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Abstract

We consider atwo component reaction-diffusion system with asmall
parameter $\epsilon$

$\{$

ut=d、\triangle u+-\epsilon l $(u^{m}v-au^{n})$ ,

$v_{t}=d_{v} \Delta v-\frac{1}{\epsilon}u^{nl}v$ ,

where $m$ and $n$ are positive integers, together with zer0-flux boundary
conditions. It is known that any nonnegative solution becomes spatially
homogeneous for large time. In particular when $m\geq n\geq 1$ , there exists
some positive constant $v_{\infty}^{\epsilon}$ small that $(u^{\epsilon}, v^{\epsilon})(x, t)arrow(0, v_{\infty}^{\epsilon})$ as $t$ tends to
infinity. In order to approximate the value of $v_{\infty}^{\epsilon}$ , we derive alimiting
problem when $\epsilon\downarrow 0$ , which in turn enables us to determine the limiting
value $v_{\infty}$ of $v_{\infty}^{\epsilon}$ under some conditions on the values of $m$ , $n$ and on the
initial functions $(u, v)(x, 0)$ .

1Introduction
Among many classes of reaction-diffusion (RD) systems, we restrict ourselves to
the following $1^{\cdot}\mathrm{a}\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{r}$ specific two component RD system:

$\{$

$u_{t}=duAu+kumv-au^{n}$ ,
$v_{1}=d_{l},\triangle v-\mathrm{A}^{\wedge}u^{nl}v$ ,

(1.1)
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where $d_{u}$ , $d_{v}$ are diffusive rates for $u$ and $v$ respectively and $m$ , $n$ are positive
integers. System (1.1) is amodel for cubic autocatalytic chemical reaction pr0-

cesses

$\{$

$mU+Varrow(m+1)U$
$nUarrow$

.
$P$,

where $u$ , $v$ are the concentrations of $U$ , $V$ , respectively, $k$ and $a$ are the reaction
$\mathrm{r}\mathrm{a}$ les which are positive constants and $m$ , $n$ are some positive integers. In the
specific case where $m=n=1$ , (1.1) is adiffusive epidemic model where $u$ and
$v$ are respectively the population densities of infective and susceptable species
[KM]. When $m=2$ , $n=1$ , it is the Gray-Scott model without feeding process
[GS]. Fundamental problems for (1.1) involve the global existence, uniqueness and
asymptotic behavior of nonnegative solutions. Let us consider (1.1) in asmooth
bounded domain $\Omega$ (in $\mathbb{R}^{N}$ ) together with the boundary and initial conditions

$\frac{\partial u}{\partial\nu}(x, t)=\frac{\partial v}{\partial\nu}(x, t)=0$ , for all $(x, t)\in\partial\Omega\cross \mathbb{R}^{+}$ , (1.2)

$u(x, 0)=u_{0}(x)\geq 0$ , $v(x, 0)=v_{0}(x)\geq 0$ $x\in\Omega$ , (1.3)

where $\nu$ stands for the outward normal unit vector to an. If $a=0$ , (1.1) reduces
to

$\{$

$u_{t}=d_{u}\Delta u+kumv$ ,
$v_{t}=d_{v}\Delta v-ku^{n\iota}v$ ,

(1.4)

which is called acous uner and resource system with balance law. There are
many papers devoted to tllc system (1.4), (1.2), (1.3) (e.g. [A1], [Ma], [HK], [HY],
[HMP], [Pa], [Ba], [Hol] $)$ . Indeed, we know that as $tarrow\infty$ , $(u, v)(t)$ converges
uniformly in $\overline{\Omega}$ to $(u_{\propto}, 0)$ where $u_{\infty}$ is explicitly given by $u_{\infty}=<u_{0}+v_{0}>$ . Here
$<w>\mathrm{i}\mathrm{s}$ tlle spatial average of $w$ over O. Furthermore, it is proved by [Hol] that
for $m>1$ there exists some constant $K>0$ such that

$||$
$(u(t)-u_{\infty}, v(t))||_{L}\infty(\Omega)\leq Kt^{-\frac{1}{m-1}}$ as $tarrow\infty$ .

