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NUCLEARITY OF REDUCED AMALGAMATED FREE PRODUCT
C*-ALGEBRAS “ =
| & TH BIEH

NARUTAKA OZAWA | l \ 5(3\ \Z. \%

ABSTRACT. We show that the reduced free product between two nuclear C*-algebras is nuclear
provided that at least one of the states is pure. We also show that some reduced amalgamated free
product C*-algebras are nuclear. These generalize an unpublished work of Dykema and Smith and
verify Dykema’s conjecture. Our proof is modeled after Dykema’s work on exactness of reduced
amalgamated free product C*-algebras. '

1. INTRODUCTION

The reduced amalgamated free product of C*-algebras was introduced by Voiculescu [Vo] [VDN].
Dykema [Dy] proved that the reduced amalgamated free product of exact C*-algebras is exact. We
will follow his paper [Dy] the notation. Dykema and Smith [DS] proved, among other things, that
if w is a pure state on the full matrix algebra M,, and ¢ is a state on a nuclear C*-algebra A, then
the reduced free product (M, ;w) * (A, ¢) is nuclear. We generalize their result and verify Dykema’s
conjecture that the reduced free product between two nuclear C*-algebras is nuclear provided that
at least one of the states is pure.

Theorem 1.1. Let B be a unital C*-algebra and let A; (i = 1,2) be a unital nuclear C*-algebra
containing B as a unital C*-algebra and having a conditional expectation ¢;, from A; onto B, whose
GNS representation is faithful. Let (A,¢) = (A1, ¢1) * (A2, ¢2) be the reduced amalgamated free
product of C*-algebras. Suppose either (i) ¢1 is a pure state (and B = C1) or (ii) K(E1) C A; in
its GNS representation. Then, A is nuclear.

We remark that the same assertion holds if one replaces nuclearity with one of the following, the
LLP, the WEP and exactness. In particular, we recover Dykema’s theorem [Dy].

We recall that a C*-algebra A is nuclear if A ® C = A ®mnax C for any C*-algebra C. It is well
known that the class of nuclear C*-algebras is closed under (i) passing to a C*-subalgebra that is a
range of a conditional expectation, (ii) passing to a quotient and (iii) taking an extension.

We recall the definition of reduced amalgamated free product. See [Dy] [Vo] for the detail. Let
B be a unital C*-algebra and let A; (i = 1,2) be a unital nuclear C*-algebra containing B as a
unital C*-algebra and having a conditional expectation ¢; from A; onto B such that for any nonzero
a € A;, there is z € A; with ¢;(z*a*azx) # 0. Let (-,-)g, be the B-valued inner product on A;,
given by (a,b)r, = ¢i(a*b), and let E; be the Hilbert B-module obtained from A; by separation
and completion. We denote by @ the element in E; arising from a in A;. Then 4; is faithfully
represented on F; by ab = ab. Let & = T;. € E; be the distinguished element and let EY be the
complementing B-submodule of §;B in E;, i.e., E; = §{,B® E?. Then the reduced amalgamated free
product C*-algebra (A, ¢) = (A1, ¢1) * (A2, 2) is a C*-subalgebra of B(FE) generated by copies of
A; and A;, where i

E=¢(B® P E; ®p---®p E}..
neN, i1...,in€{1,2},
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Here £B is the C*-algebra B regarded as a Hilbert B-module with the distinguished element £ = 1p.
For a € A7 = Ai Nker¢; and for (; € EY, G=1,...,n,n>2) with i; # --- # i, we have

(aly —&i(6i,al1)) ®2® - ®(n

a((1® - ®¢n) = +(&i,a1)(2 ® - ®Cn

aR(1® - ®C if 1y # 4.

