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1Introduction
The crossed products of C’-algebras give us plenty of interesting examples and the struc-
tures of them have been examined by several authors. In [KK1] and [KK2], A. Kishimoto
and A. Kumjian dealt with, among others, the crossed products of Cuntz algebras by
quasi-ffee actions of the real group R. In [Kal] and [Ka2], we examined the crossed
products of Cuntz algebras by quasi-free actions of arbitrary locally compact, second
countable, abelian groups. In this note, we summarize the results of [Kal] and [Ka2], and
discuss several examples.

2Preliminaries
In this section, we review some basic objects and fix the notation.

For $n=2,3$, $\ldots$ , the Cuntz algebra $O_{n}$ is the universal C’-algebra generated by $n$

isometries $S_{1}$ , $S_{2}$ , $\ldots$ , $S_{n}$ , satisfying $\sum_{i=1}^{n}ShSi2=1$ [C1]. In this note, we only consider
the case $n<\infty$ . For similar results on the crossed products of $O_{\infty}$ , see [Ka3]. For
$k\in \mathrm{N}=\{0,1, \ldots\}$ , we define the set $\mathcal{W}_{n}^{(k)}$ of $k$-tuples by $\mathcal{W}_{n}^{(0)}=\{\emptyset\}$ and

$\mathcal{W}_{n}^{(k)}=$ $\{(i_{1}, i_{2}, \ldots, i_{k})|i_{j}\in\{1,2, \ldots, n\}\}$ .

We set $\mathcal{W}_{n}=\bigcup_{k=0}^{\infty}\mathcal{W}_{n}^{(k)}$ . For $\mu=$ ( $i_{1}$ , i2, $\ldots$ , $i_{k}$ ) $\in \mathcal{W}_{n}$ , we denote its length $k$ by $|\mu|$ ,
and set $S_{\mu}=S_{i_{1}}S_{i_{2}}\cdots$ $S_{i_{k}}\in O_{n}$ . Note that $|\emptyset|=0$ , $s_{\emptyset}=1$ . For $\mu=$ ( $i_{1}$ , i2, $\ldots$ , $i_{k}$), $\nu=$

$(j_{1},j_{2}, \ldots,j_{l})\in \mathcal{W}_{n}$ , we define their product $\mu\nu$
$\in \mathcal{W}_{n}$ by $\mu\nu=$ ( $i_{1}$ , i2, $\ldots$ , $i_{k},j_{1}$ ,i2, $\ldots,j_{l}$ ).

Let $G$ be alocally compact abelian group which satisfies the second axiom of count-
ability and $\Gamma$ be the dual group of $G$ . We always $\mathrm{u}\mathrm{s}\mathrm{e}+\mathrm{f}\mathrm{o}\mathrm{r}$ multiplicative operations of
abelian groups except for $\mathrm{T}$ , which is the group of the unit circle in the complex plane C.
The pairing of $t\in G$ and $\gamma\in\Gamma$ is denoted by $\langle t|\gamma\rangle\in \mathrm{T}$.

Let us take $\omega$ $=$ $(\omega_{1},\omega_{2}, \ldots,\omega_{n})\in\Gamma^{n}$ and fix it. Since the $n$ isometries $\langle t|\omega_{1}\rangle S_{1}$ ,
$\langle t|\omega_{2}\rangle S_{2}$ , $\ldots$ , $\langle t|\omega_{n}\rangle S_{n}$ also satisfy the relation above for any $t\in G$ , there is a $*-$

automorphism $\alpha_{t}^{\omega}$ : $O_{n}arrow O_{n}$ such that $\alpha_{t}^{\omega}(S_{i})=\langle t |\omega_{i}\rangle S_{i}$ for $i=1,2$, $\ldots$ , $n$ . One can
see that $\alpha^{\omega}$ : $G\ni t\mapsto*\alpha_{t}^{\omega}\in \mathrm{A}\mathrm{u}\mathrm{t}(O_{n})$ is astrongly continuous group homomorphism
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Definition 2.1 Let $\omega=$ $(\omega_{1},\omega_{2}, \ldots,\omega_{n})\in\Gamma^{n}$ be given. We define the action $\alpha^{\omega}$ : $G\cap$

$O_{n}$ by
$\alpha_{t}^{\omega}(S\dot{.})=\langle t|\omega:\rangle S_{\dot{1}}$ (i $=1,$ 2, \ldots ,n, t $\in G)$ .

