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Singular limit of a reaction-diffusion system with
resource-consumer interaction

D. Hilhorst* M. Mimura'and R. Weidenfeld*

Abstract

We consider a two component reaction-diffusion system with a small
parameter €

1
ug = dyAu + z(umv — au™),

1
v = dpAv — —u™v,
€

where m and n are positive integers, together with zero-flux boundary
conditions. It is known that any nonnegative solution becomes spatially
homogeneous for large time. In particular when m > n > 1, there exists
some positive constant v, such that (uf,v¢)(z,t) = (0,v,) as t tends to
infinity. In order to approximate the value of v5,, we derive a limiting
problem when € | 0, which in turn enables us to determine the limiting
value v of v¢, under some conditions on the values of m, n and on the
initial functions (u,v)(z,0). ‘

1 Introduction

Among many classes of reaction-diffusion (RD) systems, we restrict ourselves to
the following rather specific two component RD system :

{ut = d,Au + ku™v — au™, (1.1)

v, = dpyAv — ku™v,
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where d,,, d, arc diffusive rates for u and v respectively and m, n are positive
integers. System (1.1) is a model for cubic autocatalytic chemical reaction pro-
cesses

mU+V — (m+ 1)U
nU — P,

where u, v are the concentrations of U, V, respectively, k and a are the reaction
rates which are positive constants and m, n are some positive integers. In the
specific case where m = n = 1, (1.1) is a diffusive epidemic model where u and
v are respectively the population densities of infective and susceptable species
[KM]. When m = 2, n = 1, it is the Gray-Scott model without feeding process
[GS]. Fundamental problems for (1.1) involve the global existence, uniqueness and
asymptotic behavior of nonnegative solutions. Let us consider (1.1) in a smooth
bounded domain 2 (in RY) together with the boundary and initial conditions

Ou _Ov _ +
E(x,t) = gg(az,t) =0, forall (z,t) € 02 x R™, (1.2)
u(z,0) = ug(z) >0, v(z,0)=w(z) >0 ze€Q, (1.3)

where v stands for the outward normal unit vector to Q. If a =0, (1.1) reduces
to ' :

uy = dyAu + ku™v,
14
{vt = d,Av — ku™v, (14)

which is called a consumer and resource system with balance law. There are
many papers devoted to the system (1.4), (1.2), (1.3) (e.g. [Al], [Ma], [HK], [HY],
[HMP], [Pa], [Ba], [Hol]). Indeed, we know that as t — oo, (u,v)(t) converges
uniformly in Q to (ue,0) where uq is explicitly given by ue = < ug+vo >. Here
< w > is the spatial average of w over . Furthermore, it is proved by [Hol] that
for m > 1 there exists some constant K > 0 such that

| (u(t) = too, v(t)) | Loo() < Kt =1 ast— oo.

On the other hand, ifa > 0 [Ho2], the asymptotic state depends on the values of
m and n. If n > m > 1, (u, v)(t) converges to (0,0) uniformly in  as t — oc.
On the contrary, if mn > n > 1, there exists a positive constant v, such that
(u, v)(t) converges to (0, vs) uniformly in Q as t — co. Therefore every solution
of (1.1)-(1.2) becomes spatially homogeneous and the fundamental problems have
been already solved. However, we still have the following questions :

(1) When m > n > 1, how does the asymptotic state v, depend on the initial
functions ug, vy, on &, a and on the domain Q ?
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() How is the transient behavior of solutions (u,v) of (1.1)-(1.3) ?

