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ABSTRACT. We study the dynamics of fronts arising in the KPP-Fisher’ $\mathrm{s}$ equa-
tion, proposed by Fisher in 1936 to model the propagation of amutant gene
and subsequently studied rigorously in the seminal work of Kolmogorov, Petro
vskii, and Piskunov. The approach is via acomparison theorem, where the
comparison functions satisfy equations which are linearizable to the heat equa-
tion. In some sense, we have obtained a“linearization” of the KPP-Fisher’$\mathrm{s}$

equation.
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1. INTRODUCTION

In this paper, we shall consider the following Cauchy problem for the KPP-
Fisher’s equation:

$u_{t}=\epsilon^{2}\triangle u+f(u)$ , $\mathrm{x}\in \mathrm{R}^{N}(N\geq 1)$ , $t>0$ ,
(1)

$u(\mathrm{x}, \mathrm{O})=\mathrm{u}(\mathrm{x},$
$\mathrm{x}\in \mathrm{R}^{N}$ ,

where $f\in C^{1}[0,1]$ satisfies
(2) $f(0)=f(1)=0$, $f’(0)>0$ , $f’(1)<0$ , $f(u)>0$ for $u\in(0,1)$ ,

and $\epsilon$ is any positive real number. This equation arises in several biological models
for the propagation of genes and population dynamics (see, for instance, [1], [3],
[4], [9], and the references therein).

In the one imensional case $(N=1)$ , it is well-known that (1) admits atravelling
wave front solution (unique up to translation) of the form $u(x, t)=\phi_{c}(x-ct)$ for
every $c$ satisfying $c\geq c’>0$ . The constant $c^{*}$ is called the minimal wave speed
and $\phi_{c}$ is amonotonic decreasing function satisfying

$\phi_{c}(-\infty)=1$ , $\phi_{c}(+\infty)=0$ .
The asymptotic behavior of (1) has been well-studied, with special attention

being given to finding appropriate initial conditions for which the solution converges
to the travelling wave solution $\phi_{c^{\mathrm{s}}}$ with minimal speed $c^{*}$ (see [1], [2], [7], [8], [9]).
In particular, when the initial function $u_{0}$ is aunit step function, Kolmogorov, et.
al. [7] showed that the solution of (1) converges in some sense to $\phi_{c}\cdot$ . On the other
hand, if the initial function has bounded support, then the solution converges to a
pair of diverging travelling fronts [9].

Suppose that the initial condition is pair of travelling ffonts moving toward each
other. Intuitively, one can expect that the fronts annihilate each other upon collision

M. R. is supported by aResearch Fellowship from the Japan Society for the Promotion of
Science. M. M. acknowledges the support of Grant-in-Aid for Scientific Research (A) 12304006
and Scientific Research (B) 11214101

数理解析研究所講究録 1249巻 2002年 61-71

61



M. RODRIGO AND M. MIMURA

so that the solution tends asymptotically to $u\equiv 1$ . The purpose of this paper is
to show analyticaly that this is in fact what happens and, more importantly, to
describe the front dynamics of the solution as it evolves in time from the initial
condition. We have in mind ageneral initial condition consisting of an arbitrary
number of “peaks” and “valleys”.

Especially, when $0<\epsilon\ll 1$ , we can describe the annihilation dynamics quite
accurately since (1) can be approximated by anonlinear partial differential equation
which is linearizable to the heat equation (see Section 2). Our results are also
applicable to higher-dimensional cases $(N\geq 2)$ . When $N=2$, for example, we can
consider an initial distribution consisting of an arbitrary number of “spots”.

The method of proof is by standard comparison theorem, where the comparison
functions satisfy equations which are linearizable to the heat equation. In some
sense, we have obtained a“linearization” of the KPP-Fisher’s equation since we
can describe, in principle, the evolution of the comparison functions for arbitrary
initial conditions.

Some works related to ours were done by Hamel and Nadirashvil [5], [6]. They
considered time global solutions $(t\in \mathrm{R})$ of (1) and the mixing of any density of
travelling fronts. Our method differs from theirs and the results are obtained for
more general initial conditions. In addition, we do not need to assume (as they
did) that $f$ is concave in $(0, 1)$ .