On tlse other hand, if $0$ $>0$ [H02], the asymptotic state depends on the values of
$m$ aud $n$ . If $\eta>\eta$ } $\geq 1$ , $(u_{j}v)(t)$ converges to $(0, 0)$ uniformly in $\overline{\Omega}$ as $tarrow\infty$ .
$O11\mathrm{t}11\mathrm{t}^{1}$ contrary, if $7’?\geq \mathit{7}1$ $\geq 1$ , tllere exists apositive constant $v_{\infty}$ such that
$(u, \mathrm{s}))(t)$ converges $\mathrm{t},0$ $(0, v_{\infty})$ uniformly in $\overline{\Omega}$ as $tarrow\infty$ . Therefore every solution
of (1.1)-(1.2) becomes $\mathrm{s}\mathrm{l}$ ) $\mathrm{a}\mathrm{t},\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{v}$ homogeneous and $\mathrm{t}1_{1}\mathrm{e}$ fundamental problems have
been already solved. However, we still have $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ following questions:

(i) $\backslash \mathrm{V}11\mathrm{C}117l’\geq 71$ $\geq 1$ , bow does tlle asymptotic state $v_{\propto}$ depend on tlte initial
functions $\mathrm{u}\mathrm{o}$ , $\iota_{0}$”on $\mathrm{A}$ , $a$ and on $\mathrm{t},1\mathrm{l}\mathrm{e}$ domain $\Omega$ ?
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(ii) How is the transient behavior of solutions $(u, v)$ of (1.1)-(1.3) ?

We have not yet been able to completely answer these questions, except in some
special cases. Consider first alimiting situation where the reaction rates $k$ and $a$

are both sufficiently small (or, in other words, the diffusion rates are very large),
so that (1.1) can be rewritten as

$\{$

$u_{t}= \frac{1}{\epsilon}d_{u}\triangle u+u^{m}v-au^{n}$ ,

$v_{t}= \frac{1}{\epsilon}d_{v}\triangle v-u^{n\iota}v$ .

(1.5)

Here we may set $l_{\mathrm{i}}=1$ . For sufficiently small $\epsilon>0$ , the tw0-timing method
reveals that tlle solutions $(u, v)$ becomes immediately spatially homogeneous and
then its time evolution is described by the solution of the initial value problem
for the following system of ordinary differential equations :

$\{$

$U_{t}=U^{n\mathrm{z}}V-aU^{n}$ ,
$V_{t}=-U^{n\iota}V$,

(1.6)

together $\mathrm{w}\mathrm{i}\mathrm{t},11$ tlre initial conditions

$(U, V)(0)=(<u_{0}>, <v_{0}>)$ . (1.7)

The phase plane analysis shows that there exists some positive constant $V_{\infty}$ such
that as $tarrow\infty$ the solution $(U, V)(t)$ of (1.6), (1.7) converges to $(0, V_{\infty})$ , where
$V^{\infty}$ approximately gives tlle value $v_{\infty}$ for the original problem (1.1)-(1.3). For
more precise discussion, we refer to the papers by [CHS], [EM]. Another limiting
situation is $\mathrm{t},1\mathrm{l}\mathrm{e}$ opposite case when $k$ and $a$ are both very large. Let us rewrite
(1.1) as

$\{$

$v_{t}=d_{u} \triangle u+\frac{1}{\epsilon}(u^{nl}v-au^{n})$ ,

$v_{t}--d_{v} \triangle v-\frac{1}{\epsilon}u^{n\iota}v$ .

(1.8)

We first present some numerical simulations of the one-dimensional problem cor-
responding $\mathrm{t}_{1}\mathrm{o}(1.8)$ with small but not zero $\epsilon$ in the interval $I–(0, L)$ , where
the corresponding boundary alld initial conditions are given by (1.2) and (1.3)
respectively, and where the initial functions satisfy

$\{$

$u(x, 0)=u_{0}(a\cdot)\geq 0$ (the support is near $x$ $=0$ , as in Fig. 1-1)
$?;(\iota\cdot, 0)=\uparrow’0>0$ which is constant.