The action $\alpha^{\omega}$ : $Gr[searrow] O_{n}$ becomes quasi-free (for adefinition of quasi-ffee actions on
Cuntz algebras, see [E] $)$ . Conversely, any quasi-ffee action of the abelian group $G$ on $O_{n}$

is conjugate to $\alpha^{\omega}$ for some $\omega$ $\in \mathrm{I}$ ”.
Since the abelian group $G$ is amenable, the reduced crossed product of the action

$\alpha^{\omega}$ : $Gr\backslash$ $O_{n}$ coincides with the full crossed product of it. We denote it by $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ and
call it the crossed product. The crossed product $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ has a $C^{*}$-subalgebra $\mathbb{C}1\aleph_{\alpha}\cdot G$

which is isomorphic to $C_{0}(\Gamma)$ . Throughout this paper, we always consider $C_{0}(\Gamma)$ as a
C’-subalgebra of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ , and use $f,g$ , $\ldots$ for denoting elements of $C_{0}(\Gamma)\subset Onx\text{\^{a}} GG$ .
The Cuntz algebra $O_{n}$ is naturally embedded into the multiplier algebra $M(O_{n}x_{\alpha^{\omega}}G)$

of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ . For each $\mu=$ $(i_{1},i_{2}, \ldots,i_{k})$ in $\mathcal{W}_{n}$ , we define an element $\omega_{\mu}$ of $\Gamma$ by $\omega_{\mu}=$

$\sum_{j=1}^{k}\omega_{i_{j}}$ . For $\gamma_{0}\in\Gamma$, we define a(reverse) shift automorphism $\sigma_{\gamma 0}$ : $C_{0}(\Gamma)arrow C_{0}(\Gamma)$ by
$(\sigma_{\gamma 0}f)(\gamma)=f(\gamma+\gamma_{0})$ for $f\in C_{0}(\Gamma)$ . Once noting that $\alpha_{t}^{\omega}(S_{\mu})=\langle t|\omega_{\mu}\rangle S_{\mu}$ for $\mu\in \mathcal{W}_{n}$ ,
one can easily verify that $fS_{\mu}=S_{\mu}\sigma_{\omega_{\mu}}f$ for any $f\in C_{0}(\Gamma)\subset O_{n}\mathrm{x}_{\alpha^{\omega}}G$ and any $\mu\in \mathcal{W}_{n}$ .
From this fact, we have $O_{n}\mathrm{x}_{\alpha}.G=\overline{\mathrm{s}\mathrm{p}\mathrm{m}}\{S_{\mu}fS_{\nu}^{*}|\mu, \nu\in \mathcal{W}_{n}, f\in C_{0}(\Gamma)\}$ , where spam
means the closure of the linear span.

3The ideal structure of $\mathcal{O}_{n}\mathrm{x}_{\alpha^{\omega}}G$

In [Kal], we completely determined the ideal structures of the crossed product $O_{n}x_{\alpha}.G$ .
For an ideal I of the crossed product $O_{n}\nu_{\alpha}.G$, we define the closed subset $X_{I}$ of $\Gamma$ by
$I\cap \mathrm{C}\mathrm{o}(\mathrm{r})=\mathrm{C}0(\mathrm{F}\backslash X_{I})$ . The closed subset $X_{I}$ satisfies

(i) For any $\gamma\in X_{I}$ and any i $\in$ {1,2, \ldots ,n}, we have $\gamma+\omega:\in X_{I}$ .
(ii) For any $\gamma\in X_{I}$ , there exists i $\in$ {1,2, \ldots , n} such that $\gamma^{-\omega}:\in X_{I}$ .

The closed subset of $\Gamma$ satisfying two conditions above is said to be $\omega$ invariant A
closed set $X$ is $\omega$-invariant if and only if $X= \bigcup_{=1}^{n}.\cdot(X+\omega.\cdot)$ . For aclosed $0$;-invariant
subset $X$ of $\Gamma$ , we define $I_{X}\subset O_{n}\aleph_{\alpha}\cdot G$ by

$I_{X}=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}\{S_{\mu}fS_{\nu}^{*}|\mu, \nu\in \mathcal{W}_{n}, f\in C_{0}(\Gamma\backslash X)\}$ .

