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1 Intrbduction

The crossed products of C*-algebras give us plenty of interesting examples and the struc-
tures of them have been examined by several authors. In [KK1] and [KK2], A. Kishimoto
and A. Kumjian dealt with, among others, the crossed products of Cuntz algebras by
quasi-free actions of the real group R. In [Kal] and [Ka2|, we examined the crossed
products of Cuntz algebras by quasi-free actions of arbitrary locally compact, second
countable, abelian groups. In this note, we summarize the results of [Kal] and [Ka2|, and
discuss several examples.

2 Preliminaries

In this section, we review some basic objects and fix the notation.

For n = 2,3,..., the Cuntz algebra O, is the universal C*-algebra generated by n
isometries 51,5, ... , S, satisfying > - | S;Sf = 1 [C1]. In this note, we only consider
the case n < oo. For similar results on the crossed products of O, see [Ka3]. For
ke N={0,1,...}, we define the set W) of k-tuples by WO = {0} and

W,(lk) = {(’il,’iz,... ,'l:k) | ij € {1,2, ,n}}

We set W, = Ureo ). For p = (i1,13, ... ,i%) € Wh, we denote its length k by |u|,
and set S, = S;, S, -+ Si, € On. Note that |0| =0, Sp = 1. For p = (i1,%2,... ,%),V =
(41,925 - - - »J1) € Wh, we define their product uv € W, by uv = (i1, 2, . .. , bk, J1, 52, - - - 5 J0)-

Let G be a locally compact abelian group which satisfies the second axiom of count-
ability and T be the dual group of G. We always use + for multiplicative operations of
abelian groups except for T, which is the group of the unit circle in the complex plane C.
The pairing of t € G and v € T is denoted by (t|v) € T.

Let us take w = (wy,ws,...,w,) € ['™ and fix it. Since the n isometries (t|w; )5,
(t|we)Say ..., (t|wn)S, also satisfy the relation above for any ¢ € G, there is a *-
automorphism o : O, — O, such that a¥(S;) = (t|w;)S; for i = 1,2,... ,n. One can

see that o : G 3 t = ¥ € Aut(0,) is a strongly continuous group homomorphism.
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Definition 2.1 Let w = (w;,ws,... ,w,) € I'" be given. We define the action o : G ~
O, by
ol (S)=(t|lwi)S: (=1,2,...,n, t€G).

The action o : G ~ O,, becomes quasi-free (for a definition of quasi-free actions on
Cuntz algebras, see [E]). Conversely, any quasi-free action of the abelian group G on O,
is conjugate to o for some w € I'".

Since the abelian group G is amenable, the reduced crossed product of the action
a” : G ~ O, coincides with the full crossed product of it. We denote it by O, X,.~G and
call it the crossed product. The crossed product O, X4-G has a C*-subalgebra Cl1x,.G
which is isomorphic to Co(I'). Throughout this paper, we always consider Cy(I") as a
C*-subalgebra of O, %G, and use f,g,... for denoting elements of Cyo(I') C O, X G.
The Cuntz algebra O, is naturally embedded into the multiplier algebra M (O, 4G)
of OpXquG. For each p = (iy,1y,... ,%) in W,, we define an element w, of I" by w, =
Z;;l wj;. For 79 € T, we define a (reverse) shift automorphism o, : Co(T') — Co(T") by
(04 )(Y) = f(v + Y0) for f € Co(T'). Once noting that of’(S,) = (t|wy)S, for p € W,
one can easily verify that fS, = S,0,,f for any f € Cy(I') C OpXovG and any p € W,.
From this fact, we have O, %G = 5pan{S,.fS; | u,v € W,, f € Co(I')}, where span
means the closure of the linear span.

3 The ideal structure of O, x G

In [Kal], we completely determined the ideal structures of the crossed product O, x4.G.
For an ideal I of the crossed product O, %G, we define the closed subset X; of I' by
INCy(T) = Co(T"\ X;). The closed subset X satisfies '

(i) For any v € X and any i € {1,2,... ,n}, we have v+ w; € XJ.
(ii) For any v € X}, there exists i € {1,2,... ,n} such that v — w; € X].
The closed subset of I satisfying two conditions above is said to be w-invariant. A

closed set X is w-invariant if and only if X = (J;_,(X + ;). For a closed w-invariant
subset X of I, we define Iy C O, %G by

Ix =35pan{S.fS; | u,v € Wy, f € Co(I'\ X)}.

One can see that I'x is an ideal of O, X, G and invariant under the gauge action g of T
on O, X 4G, which is defined by 3:(S,.fS;) = t""”""S,,fS,‘,‘ for p,v € W,, f € Co(T') and
t € T. With a technique using conditional expectations, we can prove the following.

Proposition 3.1 ([Kal, Theorem 3.14]) The two maps I — X and X — I between
the set of gauge invariant ideals of O, XwG and the set of closed w-invariant subsets of
I' are the inverses of each other.

