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1Introduction
We are concerned with the time-dependent Ginzburg-Landau (G-L) equation in aplanar
bounded domain $\Omega$ with the Neumann boundary condition:

$u_{t}= \Delta u+\frac{1}{\epsilon^{2}}(1-|u|^{2})u=0$ , $(x, t)\in\Omega\cross(0, \infty)$ , (1.1)

$\frac{\partial u}{\partial\nu}=0$ , $(x, t)\in\partial\Omega\cross(0, \infty)$ , (1.2)

where $u=$ $(u_{1}(x, t)$ , $u_{2}(x, t))^{T}$ , $\epsilon$ is asmall positive parameter and $\partial/\partial\nu$ denotes the outer
normal derivative on the smooth boundary $\partial\Omega$ . We easily verify that this equation is a
gradient equation of the functional

$E_{\epsilon}(u):= \frac{1}{2}\int_{\Omega}\{|\nabla u|^{2}+\frac{1}{2\epsilon^{2}}(1-|u|^{2})^{2}\}dx$ (1.1)

in $H^{1}(\Omega;\mathbb{R}^{2})$ . Thus the asymptotic state of any solution to (1.1) are determined by the
elliptic equation,

$\Delta u+\frac{1}{\epsilon^{2}}(1-|u|^{2})u=0$ , $x\in\Omega$ , (1.4)

$\frac{\partial u}{\partial\nu}=0$ , $x\in\partial\Omega$ , (1.5)

which is called aGinzburg-Landau equation. We suppose that the domain 0is simply
connected. For convenience of notation we allow the complex expression $u=u_{1}(x, t)+$

$iu_{2}(x, t)$ for asolution $u=(u_{1}(x, t),$ $u_{2}(x, t))^{T}$ to (1.1).
In order to know the asymptotic state of the solution, it suffices to investigate (1.4).

We, however, observe some interesting transient dynamics of asolution to (1.1) with
appropriate initial data if $\epsilon$ is sufficiently small. Before stating it, we first note that sinc
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asolution $u(x,t)$ of (1.1) has two components, avector field on $\Omega$ can be defined by the
solution for each time $t>0$ and that the zero set of the solution at time $t$ is consist of
discrete points in generic. Then the degree of each zero $y$ can be defined by $\deg(y, \partial B_{\rho}(y))$ ,
where $B_{\rho}(y)$ is adisk centered at $y$ with asmall radius $\rho$ . Zeros of the equation (1.1) (or
(1.1) $)$ are called vortices.

Now observe some characteristic dynamics of asolution to (1.1). When $\epsilon(>0)$ is very
small, the coefficient of the nonlinear term is so large that $|u(t, x)|$ goes close to 1quickly
as $t$ grows in afinite time, except for asmall neighborhood of zeros (vortices) if exist.
Hence asharp layer arises around each vortex and we see from the expression of $E_{\epsilon}$ that a
large contribution to the energy comes from the neighborhood of the vortices. By virtue
of the continuity of the solution and invariance of the degree around each zero, these
vortices persist unless they collide one another or they reach the boundary. This vortex
dynamics was studied by using formal perturbation methods (see [4], [18]). In addition
the collision and annihilation of vortices can be verified by numerical computations (for
instance, see [17] $)$ .

We are interested in amathematically rigorous description of the vortex dynamics or
the motion law of vortices. Lin $[12, 13]$ and Jerrard-Soner [5] derived asingular limit
equation describing the motion law as asequence $\epsilon_{n}$ tends to zero, when the boundary
condition is given by

u $=g(x)$ , x $\in\partial\Omega$ , $\deg(g, \partial\Omega)=d\neq 0$ , (1.6)

later in [14] the limit equation for the Neumann case was done. Those results shed light
on the study of vortex dynamics. We, however, see that since the limit equations are
given in an implicit form there, it is not so easy to handle them except for aspecial case
(for instance, the single vortex case in adisk). On the other hand, in the Neumann case,
JimbO-Morita [9] succeeded to write the limit equation using the Green function of the
Laplacian (with Dirichlet zero condition) and the Robin function of it. By virtue of this
nice form the vortex dynamics can be investigated in ageneral domain. In particular
the collision of two vortices with opposite signs of degree and the annihilation on the
boundary of avortex are verified in the limit equation. We introduce the limit equation
obtained in [9] together with some dynamical aspects of it in the next section.

We remark that the results of [9] for the dynamics in the limit equation do not guarantee
that those hold for the original equation. In order to prove that such results are certainly
true in the equation (1.1) $-(1.2)$ , we have to develop the study further. Nevertheless we
believe that their study would be helpful in the future.

As for the annihilation, we give aremark on the study in [1], where it is shown that
for an appropriately chosed initial data asolution in the whole space $\mathrm{R}^{2}$ eventually goes
to aconstant solution with modulus one in the uniform topology, thus all the zeros of the
solutions disappear in afinite time. There, however, is no analytical description of the
annihilation in their study.

