Crossed products of Cuntz algebras by quasi-free actions of abelian groups

Takeshi KATSURA (勝良 健史) Department of Mathematical Sciences University of Tokyo, Komaba, Tokyo, 153-8914, JAPAN e-mail: katsu@ms.u-tokyo.ac.jp

1 Introduction

The crossed products of C^* -algebras give us plenty of interesting examples and the structures of them have been examined by several authors. In [KK1] and [KK2], A. Kishimoto and A. Kumjian dealt with, among others, the crossed products of Cuntz algebras by quasi-free actions of the real group \mathbb{R} . In [Ka1] and [Ka2], we examined the crossed products of Cuntz algebras by quasi-free actions of arbitrary locally compact, second countable, abelian groups. In this note, we summarize the results of [Ka1] and [Ka2], and discuss several examples.

2 Preliminaries

In this section, we review some basic objects and fix the notation.

For n = 2, 3, ..., the Cuntz algebra \mathcal{O}_n is the universal C^* -algebra generated by n isometries $S_1, S_2, ..., S_n$, satisfying $\sum_{i=1}^n S_i S_i^* = 1$ [C1]. In this note, we only consider the case $n < \infty$. For similar results on the crossed products of \mathcal{O}_{∞} , see [Ka3]. For $k \in \mathbb{N} = \{0, 1, ...\}$, we define the set $\mathcal{W}_n^{(k)}$ of k-tuples by $\mathcal{W}_n^{(0)} = \{\emptyset\}$ and

$$\mathcal{W}_n^{(k)} = \big\{ (i_1, i_2, \dots, i_k) \mid i_j \in \{1, 2, \dots, n\} \big\}.$$

We set $\mathcal{W}_n = \bigcup_{k=0}^{\infty} \mathcal{W}_n^{(k)}$. For $\mu = (i_1, i_2, \dots, i_k) \in \mathcal{W}_n$, we denote its length k by $|\mu|$, and set $S_\mu = S_{i_1} S_{i_2} \cdots S_{i_k} \in \mathcal{O}_n$. Note that $|\emptyset| = 0$, $S_{\emptyset} = 1$. For $\mu = (i_1, i_2, \dots, i_k), \nu = (j_1, j_2, \dots, j_l) \in \mathcal{W}_n$, we define their product $\mu\nu \in \mathcal{W}_n$ by $\mu\nu = (i_1, i_2, \dots, i_k, j_1, j_2, \dots, j_l)$.

Let G be a locally compact abelian group which satisfies the second axiom of countability and Γ be the dual group of G. We always use + for multiplicative operations of abelian groups except for T, which is the group of the unit circle in the complex plane \mathbb{C} . The pairing of $t \in G$ and $\gamma \in \Gamma$ is denoted by $\langle t | \gamma \rangle \in \mathbb{T}$.

Let us take $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \Gamma^n$ and fix it. Since the *n* isometries $\langle t | \omega_1 \rangle S_1$, $\langle t | \omega_2 \rangle S_2, \ldots, \langle t | \omega_n \rangle S_n$ also satisfy the relation above for any $t \in G$, there is a \ast automorphism $\alpha_t^{\omega} : \mathcal{O}_n \to \mathcal{O}_n$ such that $\alpha_t^{\omega}(S_i) = \langle t | \omega_i \rangle S_i$ for $i = 1, 2, \ldots, n$. One can see that $\alpha^{\omega} : G \ni t \mapsto \alpha_t^{\omega} \in \operatorname{Aut}(\mathcal{O}_n)$ is a strongly continuous group homomorphism. **Definition 2.1** Let $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \Gamma^n$ be given. We define the action $\alpha^{\omega} : G \cap \mathcal{O}_n$ by

$$\alpha_t^{\omega}(S_i) = \langle t | \omega_i \rangle S_i \quad (i = 1, 2, \dots, n, t \in G).$$

The action $\alpha^{\omega} : G \curvearrowright \mathcal{O}_n$ becomes quasi-free (for a definition of quasi-free actions on Cuntz algebras, see [E]). Conversely, any quasi-free action of the abelian group G on \mathcal{O}_n is conjugate to α^{ω} for some $\omega \in \Gamma^n$.