We have not yet been able to completely answer these questions, except in some
special cases. Consider first a limiting situation where the reaction rates k and a
are both sufficiently small (or, in other words, the diffusion rates are very large),
so that (1.1) can be rewritten as '

(15)

1
Uy = —d,Au +u™v — au”,
€

1 )
v, = —dy,Av — u™v.
€

Here we may set & = 1. For sufficiently small ¢ > 0, the two-timing method
reveals that the solution (u,v) becomes immediately spatially homogeneous and
then its time evolution is described by the solution of the initial value problem
for the following system of ordinary differential equations :

Vi=-UmV,
together with the initial conditions
(U, V)(0) = (< up >, < v0‘>). , : o (1.7)

The phase plane analysis shows that there exists some positive constant Voo ‘such
that as t = oo the solution (U, V)(t) of (1.6), (1.7) converges to (0, V), where
V' approximately gives the value v., for the original problem (1.1)-(1.3). For
more precise discussion, we refer to the papers by [CHS], [EM]. Another limiting
situation is the opposite case when k and a are both very large. Let us rewrite
(1.1) as - :

1
uy = dyAu + —(u™v.— au™),
€

(1.8)

1
v = dyAv — —u"v.
€

We first present some numerical simulations of the one-dimensional problem cor-
responding to (1.8) with small but not zero € in the interval I = (0, L), where
the corresponding boundary and initial conditions are given by (1.2) and (1.3)
respectively, and where the initial functions satisfy ‘

u(z,0) = up(z) > 0 (the support is near 7 = 0, as in Fig.1-1) :
v(a,0) =119 >0 which is constant. -

a9
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Here we suppose that m = n = 1. If v, is relatively small, u(z,t) becomes
uniformly zero and then v(z,t) becomes spatially homogeneous and eventually
tends to some positive constant v, (Fig. 1-1). On the other hand, if v is
relatively large, the situation is changed, that is, when the interval L is very
long, u and v form a pulse and a front wave respectively, and propagate fast to
the right direction, as if they were a traveling wave, and the pulse u annihilates
on hitting the boundary z = L, so that u tends to zero and v tends to some
constant vy, (Fig.1-2). It turns out that there are two kinds of transient behavior
for solutions (u, v) of (1.8), (1.2), (1.3). In order to understand these behaviors,
the information about traveling wave solutions of (1.1) is very useful. When
m = n = 1, Hosono and Ilyas [HI] showed that if a < v, then there are traveling
wave solutions (u,v)(z) (z = = — ct) with velocity ¢ > ¢* = 24/d,(vo — a), while
if a > vy, there are no traveling wave solutions. This indicates that the transient
behavior of solutions can be classified according to the critical value vy = a.

The transient behavior of solutions in higher space dimension is not so simple,
sensitively depending on the values of m, n and a, even if they eventually become
spatially homogeneous. In fact, it was numerically observed in the previous paper
[FHMW] that when m = 2, n = 1, there appear very complex transient patterns
for the behavior of (u,v), if one chooses suitable values of the ratio d = d,/d,
and of vy.

Our aim is to answer question (). To that purpose we study the asymptotic
behavior as € — 0 of solutions (uf, v*) of System (1.8) together with the boundary
and initial conditions (1.2) and (1.3). We assume that the initial functions ug and
vo satisfy the hiypothesis ||luo||7w{g, llvoll=(2) < @ and derive the limiting system
corresponding to (1.8) as € tends zero, which in turn yields the asymptotic limit
of the constant v5, as ¢ & 0. We refer to [HMW] for the complete proofs of the
results which we present below.

2 Results

We may use a space rescaling which amounts to setting d, = 1 and d, = d and
consider the following e-family of parabolic problems :

rut =Au+ %(u’"v — au") in @ := Q x (0, 00)
1 .
) far e e
s on 9 x (0, c0),
L u(x,0) = up(z), v(z,0)=uv(z) forallzeQ,

where  is a smooth bounded domain of RY, m > n > 1, d and a are positive
constants and ug, vg € C'(€Q) are two nonnegative functions. In the sequel we use
the notation Qp := Q x (0,T).
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It is well known (see [HY], [Ho2]) that there exists an unique global bounded
non negative smooth solution pair (uf,v¢) of Problem (P¢). We make the hy-
pothesis

Hy o luollz<(gylvollz=(@) <,
and set
]\'.’{1 = HUOHLoc-(Q) and ]ug = ”’l)o”Loo(Q),

so that Hypothesis H, can be rewritten as
M "M, < a.
The main result of this paper is the following :
Theorem 1. Let T > 0 be arbitrary. Ase — 0
u¢ =0 in C(Q x [u,00)) N L*Qr), | (2.1)
for all u > 0 and there ezists a function v € L*(Qr) such as
v* = v in L*(Qr). (2.2)