We finally remark on the dynamical law of vortices for small but positive $\epsilon$ . In this
direction of the study we refer to [10] and [16], where the motion laws locally in time are
derived with the aid of approximate solutions
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2Singular limit equation
We assume that the domain $\Omega\subset \mathbb{R}^{2}$ is simply connected. Let $u^{\epsilon}(x, t)$ be asolution of
(1.1), (1.2). We rescale the time variable as

$v^{\epsilon}(x, t):=u^{\epsilon}(x, |\log\epsilon|t)$ . (2.1)

Then $v^{\epsilon}$ satisfies
$\frac{\mathrm{l}}{|1\mathrm{o}\mathrm{g}\epsilon|}v_{t}^{\epsilon}=\Delta v^{\epsilon}+\frac{1}{\epsilon^{2}}(1-|v^{\epsilon}|^{2})v^{\epsilon}$ (2.2)

with the Neumann boundary condition. Note that this scaling was used in [20], which is
the first mathematically rigorous study of the vortex motion.

Let $G(x,p)$ be the Green function of $\Delta$ with the Dirichlet condition, that is,

$\{$

$\triangle_{x}G--0$ , $x\in\Omega\backslash \{p\}$ ,

$G=0$ , $x\in\partial\Omega$ ,

$G(x,p)\sim\log|x-p|+O(1)$ , $x\approx p$ , $x\neq p$

(2.3)

We decompose the Green function as

$G(x,p)=\log|x-p|+S(x,p)$

where $S(x,p)$ is aharmonic function over $\Omega$ . We put

$S(x):=S(x, x)$

which is called the Robin function of $G(x,p)$ .
We denote adisk with radius $\rho$ centered at $x=y$ by

$B_{\rho}(y):=\{|x-y|<\rho\}$ ,

and denote the degree of afunction $u=(u_{1}(x), u_{2}(x))^{T}$ around $x=y$ by $\deg(u(\cdot);\partial B_{\rho}(y))$ .
We write the configuration of $m$ vortices by

$y(t):=(y^{(1)}(t), y^{(2)}(t),$ $\cdots$ , $y^{(m)}(t))\in\hat{\Omega}:=\Omega\cross\Omega\cross\ldots\cross\Omega$ .

Then the limit equation describing the motion law of vortices is given as follows:

Theorem 2.1 Let $v^{\epsilon}(x, t)$ be a solution of (2.2) with Neumann boundary condition. Then
for appropriately chosen initial data $v_{0}^{\epsilon}$ , a finite number $T>0$ and a subsequence $\epsilon_{n}$ , $\epsilon_{n}arrow$

$0$ such that each solution $v^{\epsilon}(x, t)$ has distinct $m$ zeros $y_{\epsilon}^{(j)}(t),j=1$ , $\ldots$ , $m$ , for $t\in[0, T)$

and by taking $\epsilon_{n}arrow 0$ , that zeros converge to $y^{(j)}(t),j=1$ , $\ldots$ , $m$ , which are solutions of

$\dot{y}^{(j)}(t)=\nabla S(y^{(j)}(t))+2\sum_{k\neq j}d_{k}d_{j}\nabla_{x}G(y^{(j)}(t), y^{(k)}(t))(1\leq j\leq m)$
. (2.4)
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wher\’e. $=d/dt$ ,
$d_{j}=\deg(u^{\epsilon}(\cdot, t);B_{\rho}(y_{\epsilon}^{(j)}))$ , $j=1$ , $\ldots$ , $m$ .

Moreover we can yite the above equation as

.
$=- \frac{1}{\pi}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}V(y)$ ,

(2.5)

$V(y):=- \pi\sum_{j=1}^{m}S(y^{(j)})-\pi\sum_{j=1}^{m}\sum_{k\neq j}d_{k}d_{j}G(y^{(j)}, y^{(k)})$ .

For the proof see [9]. Here we state some dynamical aspects of the vortices showed up in
the study of (2.4).

First consider the single vortex case, that is, $m=1$ in (2.4). Then the equation is
written as

$\dot{y}=\nabla S(y)$ .
It is known that the Robin function satisfies

$\Delta S=4e^{2S}$ $(x\in\Omega)$ , $Sarrow-\mathrm{o}\mathrm{o}$ $(xarrow\partial\Omega)$

(see [19]) for asimply connected domain O. Therefore we easily see that any equilibrium
solution of this equation is unstable. Moreover if the domain is convex, the result in [3]
tells level sets of the Robin function are strictly convex. Thus there is aunique equilibrium
state and any solution away from the equilibrium reaches the boundary in afinite time.

Next we consider two vortices with opposite sings of degree. Then we can prove that
there is an invariant region $U_{0}\subset\Omega$ for the solutions $y^{(1)}(t)$ , $y^{(2)}(t)$ around acritical point
of $S(x)$ , that is, if $y^{(1)}(0)$ , $y^{(2)}(0)\in U_{0}$ , then $y^{(1)}(t)$ , $y^{(2)}(t)\in U_{0}$ for $t>0$ as long as the
solutions are defined. In addition it is proved that these solutions $y^{(1)}(t)$ and $y^{(2)}(t)$ in $U_{0}$

must collide in afinite time. For the detail of the argument, see [9].
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