The ideal structure of O, Xo~G depends on whether w .E I'" satisfies the following
condition:
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Condition 3.2 For eachi € {1,2,...,n}, one of the following two conditions is satisfied:

(i) For any positive integer k, kw; # 0.

(ii) There exists j # ¢ such that —wj is in the closed semigroup generated by wy,ws, ... ,wn
and —w;. :

This condition is an analogue of Condition (II) in the case of Cuntz-Krieger algebras
[C2] or Condition (K) in the case of graph algebras [KPRR].

Theorem 3.3 ([Kal, Theorem 5.2]) When w satisfies Condition 3.2, any ideal is gauge
invariant. Hence there is a one-to-one correspondence between the set of ideals of OnXawG
and the set of closed w-invariant subsets of T.

When w does not satisfy Condition 3.2, there exists ig € {1,2,...,n} such that
kw;, = 0 for some positive integer k, and that —w; is not in the closed semigroup generated
by wi,wy, ... ,w, and —w;, for any 7 # ip. Note that such iy is unique. Let IV be the
quotient group of I’ by the subgroup generated by w; and denote by [y] the image in I of
~ € T. Define a C*-subalgebra A of O, X,.G by A =span{SE fS;' | f € Co(T'),k,1 € N}.
The C*-algebra A is isomorphic to the Toeplitz algebra of the Hllbert module coming from
the automorphism o, of Co(T'), hence there is a surjective map 7 : A = Co(D) %o, o Z.
It is not hard to see that there is a one-to-one correspondence between the set of ideals of
Co(T') X, Z and the set of closed subset of IV x T. For an ideal I of O, X,«G, we define
the closed subset Y; of I x T which corresponds to the ideal 7(I N A). The closed set Y;
satisfies that ([y+w;],8") € Y; for any i # i any ¢’ € T and any ([v],0) € Y. Conversely,
for any closed set Y of IV x T satisfying the condition above, we can construct the ideal
Iy of O, x4wG so that Yz, =Y (see Definition 5.17 and Proposition 5. 23 of [Kal])

Theorem 3.4 ([Kal, Theorem 5.49]) In the above setting, we have Iy, = I for dhy
ideal T of OpXaquG. Thus there is a one-to-one correspondence between the set of ideals
of On NawG and the set of closed subsets of I' x T satisfying the condition abo'ue

On the way to prove the two theorems above, we get another proofs of the followmg
known facts (see [Ki] and [OP]): ‘

e O, %G is simple if and only if the closed semigroup generated by w;,ws,... ,ws
and —w; is equal to T for any s = 1,2,... ,n [Kal, Theorem 4.8].

e 0,X G is primitive if and only if the closed group generated by wi,ws, ... ,wn is
equal to I' [Kal, Theorem 4.12],

By Theorem 3.3 and Theorem 3.4, we can show that the strong Connes spectrum f(a“’)
of the action o is the intersection of the n closed semigroups generated by wy,ws, ... ,wn
and —w; where i = 1,2,... ,n [Kal, Proposition 6.2]. The crossed product OpXowG is
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isomorphic to the Cuntz Pimsner algebra of a certain Hilbert bimodule. From this fact,
we have the following exact sequence.

=30 (0w;)e Le
Ko(CoI)) TZ=Cdy po))  —25  Ko(OnxewG)

[ id— ?=l Ow; )s
Ki(OpxwG) 2 Ky(Go(l)) &= (cy(T))
where ¢ is the embedding ¢ : Co(T') — O, %G [Kal, Proposition 6.5].

4 AF-embeddability and pure infiniteness of O, G

In [Ka2], we gave a sufficient condition for the crossed products O,x,~G to be AF-
embeddable. To the best of the author’s knowledge, this is the first case to have succeeded
in embedding crossed products of purely infinite C*-algebras into AF-algebras except
trivial cases.

Theorem 4.1 ([Ka2, Theorem 3.8)) If —w; ¢ {w, | p € Wy} for anyi=1,2,... ,n,
then the crossed product O, X oG is AF-embeddable.

In [KK1], Kishimoto and Kumjian proved that O,X,~R becomes stable and projec-
tionless when w € R" satisfies —w; ¢ {w, | p € W,}. Hence O, %R is stably finite in
this case. Theorem 4.1 gives another proof of this fact.

In [KK2], they gave a necessary and sufficient condition that O, % ,«R becomes simple
and purely infinite. Here, we generalize their result. :

Theorem 4.2 ([Ka2, Corollary 4.9]) The crossed product O, %G is simple and purely
infinite if and only if I’ = {w, | p € W, }.

By the two theorems above and the characterization of simplicity, we have the following
dichotomy.

Corollary 4.3 ([Ka2, Corollary 4.8]) The crossed product O, X .G is either purely
infinite or AF-embeddable when it is simple.