In Section 2, we construct upper and lower solutions of (1) which satisfy ln-
earizable partial differential equations and then give our main result. In Section
3, we apply this result to the Fisher case $f(u)=u(1-u)$ . For various initial dis-
tributions, we give some numerical results showing how the comparison functions
and the solution of Fisher’s equation evolve in time. Finally, in Section 4, we state
some current works in progress which generalize our results.

2. CONSTRUCTION OF UPPER AND Lower SOLUTIONS OF (1) AND STATEMENT
OF MAIN Result

The derivation of our comparison functions wiU be done by using some explicit
nonlinear transformations. More specifically, suppose that u can be expressed as
(3) $u=h(v)$ ,

where $v$ satisfies the linear partial differential equation

(4) $v_{t}=\epsilon^{2}\triangle v+\alpha v$ , $\alpha\neq 0$ .
We can then compute

$N(u)$ $\equiv$ $\epsilon^{2}\triangle u-u_{t}+f(u)$ ,
$=$ $\epsilon^{2}(h_{v}\triangle v+h_{vv}|\nabla v|^{2})-h_{v}v_{t}+f(h)$ ,
$=$ $-\alpha vh_{v}+\epsilon^{2}h_{vv}|\nabla v|^{2}+f(h)$ .

If we assume further that

(5) $h_{v}= \frac{f(h)}{\alpha v}$ ,

then we get

$N(u)= \epsilon^{2}h_{vv}|\nabla v|^{2}=\epsilon^{2}\frac{h_{vv}}{h_{v}^{2}}|\nabla u|^{2}$.

62



FRONT DYNAMICS OF THE KPP-FISHER’S EQUATION

Prom (5), we can calculate that

$\frac{h_{vv}}{h_{v}^{2}}=\frac{f’(u)-\alpha}{f(u)}$ .

Therefore, the function $u$ satisfies the equation

(6) $u_{t}= \epsilon^{2}\triangle u+f(u)-\epsilon^{2}\frac{f’(u)-\alpha}{f(u)}|\nabla u|^{2}$ ,

while $v$ satisfies (4), and $u$ and $v$ are related by

(7) $\int_{\nu}^{u}\frac{ds}{f(s)}=\frac{1}{\alpha}\ln v$ , $\nu\in \mathbb{R}$ $f(\nu)\neq 0$ .

If we can find asolution $u$ of (6) satisfying $N(u)\leq 0$ (resp. $N(u)\geq 0$), then $u$ is
an upper (resp. lower) solution of (1).

We now show that upper and lower solutions can be obtained straightforwardly
if we assume that $f$ satisfies (2). Letting $\beta\equiv\max_{u\in[0,1]}|f’(u)|$ , it follows that

$-\beta-\alpha\leq f’(u)-\alpha\leq\beta-\alpha$

for every $u\in(0,1)$ .
For an upper solution $u^{+}$ , we choose $\alpha=\alpha_{1}\geq\beta$ so that $u^{+}$ satisfies the

following:

$u_{t}^{+}= \epsilon^{2}\triangle u^{+}+f(u^{+})-\epsilon^{2}\frac{f’(u^{+})-\alpha_{1}}{f(u^{+})}|\nabla u^{+}|^{2}$ ,

(8)
$\int_{\nu}^{u^{+}}\frac{ds}{f(s)}=\frac{1}{\alpha_{1}}\ln v^{+}$ ,

$v_{t}^{+}=\epsilon^{2}\triangle v^{+}+\alpha_{1}v^{+}$ .
On the other hand, for alower solution $u^{-}$ , we choose $\alpha=\alpha_{2}$ $\leq-\beta$ so that $u^{-}$

satisfies the following:

$u_{t}^{-}= \epsilon^{2}\triangle u^{-}+f(u^{-})-\epsilon^{2}\frac{f’(u^{-})-\alpha_{2}}{f(u^{-})}|\nabla u^{-}|^{2}$ ,

(9)
$\int_{\nu}^{u^{-}}\frac{ds}{f(s)}=\frac{1}{\alpha_{2}}\ln v^{-}$ ,

$v_{t}^{-}=\epsilon^{2}\triangle v^{-}+\alpha_{2}v^{-}$

The corresponding initial functions for (8) and (9) will be denoted by $u_{0}^{+}$ , $v_{0}^{+}$ and
$u_{0}^{-},v_{0}^{-}$ , respectively.