Since the abelian group G is amenable, the reduced crossed product of the action $\alpha^{\omega}: G \cap \mathcal{O}_n$ coincides with the full crossed product of it. We denote it by $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and call it the crossed product. The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ has a C^* -subalgebra $\mathbb{C}1 \rtimes_{\alpha^{\omega}} G$ which is isomorphic to $C_0(\Gamma)$. Throughout this paper, we always consider $C_0(\Gamma)$ as a C^* -subalgebra of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$, and use f, g, \ldots for denoting elements of $C_0(\Gamma) \subset \mathcal{O}_n \rtimes_{\alpha^{\omega}} G$. The Cuntz algebra \mathcal{O}_n is naturally embedded into the multiplier algebra $\mathcal{M}(\mathcal{O}_n \rtimes_{\alpha^{\omega}} G)$ of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$. For each $\mu = (i_1, i_2, \ldots, i_k)$ in \mathcal{W}_n , we define an element ω_{μ} of Γ by $\omega_{\mu} = \sum_{j=1}^k \omega_{i_j}$. For $\gamma_0 \in \Gamma$, we define a (reverse) shift automorphism $\sigma_{\gamma_0} : C_0(\Gamma) \to C_0(\Gamma)$ by $(\sigma_{\gamma_0} f)(\gamma) = f(\gamma + \gamma_0)$ for $f \in C_0(\Gamma)$. Once noting that $\alpha_t^{\omega}(S_{\mu}) = \langle t | \omega_{\mu} \rangle S_{\mu}$ for $\mu \in \mathcal{W}_n$, one can easily verify that $fS_{\mu} = S_{\mu}\sigma_{\omega_{\mu}}f$ for any $f \in C_0(\Gamma) \subset \mathcal{O}_n \rtimes_{\alpha^{\omega}}G$ and any $\mu \in \mathcal{W}_n$. From this fact, we have $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G = \overline{\operatorname{span}} \{S_{\mu}fS_{\nu}^* \mid \mu, \nu \in \mathcal{W}_n, f \in C_0(\Gamma)\}$, where $\overline{\operatorname{span}}$ means the closure of the linear span.

3 The ideal structure of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$

In [Ka1], we completely determined the ideal structures of the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$. For an ideal I of the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$, we define the closed subset X_I of Γ by $I \cap C_0(\Gamma) = C_0(\Gamma \setminus X_I)$. The closed subset X_I satisfies

- (i) For any $\gamma \in X_I$ and any $i \in \{1, 2, ..., n\}$, we have $\gamma + \omega_i \in X_I$.
- (ii) For any $\gamma \in X_I$, there exists $i \in \{1, 2, ..., n\}$ such that $\gamma \omega_i \in X_I$.

The closed subset of Γ satisfying two conditions above is said to be ω -invariant. A closed set X is ω -invariant if and only if $X = \bigcup_{i=1}^{n} (X + \omega_i)$. For a closed ω -invariant subset X of Γ , we define $I_X \subset \mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ by

$$I_X = \overline{\operatorname{span}} \{ S_\mu f S_\nu^* \mid \mu, \nu \in \mathcal{W}_n, \ f \in C_0(\Gamma \setminus X) \}.$$

One can see that I_X is an ideal of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and invariant under the gauge action β of \mathbb{T} on $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$, which is defined by $\beta_t(S_{\mu}fS_{\nu}^*) = t^{|\mu|-|\nu|}S_{\mu}fS_{\nu}^*$ for $\mu, \nu \in \mathcal{W}_n, f \in C_0(\Gamma)$ and $t \in \mathbb{T}$. With a technique using conditional expectations, we can prove the following.