5 Examples

5.1 When G is compact

When G is compact, its dual group I"' becomes discrete. In this case, for any w € I'" the
crossed product O, %,+G is a graph algebra of some skew product graph which is row-
finite (see [KP]) and a part of our results here has been already proved in, for example,
[BPRS]. Particularly, we have the following.

Proposition 5.1 ([Ka2, Proposition 3.9]) When G is compact, the following are equiv-
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(1) —w; ¢ {wu | p €W,} foranyi=1,2,... ,n.
(ii) The crossed product O,xqG is stably finite.
(iii) The crossed product OpXawG is AF-embeddable.
(iv) The crossed product Op,X oG itself is an AF-algebra.

5.2 When G is discrete

When G is discrete, its dual group I' becomes compact. Let us denote by A, a closed
semigroup generated by wy,ws, ... ,w,. One can see that —w; € A, for ¢ = 1,2,... ,n.
Hence any w € I'" satisfies Condition 3.2. Since the closed set X is w-invariant if and only
if X + A, = X, the set of all closed w-invariant subsets of I is one-to-one correspondent
to the set of all closed subset of I'/A,,. Here note that A, is a closed subgroup of T
By Theorem 3.3, the set of all ideals of O, x,+G corresponds bijectively to the set of all
closed subset of I'/A,,.

We can examine the ideal structures of O, x,«G directly as well as other structures
of it. Let G’ be the quotient of G by the closed subgroup

{teG|af=id}={te G| (t|w)=1fori=1,2,...,n}
={te G| (t|y)=1for any v € A,}.

The dual group of G’ is naturally isomorphic to A,. Since w € A7 C I'*, we can define
an action o : G' ~ O,. The crossed product O, X.~G' is simple and purely infinite by
Theorem 4.2. The crossed product O, X.G becomes a continuous field over the compact
space I'/A,, whose fiber of any point is isomorphic to Op,XqwG’. From this observation,
we can easily see that the set of all ideals of O, X G corresponds bijectively to the set
of all closed subset of I'/A,,. :

When G is discrete, the crossed product O, X4-G has an infinite projection, hence is
never AF-embeddable. '

5.3 When G=R"
When G = R™, its dual group I is also R™. For w € (R™)", we define the following.

Definition 5.2 Let w = (w;,ws, ... ,w,) € (R™)". We denote the affine space generated
by wi,ws, ..., w, € R™ and their convex hull by

Lw-——'—{Xn:tiwiERm zn:ti=1}, Cw:{itiwiERm tizo,iti——-l},
i=1 i=1 i=1 i=1

respectively. The set C,, is a closed subset of L,. We denote by O,, the interior of C, in
L,.

We define the three types for elements of (R™)".

Definition 5.3 Let w = (wy,ws,... ,w,) € (R™)". The element w is said to be of type
(+) if 0 ¢ C,, to be of type (0) if 0 € C,, \ O,, and to be of type (—) if 0 € O,,.
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On this type, we can prove the following. We omit proofs.

Lemma 5.4 Ifw is of type (+), then there ezists v € R™\ {0} such that the inner product
w; - v of w; and v is non-negative for any i = 1,2,... ,n. Moreover when m > 2, we can
find such v so that there exists 19 with w;, -v = 0.

Lemma 5.5 If w is of type (0), then there exists v € R™ \ {0} such that w; - v > 0 for
anyi=1,2,...,n, and there exists iy with w;, -v = 0.

From these two lemmas, we get the following characterizations of type (—) and type

(+).

Proposition 5.6 An element w is of type (—) if and only if the closed semigroup gen-
erated by wy,ws, ... ,w, s a group. An element w is of type (+) if and only if —w; ¢
{wp | pEW,} for anyi=1,2,... ,n.

Combining this proposition with Theorem 4.1 and Theorem 4.2, we have the following.
An element w is called aperiodic if the closed group generated by wy,ws,... ,w, is R™.

Proposition 5.7 The crossed product O, xwR™ is AF-embeddable if w is of type (+).
The crossed product O, X R™ is simple and purely infinite if and only if w is of type (—)
and aperiodic.

It is easy to see that an element w does not satisfy Condition 3.2 if and only if 0 is an
extreme point of C,, and there is only one i € {1,2,... ,n} with w; = 0. In this case, w
is of type (0). The following is a consequence of Lemma 5.4 and Lemma 5.5.

Proposition 5.8 If w is of type (0) or if w is of type (+) and m > 2, then there exists
ip € {1,2,...,n} such that the closed semigroup generated by wy,ws, ... ,w, and —w;, s
not R™. Hence in this case, the crossed product O, ,.R™ is not simple.

The condition for simplicity follows from the proposition above.
Proposition 5.9 When m =1, the crossed product O, X ,R™ is simple if and only if w
is of type (+) or (=) and aperiodic.

When m > 2, the crossed product O, x,R™ is simple if and only if w is of type ()

and aperiodic.

When m > 2, the crossed product O, X,~R™ is purely infinite if it is simple.
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