynamics of $P_{j}$ and $\zeta_{j}$ in
the case of $\eta<0$ (the case of the existence of atravelling spot). Suppose both $M\circ$ and
$\overline{M}_{0}$ are positive. To understand the dynamics of $\zeta_{j}$ intuitively, we consider asimplified
ODE
(3.2) $\dot{\zeta}_{1}=-\nabla W(\zeta_{1})-Ke$

for apositive constant $K$ . Since the right hand side of (3.2) is written $\mathrm{b}\mathrm{y}-\nabla W_{1}(\zeta_{1})$ ,
where $W_{1}(\zeta)=W(\zeta)+K$ $\langle$ (;, $e\rangle$ , (3.2) has one stable equilibrium with a $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}-\beta e$

for $\beta>0$ . Thus, $\zeta_{1}$ is pushed toward the direction $\mathrm{o}\mathrm{f}-e$ .
Similarly in (3.1), $\zeta_{1}$ is pushed toward the direction $\mathrm{o}\mathrm{f}-e$ and $\zeta_{2}$ is done toward

the direction of $e$ . As aconsequence, approaching two spots push each other toward
opposite directions and they eventually part ffom each other (Fig 3)
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Figure 3: Movements of $P_{1}(t)$ and $P_{2}(t)$ which is the solution of ODE consisting of the
principal parts of (3.1). Each dot stands for $P_{j}(t)$ in every time unit
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