Proposition 3.1 ([Ka1, Theorem 3.14]) The two maps $I \mapsto X_I$ and $X \mapsto I$ between the set of gauge invariant ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and the set of closed ω -invariant subsets of Γ are the inverses of each other.

The ideal structure of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ depends on whether $\omega \in \Gamma^n$ satisfies the following condition:

Condition 3.2 For each $i \in \{1, 2, ..., n\}$, one of the following two conditions is satisfied:

- (i) For any positive integer $k, k\omega_i \neq 0$.
- (ii) There exists $j \neq i$ such that $-\omega_j$ is in the closed semigroup generated by $\omega_1, \omega_2, \ldots, \omega_n$ and $-\omega_i$.

This condition is an analogue of Condition (II) in the case of Cuntz-Krieger algebras [C2] or Condition (K) in the case of graph algebras [KPRR].

Theorem 3.3 ([Ka1, Theorem 5.2]) When ω satisfies Condition 3.2, any ideal is gauge invariant. Hence there is a one-to-one correspondence between the set of ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and the set of closed ω -invariant subsets of Γ .

When ω does not satisfy Condition 3.2, there exists $i_0 \in \{1, 2, \ldots, n\}$ such that $k\omega_{i_0} = 0$ for some positive integer k, and that $-\omega_i$ is not in the closed semigroup generated by $\omega_1, \omega_2, \ldots, \omega_n$ and $-\omega_{i_0}$ for any $i \neq i_0$. Note that such i_0 is unique. Let Γ' be the quotient group of Γ by the subgroup generated by ω_1 and denote by $[\gamma]$ the image in Γ' of $\gamma \in \Gamma$. Define a C^* -subalgebra A of $\mathcal{O}_n \rtimes_{\alpha^\omega} G$ by $A = \overline{\operatorname{span}}\{S_{i_0}^k f S_{i_0}^{*l} \mid f \in C_0(\Gamma), k, l \in \mathbb{N}\}$. The C^* -algebra A is isomorphic to the Toeplitz algebra of the Hilbert module coming from the automorphism $\sigma_{\omega_{i_0}}$ of $C_0(\Gamma)$, hence there is a surjective map $\pi : A \to C_0(\Gamma) \rtimes_{\sigma_{\omega_{i_0}}} \mathbb{Z}$. It is not hard to see that there is a one-to-one correspondence between the set of ideals of $C_0(\Gamma) \rtimes_{\sigma_{\omega_{i_0}}} \mathbb{Z}$ and the set of closed subset of $\Gamma' \times \mathbb{T}$. For an ideal I of $\mathcal{O}_n \rtimes_{\alpha^\omega} G$, we define the closed subset Y_I of $\Gamma' \times \mathbb{T}$ which corresponds to the ideal $\pi(I \cap A)$. The closed set Y_I satisfies that $([\gamma + \omega_i], \theta') \in Y_I$ for any $i \neq i_0$ any $\theta' \in \mathbb{T}$ and any $([\gamma], \theta) \in Y_I$. Conversely, for any closed set Y of $\Gamma' \times \mathbb{T}$ satisfying the condition above, we can construct the ideal I_Y of $\mathcal{O}_n \rtimes_{\alpha^\omega} G$ so that $Y_{I_Y} = Y$ (see Definition 5.17 and Proposition 5.23 of [Ka1]).

Theorem 3.4 ([Ka1, Theorem 5.49]) In the above setting, we have $I_{Y_I} = I$ for any ideal I of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$. Thus there is a one-to-one correspondence between the set of ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and the set of closed subsets of $\Gamma' \times \mathbb{T}$ satisfying the condition above.