We note that (4) can be mapped to the linear heat equation by the transformation
$v=\exp(\alpha t)w$ to obtain

(10) $w_{t}=\epsilon^{2}\triangle w$, $w_{0}( \mathrm{x})=v_{0}(\mathrm{x})=\exp[\alpha\int_{\nu}^{u\mathrm{o}(\mathrm{x})}\frac{ds}{f(s)}]$ .

The general solution of (10) is given by

(11) $w( \mathrm{x}, t)=\frac{1}{(4\epsilon^{2}\pi t)^{N/2}}\int_{\mathrm{R}^{N}}G(\mathrm{r};\mathrm{x}, t)w_{0}(\mathrm{r})d\mathrm{r}$,

where

$G( \mathrm{r};\mathrm{x}, t)=\exp(-\frac{|\mathrm{x}-\mathrm{r}|^{2}}{4\epsilon^{2}t})$ , $\mathrm{x}$
$=(x_{1}, x_{2}, \ldots, x_{N})^{t}$ , $\mathrm{r}=(r_{1},r_{2}, \ldots,r_{N})^{t}$ .
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Thus, the time-evolutions of $u^{\pm}$ with initial distributions $u_{0}^{\pm}$ are given by

(12) $\int_{\nu}^{u^{\pm}(\mathrm{x},t)}\frac{ds}{f(s)}=$

$\frac{1}{\alpha_{1,2}}\mathrm{h}$ $[ \frac{\exp(\alpha_{1,2}t)}{(4\epsilon^{2}\pi t)^{N/2}}\int_{\mathrm{R}^{N}}\exp(-\frac{|\mathrm{x}-\mathrm{r}|^{2}}{4\epsilon^{2}t}+\alpha_{1,2}\int_{\nu}^{u_{0}^{\pm}(\mathrm{r})}\frac{ds}{f(s)})ae]$ .

To see how (1) evolves, we choose the initial conditions such that $u_{0}^{-}(\mathrm{x})\leq u_{0}(\mathrm{x})\leq$

$u_{0}^{+}(\mathrm{x})$ and substitute in (12).
Now, suppose that $u_{0}^{\pm}$ are both positive and continuous and satisfy

(13) $\inf_{\mathrm{x}\in \mathrm{R}^{N}}u_{0}^{+}(\mathrm{x})>\nu$, $\inf_{\mathrm{x}\in \mathrm{R}^{N}}u_{0}(\mathrm{x})>\nu$ , $(0<\nu<1)$

respectively. Then, it follows that $u_{0}^{+}(\mathrm{x})>\nu$ for every $\mathrm{x}$
$\in \mathrm{R}^{N}$ and

$\alpha_{1}\int_{\nu}^{u_{0}^{+}(\mathrm{r})}\frac{ds}{f(s)}>0$,

$\alpha_{1}\int_{\nu}^{u_{0}^{+}(\mathrm{r})}\frac{ds}{f(s)}-\frac{|\mathrm{x}-\mathrm{r}|^{2}}{4\epsilon^{2}t}>-\frac{|\mathrm{x}-\mathrm{r}|^{2}}{4\epsilon^{2}t}$ ,

$\int_{\mathrm{R}^{N}}c(\mathrm{r};\mathrm{x},t)v_{0}^{+}(\mathrm{r})ae>\mathit{1}_{N}^{c(\mathrm{r};\mathrm{x},t)k=(4\epsilon^{2}\pi t)^{N/2}}$,

$v^{+}( \mathrm{x},t)=\frac{\exp(\alpha_{1}t)}{(4\epsilon^{2}\pi t)^{N/2}}\int_{\mathrm{R}^{N}}G(\mathrm{r};\mathrm{x},t)v_{0}^{+}(\mathrm{r})*$ $>\exp(\alpha_{1}t)$ .

Therefore, the above statement and the second equation in (8) imply that
$\ellarrow+\infty 1\dot{\mathrm{m}}v^{+}(\mathrm{x},t)=+\infty$ , $tarrow+\infty 1\mathrm{i}$. $u^{+}(\mathrm{x},t)=1$ .

In asimilar manner we obtain

$v^{-}( \mathrm{x},t)=\frac{\exp(\alpha_{2}t)}{(4\epsilon^{2}\pi t)^{N/2}}\int_{\mathrm{R}^{N}}G(\mathrm{r};\mathrm{x}, t)v_{0}^{-}(\mathrm{r})k$$<\exp(\alpha_{2}t)$ .