The reduced amalgamated free product C*-algebra A is the closed linear span of B and the elements
of the form a, - --a, wheren € N, a; € A?j with 43 # --- # iy,.

ifi; =1
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2. PROOF OF THEOREM 1.1

The case (i) immediately follows from Choda’s proposition [Ch] (see also [BD]), Kishimoto and
Sakai’s lemma [KS] and the result of Dykema and Smith [DS] (or the case (ii) of our theorem). We
now concentrate our attention on the case (ii) and assume that K(E;) C A;. We may assume that
A; and A3 are separable thanks to Blanchard and Dykema’s theorem [BD)].

Following [Dy], we will construct, in this section, a sequence of ucp maps which approximates
the identity map on A. Let p; € B(E}) be the projection from E; onto £; B. Then p; € A; by the
assumption. For (; € EfJ G=1,...,n,n>2) with iy #--- # i,, we have

ifa € p1A1(1 — p1), then a((i® - ®¢) = (6,001)2 @ ® G sz.lzl
0 ifi; =2,
e ifi, =1
ifae(l-p)Ai(l—p1), then  a(G®--@C)=421828 @ ifh
0 ifi; =2,
] 0 ifi, =1
fae (1-p1)Aip;, then a(1®---®Cr) =4 p -
ifa €(1-p1)Aip, the @ ) {G®CI®---®C,. ifi; = 2.

We let, for m,n > 0,
X(m,0,n) = {boa1d1 - - - aminbmin : b0, bnin € CLUA3, by,... ,bpnyn—1 € A3,
ay...,am € (1 —p1)A1P1, @m41,--- 8min € P1A1(1 —p1)}
and
X(m,l,'n) = {b0a1b1 - Qmtn+1bmin+1 0o, bnpny1 € C1U Ag, b1,.-- ybmin € Ag,
a1...,8m € (1 —p1)A1p1, @mi1 € (1 — p1)A1(1 — p1),
Gm+2;- -+, Gmint+1 € P1A1(1 —p1)}
be the subsets of A.
Lemma 2.1. We have ‘
' (1 =p1)b(1 —p1) = ¢2(b)(1 — ;1)
for b e Ay. In particular,
A=35pan | (X(mom) UXm1m)-

m,n>0

i

Proof. Straightforward.
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We define Hilbert B-submodules F; of £ (I =0,1,...) by Fo =¢B @ ES and
20-1 2 2 21+1

A\

FlZrE‘f®B"'®BE§G9,E;’®B"'®BE§®rEg®B"‘®BEf@Eg®B"‘®BE§

for 1 =1,2,... and put Fi_ = EB:“:O Fi. We observe that E = @;2, Fi. Let Q; (resp. Q(—k)) be
the projection from E onto F) (resp. from E onto F_k))-

Lemma 2.2. We have the following.

bQi=Qib  ifbe Ay, aQi = Qi-1a  ifa € piAi(1—p)
aQi=Qia ifae(l—p1)Ai(1l-p), aQi=Qi1a fae(l—-p)Ai;m
Proof. Straightforward. 3/3\5

We define the isometry Vi: E — 2 ®c F(_k)®8 E (k=0,1,...) by
n S iONRE ifne F,withl <k
Vi: 1 ® - ®Cm+— 50R((1® - ® (k)@ (Cok41® - @ Cm) if ¢ € E and m > 2k
® - ®¢m 50@(C1 ® -+ ® (2k+1)8(Cok+2 ® - ® () if {1 € E5 and m > 2k + 1.
The symbol & is used in order to distingusish various tensor products.

Lemma 2.3. The isometries {Vi}32, have mutually orthogonal ranges and satisfy the following.