(1.9)
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Here we suppose that $m=n=1$ . If $v_{0}$ is relatively small, $u(x, t)$ becomes
uniformly zero and then $v(x,t)$ becomes spatially homogeneous and eventually
tends to some positive constant $v_{\infty}$ (Fig. 1-1). On the other hand, if vo is
relatively large, the situation is changed, that is, when the interval $L$ is very
long, $u$ and $v$ form apulse and afront wave respectively, and propagate fast to
tlle right direction, as if they were atraveling wave, and the pulse $u$ annihilates
on hitting the boundary $x=L$, so that $u$ tends to zero and $v$ tends to some
constant $v_{\infty}$ (Fig. 1-2). It turns out that there are two kinds of transient behavior
for solutions $(u, v)$ of (1.8), (1.2), (1.3). In order to understand these behaviors,
the information about traveling wave solutions of (1.1) is very useful. When
$m=n=1$ , Hosono and Ilyas [HI] showed that if $a<v_{0}$ , then there are traveling
wave solutions $(u, v)(z)(z=x-d)$ with velocity $c\geq c’=2\sqrt{d_{u}(v_{0}-a)}$, while
if $a\geq v_{0}$ , there are no traveling wave solutions. This indicates that the transient
behavior of solutions can be classified according to the critical value $v_{0}=a$ .

The transient behavior of solutions in higher space dimension is not so simple,
sensitively depending on the values of $m$ , $n$ and $a$ , even if they eventually become
spatially homogeneous. In fact, it was numerically observed in the previous paper
[FHMW] that when $m=2$ , $n=1$ , there appear very complex transient patterns
for the behavior of $(u, v)$ , if one chooses suitable values of the ratio $d=d_{v}/d_{u}$

and of $v_{0}$ .
Our aim is to answer question (i). To that purpose we study the asymptotic

behavior as $\epsilonarrow 0$ of solutions $(u^{\epsilon}, v^{\epsilon})$ of System (1.8) together with the boundary
and initial conditions (1.2) and (1.3). We assume that the initial functions $u_{0}$ and
$v_{0}$ satisfy the hypothesis $||u_{0}||_{L^{\infty}(\Omega)}^{n\iota-n}||v_{0}||_{L(\Omega)}\infty<a$ and derive the limiting system
corresponding to (1.8) as $\epsilon$ tends zero, which in turn yields the asymptotic limit
of the constant $v_{\infty}^{\epsilon}$ as $\epsilonarrow 0$ . We refer to [HMW] for the complete proofs of the
results which we present below.

2Results
We may use aspace rescaling which amounts to setting $4=1$ and $d_{v}=d$ and
consider the following $\epsilon$-family of parabolic problems :

$(P^{\epsilon})$ $\{$

$u_{\iota}=\Delta u+-(u^{m}v-au^{n})1$ in $Q:=\Omega\cross(0, \infty)$

$\epsilon_{1}$

$v_{l}=d\Delta v-v^{m}v\overline{\epsilon}$ in $Q$ ,

$\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on $Kl$ $\mathrm{x}(0, \infty)$ ,
$u(J^{\cdot}, 0)=u_{0}(x)$ , $v(x, 0)=v_{0}(x)$ for all $x\in\Omega$ ,

$\mathrm{w}\mathrm{l}\mathrm{l}\mathrm{C}\mathrm{l}\cdot \mathrm{e}$ $\Omega$ is $\mathrm{a}..\mathrm{b}^{\backslash }111\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{h}$ bounded do main of $\mathbb{R}^{N}$ , $m\geq n\geq 1$ , $d$ and $a$ are positive
constants and $\iota/0,$

$\uparrow J_{0}\in C^{1},(\overline{\Omega})$ are two lionnegative functions. In tlie sequel we use
$\mathrm{t}_{1}11\mathrm{C}$ notation $Q_{\mathit{1}’}.:=\Omega\cross(0, T)$ .
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It is well known (see [HY], [H02]) that there exists an unique global bounded
non negative sm ooth solution pair $(u^{E\ovalbox{\tt\small REJECT}}, \mathrm{p}^{\mathrm{E}})$ of Problem $(7^{\ovalbox{\tt\small REJECT}})$ . We make the hy-
pothesis

