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Some Dynamical Aspects of Vortices in the Ginzburg-Landau Equation
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1 Introduction

We are concerned with the time-dependent Ginzburg-Landau (G-L) equatlon in a planar
bounded domain Q with the Neumann boundary condition:

w = Au+ 51_2(1 CuPu=0, (z,¢) €8x (0,00), (11)
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where u = (u1(z, ), ua(z, )T, € is a small positive parameter and 8/v denotvesbthe oﬁtér
normal derwatlve on the smooth boundary Q. We easily verify that this equatlon 1s a
gradient equation of the functional ~

E.(u): 2/{|V|2 22(1—|u|)} @)

in H'(Q;R?). Thus the. asymptotlc state of any solution to (1.1) are determined,by the
elliptic equation, o

Ay + z(l —|uPu=0, ze€, , ‘ (14)
ou ) : L

— = o0 1.5
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which is called a Ginzburg-Landau equation. We suppose that the domain € is simply
connected. For convenience of notation we allow the complex expression u = u; (a: t) +
iug(z, t) for a solution u = (uy(zx, t), uz(x, )T to (1.1).

In order to know the asymptotic state of the solution, it suffices to. investigate (1 4).
We, however, observe some interesting transient dynamics of a solution to (1.1). with
appropriate initial data if € is sufficiently small. Before stating it, we first note that since
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a solution u(z,t) of (1.1) has two components, a vector field on 2 can be defined by the
solution for each time ¢ > 0 and that the zero set of the solution at time ¢ is consist of
discrete points in generic. Then the degree of each zero y can be defined by deg(y, dB,(y)),
where B,(y) is a disk centered at y with a small radius p. Zeros of the equation (1.1) (or
(1.4)) are called vortices.

Now observe some characteristic dynamics of a solution to (1.1). When € (> 0) is very
small, the coefficient of the nonlinear term is so large that |u(t, z)| goes close to 1 quickly
as t grows in a finite time, except for a small neighborhood of zeros (vortices) if exist.
Hence a sharp layer arises around each vortex and we see from the expression of E, that a
large contribution to the energy comes from the neighborhood of the vortices. By virtue
of the continuity of the solution and invariance of the degree around each zero, these
vortices persist unless they collide one another or they reach the boundary. This vortex
dynamics was studied by using formal perturbation methods (see [4], [18]). In addition
the collision and annihilation of vortices can be verified by numerical computatlons (for
instance, see [17]).

We are interested in a mathematically rigorous description of the vortex dynam1cs or
the motion law of vortices. Lin [12, 13] and Jerrard-Soner [5] derived a singular limit
equation describing the motion law as a sequence ¢, tends to zero, when the boundary
condition is given by

=g(z), €0, deg(g,00)=d#0, (1.6)

later in [14] the limit equation for the Neumann case was done. Those results shed light
on the study of vortex dynamics. We, however, see that since the limit equations are
given in an implicit form there, it is not so easy to handle them except for a special case
(for instance, the single vortex case in a disk). On the other hand, in the Neumann case,
Jimbo-Morita [9] succeeded to write the limit equation using the Green function of the
Laplacian (with Dirichlet zero condition) and the Robin function of it. By virtue of this
nice form the vortex dynamics can be investigated in a general domain. In particular
the collision of two vortices with opposite signs of degree and the annihilation on the
boundary of a vortex are verified in the limit equation. We introduce the limit equation
obtained in [9] together with some dynamical aspects of it in the next section.

We remark that the results of [9] for the dynamics in the limit equation do not guarantee
that those hold for the original equation. In order to prove that such results are certainly
true in the equation (1.1) -(1.2), we have to develop the study further. Nevertheless we
believe that their study would be helpful in the future.

As for the annihilation, we give a remark on the study in [1], where it is shown that
for an appropriately chosed initial data a solution in the whole space R? eventually goes
to a constant solution with modulus one in the uniform topology, thus all the zeros of the
solutions disappear in a finite time. There, however, is no analytical description of the
annihilation in their study.

We finally remark on the dynamical law of vortices for small but positive €. In this
direction of the study we refer to [10] and [16], where the motion laws locally in time are
derived with the aid of approximate solutions.
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2 Singular limit equation

We assume that the domain Q C R? is simply connected. Let u(zx,t) be a solution of
(1.1), (1.2). We rescale the time variable as

vé(z,t) := u'(z, |loge|t). ' ; (2.1)
Then v¢ satisﬁes

1 1
——v; = Avf + (1 - [ve 2o ‘ (2.2)
| log €] €

with the Neumann boundary condition. Note that this scaling was used in [20], which is
the first mathematically rigorous study of the vortex motion.
Let G(z,p) be the Green function of A with the Dirichlet condition, that is,

AG =0, z € Q\ {p},
G =0, . z € 09, (2.3)

G(z,p) ~loglz —p| +O(1), z~p,z#p
We decompose the Green function as
G(z,p) =log|z — p| + 5(z,p)
where S(z,p) is a harmonic function over Q. We put
S(z) == S(z,z)

which is called the Robin function of G(z,p).
We denote a disk with radius p centered at z = y by

By(y) == {lz — yl < p},

and denote the degree of a function u = (u, (), u2(z))T around z = y by deg(u(-); 0B,(y))-
We write the configuration of m vortices by

y(t) == (@), y@ (), -, y™ (1)) € Q:=0x0x...x0Q
Then the limit equation describing the motion law of vortices is given as follows:

Theorem 2.1 Let v¢(x,t) be a solution of (2.2) with Neumann boundary condition. Then
for appropriately chosen initial data v§, a finite number T > 0 and a subsequence €,, €, —
0 such that each solution vé(z,t) has distinct m zeros y9(t),5=1,...,m, fort € [0,T)
and by taking e, — 0, those zeros converge to yU)(t),j = 1,...,m, which are solutions of

i) = VSEP (1) + 23 dd; VLGV, y® (@) 1<i<m).  (24)
k#j
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where = d/dt, .
d; = deg(u‘(-,1); B,,(y?))), j=1,...,m.

Moreover we can write the above equation as

§ = ——gradV (y)

_ _ (2.5)
V(y) = -1y 5@ -7 Y ¥ didi G, 5.

=1 '

=1 k#;j

For the proof see- [9]. Here we state some dynamical aspects of the vortices showed up in
the study of (2.4).
First consider the single vortex case, that is, m = 1 in (2.4). Then the equation is
written as
¥=V5(y).

It is known that the Robin function satisfies
AS =4e¥ (z€Q), S —00 (z—9N)

(see [19]) for a simply connected domain Q. Therefore we easily see that any equilibrium
solution of this equation is unstable. Moreover if the domain is convex, the result in [3]
tells level sets of the Robin function are strictly convex. Thus there is a unique equilibrium
state and any solution away from the equilibrium reaches the boundary in a finite time.

Next we consider two vortices with opposite sings of degree. Then we can prove that
there is an invariant region Uy C Q for the solutions y()(t), y?(t) around a critical point
of S(z), that is, if y(¥(0),y®(0) € Uy, then y)(t),y@(t) € Uy for t > 0 as long as the
solutions are defined. In addition it is proved that these solutions y)(¢) and y®(t) in U
must collide in a finite time. For the detail of the argument, see [9)].
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