Moreover the function v is the unique classical solution of the problem

’l.)t =dAv mn Q,
0 ov
(P7) — = on 99 x (0,00),
ov

v(z,0) = V(z) forallz €,
and

V(z) = lim V(z,t),

t—oc

where (U, V) is the unique solution of the initial value problem (Q°)

U,=U™V —aU™ inQ,
Q% Vi=-U"V in Q,
U(z,0) = up(z) V(z,0) =vo(x) forallzx e

. t . .
In order to prove this result, we set 7 = — and introduce the functions
€

Uz, 7) :=u(a,t) V(r,7):=0(,t),
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which satisfy the problem

U = eAU + U™V — aU™ in Q,
Vi = edAV - U™V in Q,
(@) ngézzo on 99 x (0, 00),
Oov Ov .
U(z,0) =up(z) V(z,0) =v9(z) forallze.
We recall [Ho2] that
(us,v)(t) = (0,v5,) in C(Q) ast — oo, (2.3)
where vS is a constant satisfying
ve, > 0,
and, if m=n
Vg, < d.
The second result which we prove is the following

Theorem 2. We have that

v, = / V(g)dz ase— 0. (2.4)
12 Ja

Remark. In the case that m = n, the condition H, becomes ||vo|lr=(q) < a.
Suppose that it is not satisfied ; then Theorem 2 does not hold. As a counter

1
example, choose uy with support in [0, 5] and vo = 3a on Q = (0,1). Then, the

1
study of the ODE system shows that V(z,t) = v9 = 3a for z € (5, 1] and all
t > 0 so that

1
/ V(z)dr > i(i,
o 2
whereas

v, <a.

Finally we study two special cases without assuming Hypothesis H,. As the
first one we take a = 0. Then the L'(2) norm of (u + v¢)(t) is preserved in time
and equal to the average over  of (up + vg). Thus the asymptotic behavior of
(u,v)(t) as t = oo is well known. More precisely, we prove the following result:
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Theorem 3. Let (u,v¢) be the solution of (P¢) with a = 0. Then

v -0 in L*(Qr) as e — 0, (2.5)
and

u¢ = u in L*(Qr) ase =0,

where u is the unique solution of the problem

u = Au in Q x (0,T),
nu_y on 0 x (0,T)
81/ - ’ )

u(z,0) = uo(z) + vo(z) for allz € Q.

The second case which we coﬁsider is the case that n > m > 1. Then we have
that (see [Ho2])

(uf,v)(t) = (0,0) ast— oo.
We prove the following result.

Theorem 4. Fiz T > 0 arbitrarily and suppose that n > m > 1 and that uo(af) >
0 for all z € Q1. Then ‘ . L

us(t), v(t) = 0 in L*(Qr) ase > 0. - (2.6)

In this paper, we have addressed the question of determing how the asymptotic
state v, depends on the initial functions. To that purpose, we have introduced
a small parameter € such that the reaction terms are very strong, compared with
diffusion terms and then derived a singular limit equation as € tends to zero, under
the restriction that the initial functions satisfy the hypothesis H,. We have then
been able to derive an approximate value for v,. In the situation where H, is

violated, a different type of singular limit equation should be derived. We plan.

to perform this derivation in future work.
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0<t<20

p O

20<t<150

Fig. 1-1 Time evolution of the solution (,v) of the one dimensional problem
(1.1)-(1.3) with m =n =1 where dy =1.0,dy =115,k =1 and vp=0.2
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Fig. 1-2 (a) Time evolution of the solution (%,v) of the one dimensional problem
(1.1)-(1.3) with m =n =1 where dy =1.0,dy=115,k=1 and vo= 1.0

Fig. 1-2 (b) Spatial profiles of traveling wave solutions (u,v) of (1.1)-(1.3)
where the parameters are same as those in (a).