On the way to prove the two theorems above, we get another proofs of the following known facts (see [Ki] and [OP]):

- $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is simple if and only if the closed semigroup generated by $\omega_1, \omega_2, \ldots, \omega_n$ and $-\omega_i$ is equal to Γ for any $i = 1, 2, \ldots, n$ [Ka1, Theorem 4.8].
- $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is primitive if and only if the closed group generated by $\omega_1, \omega_2, \ldots, \omega_n$ is equal to Γ [Ka1, Theorem 4.12],

By Theorem 3.3 and Theorem 3.4, we can show that the strong Connes spectrum $\widetilde{\Gamma}(\alpha^{\omega})$ of the action α^{ω} is the intersection of the *n* closed semigroups generated by $\omega_1, \omega_2, \ldots, \omega_n$ and $-\omega_i$ where $i = 1, 2, \ldots, n$ [Ka1, Proposition 6.2]. The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is

isomorphic to the Cuntz Pimsner algebra of a certain Hilbert bimodule. From this fact, we have the following exact sequence.

$$\begin{array}{cccc} K_0(C_0(\Gamma)) & \xrightarrow{\mathrm{id}-\sum_{i=1}^n (\sigma_{\omega_i})_*} & K_0(C_0(\Gamma)) & \xrightarrow{\iota_*} & K_0(\mathcal{O}_n \rtimes_{\alpha^{\omega}} G) \\ & & & & \downarrow \\ & & & & \\ K_1(\mathcal{O}_n \rtimes_{\alpha^{\omega}} G) & \xleftarrow{\iota_*} & K_1(C_0(\Gamma)) & \xleftarrow{\mathrm{id}-\sum_{i=1}^n (\sigma_{\omega_i})_*} & K_1(C_0(\Gamma)) \end{array}$$

where ι is the embedding $\iota: C_0(\Gamma) \hookrightarrow \mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ [Ka1, Proposition 6.5].

4 AF-embeddability and pure infiniteness of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$

In [Ka2], we gave a sufficient condition for the crossed products $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ to be AFembeddable. To the best of the author's knowledge, this is the first case to have succeeded in embedding crossed products of purely infinite C^* -algebras into AF-algebras except trivial cases.

Theorem 4.1 ([Ka2, Theorem 3.8]) If $-\omega_i \notin \overline{\{\omega_\mu \mid \mu \in \mathcal{W}_n\}}$ for any i = 1, 2, ..., n, then the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is AF-embeddable.

In [KK1], Kishimoto and Kumjian proved that $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}$ becomes stable and projectionless when $\omega \in \mathbb{R}^n$ satisfies $-\omega_i \notin \{\omega_{\mu} \mid \mu \in \mathcal{W}_n\}$. Hence $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}$ is stably finite in this case. Theorem 4.1 gives another proof of this fact.

In [KK2], they gave a necessary and sufficient condition that $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}$ becomes simple and purely infinite. Here, we generalize their result.

Theorem 4.2 ([Ka2, Corollary 4.9]) The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is simple and purely infinite if and only if $\Gamma = \overline{\{\omega_{\mu} \mid \mu \in \mathcal{W}_n\}}$.

By the two theorems above and the characterization of simplicity, we have the following dichotomy.

Corollary 4.3 ([Ka2, Corollary 4.8]) The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is either purely infinite or AF-embeddable when it is simple.

5 Examples

5.1 When G is compact

When G is compact, its dual group Γ becomes discrete. In this case, for any $\omega \in \Gamma^n$ the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is a graph algebra of some skew product graph which is row-finite (see [KP]) and a part of our results here has been already proved in, for example, [BPRS]. Particularly, we have the following.

Proposition 5.1 ([Ka2, Proposition 3.9]) When G is compact, the following are equiv-

(i) $-\omega_i \notin \overline{\{\omega_\mu \mid \mu \in \mathcal{W}_n\}}$ for any i = 1, 2, ..., n.

- (ii) The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is stably finite.
- (iii) The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is AF-embeddable.
- (iv) The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ itself is an AF-algebra.