$H_{a}$ : $||u_{0}||_{L^{\infty}(\Omega)}^{m-n}||v_{0}||_{L^{\infty}(\Omega)}<a$,

and set

$\Lambda f_{1}:=||u_{0}||_{L^{\propto}(\Omega)}$ and A $f_{2}:=||v_{0}||_{L}\infty(\Omega)$ ,

so that Hypothesis $H_{a}$ can be rewritten as

$\Lambda f_{1}^{m-n}\Lambda f_{2}<a$ .

The main result of this paper is the following :

Theorem 1. Let $T>0$ be arbitrary. As $\epsilonarrow 0$

$u^{\epsilon}arrow 0$ in $C(\overline{\Omega}\cross[\mu,, \infty))\cap L^{2}(Q_{T})$ , (2.1)

for all $\mu>0$ and there exists a function $v\in L^{2}(Q_{T})$ such as

$v^{\epsilon}arrow v$ in $L^{2}(Q_{T})$ . (2.2)

Moreover the function $v$ is the unique classical solution of the problem

$(P^{0})$ $\{$

$v_{t}=d\triangle v$ in $Q$ ,

$\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0, \infty)$ ,

$v(x, 0)=\overline{V}(x)$ for all $x\in\Omega$ ,

and

$\overline{V}(x)=\lim_{tarrow\infty}V(x, t)$ ,

where $(U, V)$ is the unique solution of the initial value problem $(Q^{0})$

$(Q^{0})$ $\{$

$U_{t}=U^{n}’ V-aU^{n}$ in $Q$ ,
$V_{t}=-U^{\prime??}V$ in $Q$ ,
$U(x, 0)=u_{0}(x)$ $V(x, 0)=v_{0}(x)$ for all $x\in\Omega$ .

In order to prove this result, wc set $\tau=\frac{t}{c}$ all({ introduce the functions

$U^{\epsilon}(\alpha\cdot, \tau):=\uparrow\iota^{(}(r\cdot, t)$ $V^{\epsilon}(.r, \tau):=v$
‘ $(x, t)$ ,
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which satisfy the problem

$(Q^{\epsilon})$ $\{\begin{array}{l}U_{t}=\epsilon\triangle U+U^{m}V-aU^{n}V_{t}=\epsilon d\Delta V-U^{n\iota}V\frac{\partial U}{\partial\nu}=\frac{\partial V}{\partial\nu}=0U(x,0)=u_{0}(x)V(x,0)=v_{0}(x)\end{array}$ $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}’ 11x\in\Omega \mathrm{o}\mathrm{n}\partial\Omega\cross(0,.\infty)\mathrm{i}\mathrm{n}Q\mathrm{i}\mathrm{n}Q,$

,

We recall [H02] that

$(u^{\epsilon}, v^{\epsilon})(t)arrow(0, v_{\infty}^{\epsilon})$ in $C(\overline{\Omega})$ as $tarrow\infty$ , (2.3)

where $v_{\propto}^{\epsilon}$ is aconstant satisfying

$v_{\infty}^{\epsilon}>0$ ,

and, if $m=n$

$v_{\infty}^{\epsilon}<a$ .

The second result which we prove is the following

Theorem 2. We have that

$v_{\infty}^{\epsilon} arrow\frac{1}{|\Omega|}\int_{\Omega}\overline{V}(x)dx$ as $\epsilonarrow 0$ . (2.4)

Remark, In, $tte$ case that $m=n$, the condition $H_{a}$ becomes $||v_{0}||_{L(\Omega)}\infty<a$ .
Suppose that it is not satisfied ;then Theorem 2does not hold. As a counter
example, choose $u_{0}$ with support in $[0, \frac{1}{2}]$ and $v_{0}=3a$ on $\Omega=(0,1)$ . Then, the

study of the ODE system shows that $V(x, t)=v_{0}=3a$ for $x \in(\frac{1}{2},1]$ and all
$t>0$ so $tf\iota at$

$\int_{0}^{1}\overline{V}(x)dx\geq\frac{3a}{2}$ ,

$wh$ereas

$v_{\infty}^{\epsilon}<0$ .