One can see that $I_{X}$ is an ideal of $O_{n}\nu_{\alpha^{w}}G$ and invariant under the gauge action A of $\mathrm{T}$

on $O_{n}\mathrm{x}_{\alpha}.G$ , which is defined by $\beta_{t}(S_{\mu}fS_{\nu}^{*})=t^{|\mu|-|\nu|}S_{\mu}fS_{\nu}^{*}$ for $\mu$ , $\nu\in \mathcal{W}_{n}$ , $f\in C_{0}(\Gamma)$ and
$t\in \mathrm{T}$ . With atechnique using conditional expectations, we can prove the following.

Proposition 3.1 ([Kal, Theorem 3.14]) The two maps $I\mapsto X_{I}$ and $X\succ*I$ be tween
the set of gauge invariant ideals of $O_{n}\mathrm{x}_{\alpha}.G$ and the set of closed $\omega$-invariant subsets of

$\Gamma$ are the inverses of each other.

The ideal structure of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ depends on whether $\omega$ $\in\Gamma^{n}$ satisfies the folowing
conditions

10



Condition 3.2 For each i $\in$ {1,2, \ldots , n}, one of the following two conditions is satisfied:

(i) For any positive integer $k$ , $k\omega_{i}\neq 0$ .

(ii) There exists $j\neq i$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-\omega_{j}$ is in the closed semigroup generated by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}$

$\mathrm{a}\mathrm{n}\mathrm{d}-\omega_{i}$ .

This condition is an analogue of Condition (II) in the case of Cuntz-Krieger algebras
[C2] or Condition (K) in the case of graph algebras [KPRR].

Theorem 3.3 ([Kal, Theorem 5.2]) When $\omega$ satisfies Condition 3.2, any ideal is gauge
invariant. Hence there is $a$ one-tO-One correspondence between the set of ideals of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$

and the set of closed $\omega$ -invariant subsets of $\Gamma$ .

When $\omega$ does not satisfy Condition 3.2, there exists $i_{0}\in\{1,2, \ldots, n\}$ such that
$k\omega_{i_{0}}=0$ for some positive integer $k$ , and $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-\omega_{i}$ is not in the closed semigroup generated
by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}$ and $-\omega_{i_{0}}$ for any $i\neq i_{0}$ . Note that such $i_{0}$ is unique. Let $\Gamma’$ be the
quotient group of $\Gamma$ by the subgroup generated by $\omega_{1}$ and denote by $[\gamma]$ the image in $\Gamma’$ of
$\gamma\in \mathrm{F}$ . Define a $C^{*}$-subalgebraA of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ by $A=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}}\{S_{i_{0}}^{k}fS_{i_{\mathrm{O}}}^{l}’|f\in C_{0}(\Gamma), k, l\in \mathrm{N}\}$.
The C’-algebra $A$ is isomorphic to the Toeplitz algebra of the Hilbert module coming from
the automorphism $\sigma_{\omega}$: of $C_{0}(\Gamma)$ , hence there is asurjective map $\pi$ : $Aarrow C_{0}(\Gamma)\mathrm{x}_{\sigma_{\omega}:_{0}}$

$\mathbb{Z}$ .
It is not hard to see that there is aone-t0-0ne correspondence between the set of ideals of
$C_{0}(\Gamma)\mathrm{x}_{\sigma_{\omega}:_{0}}\mathbb{Z}$ and the set of closed subset of $\Gamma’\cross \mathrm{T}$ . For an ideal I of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ , we define
the closed subset $\mathrm{Y}_{I}$ of $\Gamma’\cross \mathrm{T}$ which corresponds to the ideal $\pi(I\cap A)$ . The closed set $\mathrm{Y}_{I}$

satisfies that $([\gamma+\omega_{i}], \theta’)\in Y_{I}$ for any $i\neq i_{0}$ any $\mathit{0}’\in \mathrm{T}$ and any $([\gamma], \theta)\in \mathrm{Y}_{I}$ . Conversely,
for any closed set $Y$ of $\Gamma’\cross \mathrm{T}$ satisfying the condition above, we can construct the ideal
$I_{Y}$ of $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ so that $\mathrm{Y}_{I_{Y}}=Y$ (see Definition 5.17 and Proposition 5.23 of [Kal]).