This statement and the second equation in (9) imply that
$\lim_{\ellarrow+\infty}v^{-}(\mathrm{x},t)=0$ , $\mathrm{t}arrow+\infty \mathrm{l}\mathrm{i}$. $u^{-}(\mathrm{x},t)=1$ .

Based on the above results and invoking acomparison theorem for (1) ([1], for
instance), we can now state the following

Main Result. Suppose that $u_{0}^{-}$ and $u_{0}^{+}$ are nonconstant continuous functions
in $\mathrm{R}^{N}$ satisfying $0<u_{0}^{-}(\mathrm{x})\leq u_{0}(\mathrm{x})\leq u_{0}^{+}(\mathrm{x})\leq 1$ . Then,

$u^{-}(\mathrm{x},t)\leq u(\mathrm{x},t)\leq u^{+}(\mathrm{x},t)$

for every $t\geq 0$ , where the dynamics of $u^{\pm}$ are described by (12). $R\iota\hslash hemore$,
$\lim_{tarrow+\infty}u^{-}(\mathrm{x},t)=\lim_{tarrow+\infty}u(\mathrm{x},t)=\lim_{tarrow+\infty}u^{+}(\mathrm{x},t)=1$.

In the one dimensional case, this result implies that if the initial function $u_{0}$

consists of an arbitrary number of “peaks” and “valleys” (see Figure 1, where $u_{0}$

is any continuous function in the shaded region), then they annihilate each other
and the solution eventuffiy approaches the steady state $u\equiv 1$ . What we would lke
to emphasize is that not only do we know the asymptotic behavior of the solution
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we can also describe the dynamics of the annihilation process from the dynamics
of the upper and lower solutions as described by (12). Asimilar interpretation can
be given for higher-dimensional cases as well.

[– Figure 1–]

3. NUMERICAL RESULTS AND EXpLlClT APPROXIMATE solutions OF (1)
WHEN $f(u)=u(1-u)$

In this section, we consider Fisher’s equation and specify $f(u)=u(1-u)$ . From
adirect computation, we get $\beta$ $=1$ . Choosing $\alpha_{1}=1$ , $\alpha_{2}=-1$ , and $\nu=1/2$ , we
obtain the following upper and lower solutions:

$u_{t}^{+}= \epsilon^{2}\triangle u^{+}+u^{+}(1-u^{+})+\frac{2\epsilon^{2}}{1-u^{+}}|\nabla u^{+}|^{2}$,
(14)

$u^{+}= \frac{v^{+}}{1+v^{+}}$ , $v_{t}^{+}=\epsilon^{2}\triangle v^{+}+v^{+}$ ,

$u_{t}^{-}= \epsilon^{2}\triangle u^{-}+u^{-}(1-u^{-})-\frac{2\epsilon^{2}}{u^{-}}|\nabla u^{-}|^{2}$ ,
(15)

$u^{-}= \frac{1}{1+v^{-}}$ , $v_{t}^{-}=\epsilon^{2}\triangle v^{-}-v^{-}$

Alternatively, we also have
(16)

$u^{+}= \frac{v^{+}}{1+v^{+}}$ , $v^{+}( \mathrm{x}, t)=\frac{\exp(t)}{(4\epsilon^{2}\pi t)^{N/2}}\int_{\mathrm{R}^{N}}\exp(-\frac{|\mathrm{x}-\mathrm{r}|^{2}}{4\epsilon^{2}t})\frac{u_{0}^{+}(\mathrm{r})}{1-u_{0}^{+}(\mathrm{r})}d\mathrm{r}$,

(17)

$u^{-}= \frac{1}{1+v^{-}}$ , $v^{-}( \mathrm{x}, t)=\frac{\exp(-t)}{(4\epsilon^{2}\pi t)^{N/2}}\int_{\mathrm{R}^{N}}\exp(-\frac{|\mathrm{x}-\mathrm{r}|^{2}}{4\epsilon^{2}t})\frac{1-u_{0}^{-}(\mathrm{r})}{u_{0}^{-}(\mathrm{r})}$dr.

For the numerical results, we use (14) and (15), while for the analytical results, we
use (16) and (17). In all the numerical computations, we fix the mesh spacings to
be $\Delta x=0.\mathrm{O}1$ , $\triangle t=0.05$ and impose n0- lux boundary conditions on asufficiently
large interval.