Filially we study two $.\mathrm{s}1$ ) $\mathrm{e}(.\mathrm{i}\mathrm{a}\mathrm{l}$ cases without assuming Hypothesis $H_{a}$ . As the
first one we take $a=0$ . Then the $L^{1}(\Omega)$ norm of $(u^{\epsilon}+v^{\epsilon})(t)$ is preserved in time
and equal to flse average over $\Omega$ of $(?l_{0}+v_{0})$ . Thus the asymptotic behavior of
$(u^{\epsilon\epsilon}, \mathrm{t}’)(t)$ as $tarrow\infty$ is well known. More precisely, we prove the following result
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Theorem 3. Let $(u^{\epsilon}, v^{\epsilon})$ be the solution of $(P^{\epsilon})$ with $a=0$ . Then

$v^{\epsilon}arrow \mathrm{O}$ in $L^{2}(Q_{T})$ as $\epsilonarrow 0$ , (2.5)

and

$u^{\epsilon}arrow u$ in $L^{2}(Q_{T})$ as $\epsilonarrow 0$ ,

where $u$ is the unique solution of the problem

$\{$

$u_{t}=\triangle u$ in $\Omega\cross(0, T)$ ,

$\frac{\partial u}{\partial\nu}=0$ on an $\cross(0, T)$ ,

$u(x, 0)–u_{0}(x)+v_{0}(x)$ for all $x\in\Omega$ .

The second case which we consider is the case that $n>m\geq 1$ . Then we have
that (see [H02])

$(u^{\epsilon}, v^{\epsilon})(t)arrow(0,0)$ as $tarrow\infty$ .

We prove the following result.

Theorem 4. Fix $T>0$ arbitrarily and suppose that $n>m\geq 1$ and that $u_{0}(x)>$

$0$ for all $x\in\Omega$ . Then

$\mathrm{u}\mathrm{c}(\mathrm{t})\mathrm{y}$ $v^{\epsilon}(t)arrow 0$ in $L^{2}(Q_{T})$ as $\epsilonarrow 0$ . (2.6)

In this paper, we have addressed the question of determing how the asymptotic
state $v_{\infty}$ depends on tllc initial functions. To that purpose, we have introduced
asmall parameter $\epsilon$ such that the reaction terms are very strong, compared with
diffusion terms and then derived asingular limit equation as $\epsilon$ tends to zero, under
tlle restriction t,llat the initial functions satisfy the hypothesis $H_{a}$ . We have then
been able to derive an approximate value for $v_{\infty}$ . In the situation where $H_{a}$ is
violated, adifferent type of singular limit equation should be derived. We plan
to perform this derivation in future work.
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$\mathrm{s}\circ$

$0<t\leq \mathit{2}\mathit{0}$

$2\mathit{0}<t\leq l\mathit{5}\mathit{0}$

Fig. 1-1 Time evolution of the solution (u,v) of the one dimensional problem
(l.l)-(L3) with m $=n=I$ where $d_{u}=l.\mathit{0}$, $d_{v}=Il.\mathit{5}$, k $=l$ and $v_{\mathit{0}}=\mathit{0}.2$
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0 $\mathrm{s}0^{\mathrm{Q}}$

$*$

Fig. 1-2 (a) Time evolution of the solution (u,v) of the one dimensional problem
(1.1)-(13) with m $=n$ $=1$ where $d_{u}=l.\mathit{0}$, $d_{v}=11.5$, k $=\mathit{1}$ and v0 $=\mathit{1}.\mathit{0}$

$\mathrm{z}$

Fig. 1-2 (b) Spatial profiles of traveling wave solutions (u,v) of $(\mathrm{L}1)-(1$ 3)
where the parameters are same as those in (a)
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