Theorem 3.4 ([Kal, Theorem 5.49]) In the above setting, we have $I_{Y_{I}}=I$ for any
ideal I of $O_{n}\mathrm{x}_{\alpha^{\omega}}$ G. Thus there is $a$ one-tO-One $co$ respondence between the set of ideals

of $O_{n}\mathrm{x}_{\alpha}.G$ and the set of closed subsets of $\Gamma’\cross \mathrm{T}$ satisfying the condition above.

On the way to prove the two theorems above, we get another proofs of the following
known facts (see [Ki] and [OP]):

$\bullet$ $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ is simple if and only if the closed semigroup generated by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}$

$\mathrm{a}\mathrm{n}\mathrm{d}-\omega_{i}$ is equal to $\Gamma$ for any $i=1,2$ , $\ldots$ , $n$ [Kal, Theorem 4.8].

$\bullet$ $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ is primitive if and only if the closed group generated by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}$ is
equal to $\Gamma$ [Kal, Theorem 4.12],

By Theorem 3.3 and Theorem 3.4, we can show that the strong Connes spectrum $\tilde{\Gamma}(\alpha^{\omega})$

of the action $\alpha^{\omega}$ is the intersection of the $n$ closed semigroups generated by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}$

and $-\omega_{i}$ where $i=1,2$ , $\ldots$ , $n$ [Kal, Proposition 6.2]. The crossed product $O_{n}\nu_{\alpha^{\omega}}G$ is
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isomorphic to the Cuntz Pimsner algebra of acertain Hilbert bimodule. Prom this fact,
we have the following exact sequence.

$K_{0}(C_{0}(\Gamma))\uparrow$ $K_{0}(O_{n_{\mathrm{I}}^{*}\alpha^{\omega}}G)$

$K_{1}(O_{n^{*}\alpha^{w}}G)$ $K_{1}(C_{0}(\Gamma))$

where $\iota$ is the embedding $\iota$ : $C_{0}(\Gamma)\epsilonarrow O_{n}\aleph_{\alpha^{\omega}}G$ [Kal, Proposition 6.5].

4 $\mathrm{A}\mathrm{F}$-embeddability and pure infiniteness of $\mathcal{O}_{n}\mathrm{x}_{\alpha^{\omega}}G$

In [Ka2], we gave asufficient condition for the crossed products $O_{n}\mathrm{x}_{\alpha}.G$ to be AF-
embeddable. To the best of the author’s knowledge, this is the first case to have succeeded
in embedding crossed products of purely infinite C’-algebra into $\mathrm{A}\mathrm{F}$-algebras except
trivial cases.

Theorem 4.1 ([Ka2, Theorem 3.8]) $If-\omega:\not\in\overline{\{\omega_{\mu}|\mu\in \mathcal{W}_{n}\}}$ for any $i=1,2$ , $\ldots$ , $n$ ,
then the crossed product $O_{n}*_{\alpha}\cdot G$ is AF-embeddable.

In [KK1], Kishimoto and Kumjian proved that $O_{n}\mathrm{x}_{\alpha}.\mathrm{R}$ becomes stable and projec-
tionless when $\omega$ $\in \mathrm{R}^{n}$ satisfies $-\omega:\not\in\overline{\{\omega_{\mu}|\mu\in \mathcal{W}_{n}\}}$. Hence $O_{n}\mathrm{n}_{\alpha^{\omega}}\mathrm{R}$ is stably finite in
this case. Theorem 4.1 gives another proof of this fact.

In [KK2], they gave anecessary and sufficient condition that $O_{n^{\aleph}\alpha^{w}}\mathrm{R}$ becomes simple
and purely infinite. Here, we generalze their result.

Theorem 4.2 ([Ka2, Coroll $\mathrm{y}$ $4.9]$ ) $\mathfrak{M}e$ crossed product $O_{n}\mathrm{x}_{\alpha^{w}}G$ is simple and purely
infinite if and only if $\Gamma=\{\omega_{\mu}|\mu\in \mathcal{W}_{n}\}$ .

By the two theorems above and the characterization of simplicity, we have the following
dichotomy.

Corollary 4.3 ([Ka2, Corollary 4.8]) The crossed product $O_{n}\mathrm{x}_{\alpha}.G$ is either purely
infinite or $AF$-ernbeddable when it is simple.

5Examples

5.1 When G is compact
When $G$ is compact, its dual group $\Gamma$ becomes discrete. In this case, for any $\omega$ $\in\Gamma^{n}$ the
crossed product $O_{n}x_{\alpha^{\omega}}G$ is agraph algebra of some skew product graph which is row-
finite (see [KP]) and apart of our results here has been already proved in, for example,
[BPRS]. Particularly, we have the following.