Here, we only show some results for the one-dimensional case $(N=1)$ . Let the
initial conditions be

(18) $u_{0}(x)=u_{0}^{+}(x)=u_{0}^{-}(x)= \frac{1}{1+\exp(bx)}$ , $b>0$ .

Making use of (16) and (17), we get

(19)

$u^{+}(x,t)= \frac{1}{1+\exp(bx-(1+b^{2}\epsilon^{2})t)}$ , $u^{-}(x, t)= \frac{1}{1+\exp(bx-(1-b^{2}\epsilon^{2})t)}$ ,
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which are both travelling wave solutions. The wave speeds of $u^{+}$ and $u^{-}$ are given
by

(20) $c_{u}+= \frac{1+b^{2}\epsilon^{2}}{b}$ and $c_{u^{-}}= \frac{1-b^{2}\epsilon^{2}}{b}$ ,

respectively. Note that if $0<\epsilon\ll 1$ , then

$c_{u}+ \approx c_{u^{-}}\approx\frac{1}{b}$ and $u^{+} \approx u^{-}\approx\frac{1}{1+\exp(bx-t)}$ .

For Fisher’s equation, it is known that the minimal wave speed is $Cp$ $=2\epsilon$ . It is
not difficult to see that $c_{u}+\geq Cp-$ On the other hand, if

$\epsilon^{2}b^{2}+2k$ $-1\leq 0$ ,

then $c_{u^{-}}\geq c_{F}$ . Assume that $b$ is chosen such that the strict inequality is satisfied.
It follows that if the solution of Fisher’s equation converges to atravellng wave
solution, then the speed will be greater than the minimal value cp- This is in
contrast to previous studies done on Fisher’s equation where initial conditions are
sought for which the solution converges to the wave of minimal speed.

Solving (1), (14), and (15) numericaly, we obtain the profiles of $u$ , $u^{+}$ , and $u^{-}$

shown in Figure 2, where $\epsilon^{2}=0.03$ , $b=1$ , and $Cp$ $=0.34641016$. From (20), we
get $c_{u}+=1.03$ and $cu-=0.97$.

[– Figure 2–]

Next, we assume amore complicated initial condition such as

(21) $u_{0}(x)=u_{0}^{+}(x)=u_{0}^{-}(x)= \varphi(x-30)+\varphi(x+30)+\frac{1}{2}\varphi(x)-\frac{1}{4}$ ,

where

$\varphi(x)=\frac{1}{2}-\frac{1}{1+m\cosh(bx)}$ , $b,m>0$ .

In this case, it is not possible to obtain closed analytic forms from (16) and (17).
However, we can integrate (1), (14), and (15) numerically and compare the actual
solution with the upper and low er solutions. The results are shown in Figure 3,
where $\epsilon^{2}=0.1$ , $b=1$ , and $m=10^{-4}$ .

[– Figure 3–]

Other initial distributions can also be considered and the closeness of the com-
parison functions and the actual solution of Fisher’s equation can be compared
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4. Conclusion

In this paper, we studied the annihilation dynamics for the KPP-Fisher’s equa-
tion. The method we used is to find “nice” comparison functions which satisfy
equations linearizable to the heat equation. Our method can be generalized to
other problems, some of which are the following:

(i) dynamics of multi-dimensional fronts of (1) for different boundary conditions;
(ii) extensions to systems of reaction-diffusion equations which satisfy acompar-

ison principle, e.g., aLotka-Volterra competition-diffusion system;
(iii) free boundary problems for (1) which can be reduced to atw0-phase Stefan

problem;
(iv) extensions to density-dependent nonlinear diffusion equations;
(v) blowup phenomenon for Fujita-type problems.

These problems are currently under investigation.
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FIGURE CAPTIONS

Fig. 1. Profile of an initial condition of (1)
Fig. 2. Profiles of (1), (14), and (15) with initial conditions (18) for t $=0,$ 35, $\epsilon^{2}=$

0.03, and b $=1$

Fig. 3. Profiles of (1), (14), and (15) with initial conditions (21) for t $=0,$ 2.5,7.5,
$\epsilon^{2}=0.1$ , b $=1$ , and m $=10^{-4}$
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