1®b1)Vi =WVib  ifbe Ay, 1®a®1)Vi =Vi_ia ifa€piAi(l —p1)

I®a@)Vi =Via ifac(1—-p1)Ai(1—p1), 1®a®1)Vk =Viyia fae€e(l-—p1)Aim
Proof. Straightforward. v - %j\ﬁ
‘Letting »

N

Vien = \/—]\71-—;—1 g Vi
be the isometry from E into £2 ®c F(_.n) ®B E, we consider the compression

On: B(E) = B(F-ny)
and the ucp map ¥n: B(F(_n)) — B(E) defined by

In(z) =VLnm10ze 1)V N

and we put O = Uy o Dy ‘
Lemma 2.4. The ucp map O maps A into A and

Jim ||z - On ()] =0
for every z € A. Indeed, if £ € X 0,n) U X(m,1,n) then

On(z) = max{0, min{l —m/(N +1),1 —n/(N + 1)}}z.

Proof. This follows from Lemma 2.3.

We define the ‘diagonal’ C*-subalgebra D in A as

D =span | (Xu,0n U Xq,10)-
1>0

W

This is indeed a C*-algebra as shown below.
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Lemma 2.5. Ifzx € X(; 1) and y € X,y withl>1'>0 and ¢, € {0,1}, then
zy € span(Xq,cy U X(1,1,))-
Proof. This follows from Lemma 2.1 and the equation
(1 = p1)bab’(1 — p1) = da2(bg1(a)b’)(1 - p1)

for a € A; and b, b’ € A3. =V
We define the ucp map A: A — B(E) by

o0

A(z) = strict- Z Qiz Q.

1=0

Lemma 2.6. The ucp map A is a conditional expectation from A onto D and
D={z€A:2Qi=Qiz foralll =0,1,...}.

Proof. This follows from Lemmas 2.1 and 2.2. &

Lemma 2.7. The C*-algebra D is nuclear.

We postpone the proof to Section 3 and now prove Theorem 1.1.

Proof of Theorem 1.1. We may assume that there is a € AS (resp. b € A3) such that ¢1(a*a) =1
(l‘esp. ¢2(b*b) = 1). Indeed, we just replace (B C A1,¢1) with (B QCI C A1 ® M, ® 'l/}),
where ¥(z) = 1111 for z = [zij] € Mg, and let @ = 1 ® e3;. We observe that the conditional
expectation id ® ¥ from A; ® M onto A, is compatible, in the sense of [BD], with the conditional
expectations ¢, and ¢1®%. The same for A,. Since A = (4,, ¢1)*(Az2, ¢2) is a C*-subalgebra of A =
(A1®Mp2, $1®@v) * (A2 ® My, $2®%) and is a range of the conditional expectation (¢ ®Y) * (2 @),
the nuclearity of A follows from that of A. We have used here Theorems 1.3 and 2.2 in [(BD).

Let a and b be as above. Then, w = bap; + ab(1 - p1) is an isometry in A with wQ; = Q4w for
l=0,1,... and hence we have wzw* € D for all = € D. Therefore, A is *-isomorphic to the crossed
product D by the *-endomorphism Adw and a fortiori is nuclear. ag\s

3. PROOF OF LEMMA 2.7

Let D1y = QD be the C*-subalgebra of B(F(-1). Since the ucp map Oy appearing in
Lemma 2.4 maps D into D and factors through D(_,ny, Lemma 2.7 follows from the nuclearity of
Dy (1 =0,1,...). Following [Dy], we will prove this by induction.

Lemma 3.1. Ifz € (Um21+l X(m,0,m)) U (Umz, X(m,1,m)), then Q_.pnz = 0. In particular,

! -1
Dty = Q(—ty 5pan(( | J X(m,0,m)) U ( U Xm.1.m)))-

m=0 m=0

&

Proof. Straightforward.