Proposition 5.1 ([Ka2, Proposition 3.9]) When $G$ is compact, the follovnng are equiv
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(i) $-\omega_{i}\not\in\overline{\{\omega_{\mu}|\mu\in \mathcal{W}_{n}\}}$ for any $i=1,2$ , $\ldots$ , $n$ .
(ii) The crossed product $O_{n}\succ 1_{\alpha^{\omega}}G$ is stably finite.
(iii) The crossed product $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ is AF-embeddable.
(iv) The crossed product $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ itself is an AF-algebra.

5.2 When G is discrete
When $G$ is discrete, its dual group $\Gamma$ becomes compact. Let us denote by $\Lambda_{\omega}$ aclosed
semigroup generated by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}$ . One can see that $-\omega_{i}\in\Lambda_{\omega}$ for $i=1,2$ , $\ldots$ , $n$ .
Hence any $\omega$ $\in\Gamma^{n}$ satisfies Condition 3.2. Since the closed set $X$ is $\omega$-invariant if and only
if $X+\Lambda_{\omega}=X$ , the set of all closed $\omega$-invariant subsets of $\Gamma$ is one-t0-0ne correspondent
to the set of all closed subset of $\Gamma/\Lambda_{\omega}$ . Here note that $\Lambda_{\omega}$ is aclosed subgroup of $\Gamma$ .
By Theorem 3.3, the set of all ideals of $O_{n}\mathrm{n}_{\alpha^{\omega}}G$ corresponds bijectively to the set of all
closed subset of $\Gamma/\Lambda_{\omega}$ .

We can examine the ideal structures of $O_{n}\mathrm{x}_{\alpha^{w}}G$ directly as well as other structures
of it. Let $G’$ be the quotient of $G$ by the closed subgroup

$\{t\in G|\alpha_{t}^{\omega}=\mathrm{i}\mathrm{d}\}=$ { $t$ $\in G|$ $\langle$ $t|\omega_{i}\rangle=1$ for $i=1,2$ , $\ldots$ , $n$}
$=$ {$t\in G|$ $\langle$ $t|\gamma\rangle=1$ for any $\gamma$

$\in\Lambda_{\omega}$ }.

The dual group of $G’$ is naturally isomorphic to $\Lambda_{\omega}$ . Since $\omega\in\Lambda_{\omega}^{n}\subset\Gamma^{n}$ , we can define
an action $\alpha^{\omega}$ : $G’\cap$ $O_{n}$ . The crossed product $O_{n}\mathrm{n}_{\alpha^{\omega}}G’$ is simple and purely infinite by
Theorem 4.2. The crossed product $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ becomes acontinuous field over the compact
space $\Gamma/\Lambda_{\omega}$ whose fiber of any point is isomorphic to $O_{n}*_{\alpha^{\omega}}G’$ . Prom this observation,
we can easily see that the set of all ideals of $O_{n}\aleph_{\alpha^{\omega}}G$ corresponds bijectively to the set
of all closed subset of $\Gamma/\Lambda_{\omega}$ .

When $G$ is discrete, the crossed product $O_{n}\mathrm{x}_{\alpha^{\omega}}G$ has an infinite projection, hence is
never AF-embeddable.

5.3 When G $=\mathbb{R}^{m}$

When $G=\mathbb{R}^{m}$ , its dual group $\Gamma$ is also $\mathbb{R}^{m}$ . For $\omega$ $\in(\mathbb{R}^{m})^{n}$ , we define the following.

Definition 5.2 Let $\omega$ $=$ $(\omega_{1},\omega_{2}, \ldots, \omega_{n})\in(\mathbb{R}^{m})^{n}$ . We denote the affine space generated
by $\omega_{1},\omega_{2}$ , $\ldots$ , $\omega_{n}\in \mathbb{R}^{m}$ and their convex hull by

$L_{\omega}= \{\sum_{i=1}^{n}t:\omega_{i}\in \mathbb{R}^{m}|\sum_{i=1}^{n}t_{i}=1\}$ , $C_{\omega}= \{\sum_{i=1}^{n}t_{i}\omega_{i}\in \mathbb{R}^{m}|t_{i}\geq 0$, $\sum_{i=1}^{n}t:=1\}$ ,

respectively. The set $C_{\omega}$ is aclosed subset of $L_{\omega}$ . We denote by $O_{\omega}$ the interior of $C_{\omega}$ in
$L_{\omega}$ .