5.2 When G is discrete

When G is discrete, its dual group Γ becomes compact. Let us denote by Λ_{ω} a closed semigroup generated by $\omega_1, \omega_2, \ldots, \omega_n$. One can see that $-\omega_i \in \Lambda_{\omega}$ for $i = 1, 2, \ldots, n$. Hence any $\omega \in \Gamma^n$ satisfies Condition 3.2. Since the closed set X is ω -invariant if and only if $X + \Lambda_{\omega} = X$, the set of all closed ω -invariant subsets of Γ is one-to-one correspondent to the set of all closed subset of Γ/Λ_{ω} . Here note that Λ_{ω} is a closed subgroup of Γ . By Theorem 3.3, the set of all ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ corresponds bijectively to the set of all closed subset of Γ/Λ_{ω} .

We can examine the ideal structures of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ directly as well as other structures of it. Let G' be the quotient of G by the closed subgroup

$$\{t \in G \mid \alpha_t^{\omega} = \mathrm{id}\} = \{t \in G \mid \langle t \mid \omega_i \rangle = 1 \text{ for } i = 1, 2, \dots, n\}$$
$$= \{t \in G \mid \langle t \mid \gamma \rangle = 1 \text{ for any } \gamma \in \Lambda_{\omega}\}.$$

The dual group of G' is naturally isomorphic to Λ_{ω} . Since $\omega \in \Lambda_{\omega}^n \subset \Gamma^n$, we can define an action $\alpha^{\omega} : G' \cap \mathcal{O}_n$. The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G'$ is simple and purely infinite by Theorem 4.2. The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ becomes a continuous field over the compact space Γ/Λ_{ω} whose fiber of any point is isomorphic to $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G'$. From this observation, we can easily see that the set of all ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ corresponds bijectively to the set of all closed subset of Γ/Λ_{ω} .

When G is discrete, the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ has an infinite projection, hence is never AF-embeddable.

5.3 When $G = \mathbb{R}^m$

When $G = \mathbb{R}^m$, its dual group Γ is also \mathbb{R}^m . For $\omega \in (\mathbb{R}^m)^n$, we define the following.

Definition 5.2 Let $\omega = (\omega_1, \omega_2, \dots, \omega_n) \in (\mathbb{R}^m)^n$. We denote the affine space generated by $\omega_1, \omega_2, \dots, \omega_n \in \mathbb{R}^m$ and their convex hull by

$$L_{\omega} = \left\{ \sum_{i=1}^{n} t_i \omega_i \in \mathbb{R}^m \mid \sum_{i=1}^{n} t_i = 1 \right\}, \quad C_{\omega} = \left\{ \sum_{i=1}^{n} t_i \omega_i \in \mathbb{R}^m \mid t_i \ge 0, \sum_{i=1}^{n} t_i = 1 \right\},$$

respectively. The set C_{ω} is a closed subset of L_{ω} . We denote by O_{ω} the interior of C_{ω} in L_{ω} .

We define the three types for elements of $(\mathbb{R}^m)^n$.

Definition 5.3 Let $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in (\mathbb{R}^m)^n$. The element ω is said to be of type (+) if $0 \notin C_{\omega}$, to be of type (0) if $0 \in C_{\omega} \setminus O_{\omega}$, and to be of type (-) if $0 \in O_{\omega}$.

On this type, we can prove the following. We omit proofs.

Lemma 5.4 If ω is of type (+), then there exists $v \in \mathbb{R}^m \setminus \{0\}$ such that the inner product $\omega_i \cdot v$ of ω_i and v is non-negative for any i = 1, 2, ..., n. Moreover when $m \geq 2$, we can find such v so that there exists i_0 with $\omega_{i_0} \cdot v = 0$.

Lemma 5.5 If ω is of type (0), then there exists $v \in \mathbb{R}^m \setminus \{0\}$ such that $\omega_i \cdot v \geq 0$ for any i = 1, 2, ..., n, and there exists i_0 with $\omega_{i_0} \cdot v = 0$.

From these two lemmas, we get the following characterizations of type (-) and type (+).