We define the three types for elements of $(\mathbb{R}^{m})^{n}$ .

Definition 5.3 Let $\omega$ $=$ $(\omega_{1},\omega_{2}, \ldots,\omega_{n})\in(\mathbb{R}^{m})^{n}$ . The element $\omega$ is said to be of type
$(+)$ if 04 $C_{\omega}$ , to be of type (0) if $\mathrm{O}\in C_{\omega}\backslash O_{\omega}$ , and to be of type (-) if $0\in O_{\omega}$ .
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On this type, we can prove the following. We omit proofs.

Lemma 5.4 $If\omega$ is of type $(+)$ , then there eists $v\in \mathrm{R}^{m}\backslash \{0\}$ such that the inner product
$\omega$: $\cdot$ $v$ of $\omega$:and $v$ is non-negative for any $i=1,2$ , $\ldots$ , $n$ . Moreover when $m\geq 2_{f}$ we can
find such $v$ so that there $e$$\dot{m}tsi_{0}$ with $\omega_{\dot{w}}\cdot v=0$ .

Lemma 5.5 If $\omega$ is of type (0), then there $e$$\dot{m}tsv\in \mathrm{R}^{m}\backslash \{0\}$ such that $\omega:\cdot v\geq 0$ for
any $i=1,2$ , $\ldots$ , $n$ , and there exists $i_{0}$ with $\omega_{\dot{\mathrm{W}}}\cdot v=0$ .

Prom these two lemmas, we get the following characterizations of type (-) and type
$(+)$ .

Proposition 5.6 An element $\omega$ is of type (-) if and only if the closed semigroup gen-
erated by $\omega_{1},\omega_{2}$ , $\ldots,\omega_{n}$ is a group. An element $\omega$ is of type $(+)$ if and only $if-\omega.\cdot\not\in$

$\{\omega_{\mu}|\mu\in \mathcal{W}_{n}\}$ for any $i=1,2$ , $\ldots$ , $n$ .

Combining this proposition with Theorem 4.1 and Theorem 4.2, we have the following.
An element $\omega$ is called aperiodic if the closed group generated by $\omega_{1},\omega_{2}$ , \ldots ,

$\omega_{n}$ is $\mathrm{R}^{m}$ .

Proposition 5.7 The crossed product $O_{n}\mathrm{n}_{\alpha}.\mathrm{R}^{m}$ is $AF$-embeddable if $\omega$ is of type $(+)$ .
The crossed product $O_{n}\aleph_{\alpha^{\omega}}\mathrm{R}^{m}$ is simple and purely infinite if and only if $\omega$ is of type (-)
and aperiodic.

It is easy to see that an element $\omega$ does not satisfy Condition 3.2 if and only if 0is an
extreme point of $C_{\omega}$ and there is only one $i\in\{1,2, \ldots,n\}$ with $\omega:=0$ . In this case, $\omega$

is of type (0). The folowing is aconsequence of Lemma 5.4 and Lemma 5.5.

Proposition 5.8 If $\omega$ is of type (0) or if $\omega$ is of type $(+)$ and $m\geq 2$ , then there eists
$i_{0}\in\{1,2, \ldots, n\}$ such that the closed semigroup generated by $\omega_{1},\omega_{2}$ , $\ldots,\omega_{n}and-\omega_{\dot{\eta}}$ is
not $\mathrm{R}^{m}$ . Hence in this case, the crossed product $O_{n}x_{\alpha^{[] d}}\mathrm{R}^{m}$ is not simple.

The condition for simplicity follows ffom the proposition above.

Proposition 5.9 When $m=1$ , the crossed product $O_{n}\mathrm{n}_{\alpha^{\omega}}\mathrm{R}^{m}$ is simple if and only if $\omega$

is of type $(+)$ or (-) and aperiodic.
hen $m\geq 2$ , the crossed product $O_{n^{\aleph}\alpha^{\omega}}\mathrm{R}^{m}$ is simple if and only if $\omega$ is of type (-)

and aperiodic.

When $m\geq 2$ , the crossed product $O_{n}\mathrm{n}_{\alpha^{\omega}}\mathrm{R}^{m}$ is purely infinite if it is simple.
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