Proposition 5.6 An element ω is of type (-) if and only if the closed semigroup generated by $\omega_1, \omega_2, \ldots, \omega_n$ is a group. An element ω is of type (+) if and only if $-\omega_i \notin \overline{\{\omega_\mu \mid \mu \in \mathcal{W}_n\}}$ for any $i = 1, 2, \ldots, n$.

Combining this proposition with Theorem 4.1 and Theorem 4.2, we have the following. An element ω is called aperiodic if the closed group generated by $\omega_1, \omega_2, \ldots, \omega_n$ is \mathbb{R}^m .

Proposition 5.7 The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}^m$ is AF-embeddable if ω is of type (+). The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}^m$ is simple and purely infinite if and only if ω is of type (-) and aperiodic.

It is easy to see that an element ω does not satisfy Condition 3.2 if and only if 0 is an extreme point of C_{ω} and there is only one $i \in \{1, 2, ..., n\}$ with $\omega_i = 0$. In this case, ω is of type (0). The following is a consequence of Lemma 5.4 and Lemma 5.5.

Proposition 5.8 If ω is of type (0) or if ω is of type (+) and $m \geq 2$, then there exists $i_0 \in \{1, 2, ..., n\}$ such that the closed semigroup generated by $\omega_1, \omega_2, ..., \omega_n$ and $-\omega_{i_0}$ is not \mathbb{R}^m . Hence in this case, the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}^m$ is not simple.

The condition for simplicity follows from the proposition above.

Proposition 5.9 When m = 1, the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}^m$ is simple if and only if ω is of type (+) or (-) and aperiodic.

When $m \geq 2$, the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}^m$ is simple if and only if ω is of type (-) and aperiodic.

When $m \geq 2$, the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} \mathbb{R}^m$ is purely infinite if it is simple.

References

- [BPRS] Bates, T.; Pask, D.; Raeburn, I.; Szymański, W. The C*-algebras of row-finite graphs. New York J. Math. 6 (2000), 307–324.
- [C1] Cuntz, J. Simple C*-algebras generated by isometries. Comm. Math. Phys. 57 (1977), no. 2, 173–185.
- [C2] Cuntz, J. A class of C*-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C*-algebras. Invent. Math. 63 (1981), no. 1, 25– 40.
- [E] Evans, D. E. On O_n . Publ. Res. Inst. Math. Sci. 16 (1980), no. 3, 915–927.
- [Ka1] Katsura, T. The ideal structures of crossed products of Cuntz algebras by quasifree actions of abelian groups. Preprint.
- [Ka2] Katsura, T. AF-embeddability of crossed products of Cuntz algebras. Preprint.
- [Ka3] Katsura, T. On crossed products of the Cuntz algebra \mathcal{O}_{∞} by quasi-free actions of abelian groups. Preprint.
- [Ki] Kishimoto, A. Simple crossed products of C^{*}-algebras by locally compact abelian groups. Yokohama Math. J. **28** (1980), no. 1-2, 69-85.
- [KK1] Kishimoto, A.; Kumjian, A. Simple stably projectionless C^{*}-algebras arising as crossed products. Canad. J. Math. 48 (1996), no. 5, 980–996.
- [KK2] Kishimoto, A.; Kumjian, A. Crossed products of Cuntz algebras by quasi-free automorphisms. Operator algebras and their applications, 173–192, Fields Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997.
- [KP] Kumjian, A.; Pask, D. C^{*}-algebras of directed graphs and group actions. Ergodic Theory Dynam. Systems **19** (1999), no. 6, 1503–1519.
- [KPRR] Kumjian, A.; Pask, D.; Raeburn, I.; Renault, J. Graphs, groupoids, and Cuntz-Krieger algebras. J. Funct. Anal. 144 (1997), no. 2, 505-541.
- [OP] Olesen, D.; Pedersen, G. K. Applications of the Connes spectrum to C^{*}dynamical systems. J. Funct. Anal. **30** (1978), no. 2, 179–197.