Let
2 20+1

Fr=F;®p - 0p B0 @5 ©5
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for l = 0,1,... and let Q] be the projection from E onto F;’. We define the unitary W;: F; —
F' ,® ES®p Es(l=1,2,...) by ;

G® - ®Cu ((1®®Cu2)Blu18E if (1 € B
W G® - -®Cu - ((®-® Ca1-2)®Cau-18Ca if ¢1 € E}
o a® 8 (8@ -1)8a®E G € B3
G®: @i G®-® Ca1-1)&¢®Car41 if (1€ B

and the ucp map o;: D(—q—1)) — B(F(ou-1)) ® Fi) = B(F(-y) by

oi(z) =z & W (Q_17zQ]_, ® 1@ )W,
for z € D q-1)) CB(F(o@-1)))- We define C*;subaigebraé Il and Dz__v’,) of D(_,;y by
I = Q-yySpan X(1-1,10-1)

and .
-1 -1
D{_1y = Q(—1) 5pan(( U"X(m,o,m)) Ul Xem,am))-
: m=0 ' © m=0 '

It follows from Lemma 2.5 that these are indeed C*-algebras and that I; is an ideal of Dy

Lemma 3.2. The ucp map oy maps D(—-»(z—l)) into D('_”). Indeed, if z € (Uf;;o X(m,O,m)‘) U
(Uin2o X(m,1,m)), then

Q= (1-1)%) = QT
Proof. Straightforward. o a/\g\e
Lemma 3.3. If D(_,-1)) is nuclear, then D(’__” is nuclear.
Proof. Let m; be the quotient map from DZ—»!) onto D('_’,)/Il and let p; = m 0 0y. We claim that
p is a *-homomorphism from D_,(;_y)) onto D('__‘,) /5. In view of Lemma 3.1, it suffices to show

the multiplicativity of p; on Q(-—»(l—l))((Ui;:o X(m,0,m)) U (U::o X(m,1,m))), but this follows from
Lemmas 2.5 and 3.2. In particular, D(.—*z) /I, is nuclear by the assumption.

We next show that I; is nuclear. Then the nuclearity of D('_,,) follows. As I; = QiI; by Lemma
3.1, I is »-isomorphic to a C*-subalgebra of B(F;_, ® g E; ®p F2) via the unitary W,. We claim
that this C*-subalgebra is (K(F;*_;) ba (1 — p1)A1(1 — p1)) ® C1 and thus I, is nuclear. See [Dy] for
the definition and the property of the operation t<. Indeed, if z € X(;_1,1,1—1) is, e.g., of the form

z = boaiby - - -bay_2a21_1b21-1

with a3,...,ai-1 € (1 —p1)A1p1, a1 € (1 — p1)A1(1 — p1), Qig1-:., 0201 € 71A1(1 — py) and
bo, ... ,ba—1 € A3, then '

WizWp = (6 @l )®1.

‘ *
bo®a1®--®bi—1 “1Vbs _ ®az,_ 00

The other cases are similar and this completes the proof. Blgé
We define the ideal J; of D(_y) by -

Ji = Q(—1y5pan X(,0,)-
It follows from Lemmas 2.5 and 3.1 that this is indeed an ideal.

Lemma 3.4. If D(_,-1)) is nuclear, then D(_,; is nuclear.
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Proof. Assume that D(_,;—1)) is nuclear. Then the nuclearity of D(_.;) follows from that of J; thanks
to Lemma 3.3 and the fact D) = DZ_‘,) + J;. As J; = QiJ; by Lemma 3.1, J; is *-isomorphic to
a C*-subalgebra of B(F?_ , ® s Ef ®p E») via the unitary W;. We claim that this C*-subalgebra is
K(F? , ®8 Ef) va Az and thus J; is nuclear. Indeed, if z € X(,0,) is, e.g., of the form
z = boayby - - -ba-1a2bn

with a1,...,a; € (1 —pl)Alpl, aj41-..,02 € p1A1(1 — pl) and bg,...,by € Ag, then

WIIM' = 0&@6@"‘@‘?'11"0'%;!@;;@'"@0:':1 .
The other cases are similar and this completes the proof.

Proof of Lemma.2.7. As we mentioned, it suffices to show that D(_,; is nuclear for [ = 0,1, ...,
this follows from Lemma 3.4 and the fact that D(_g) = A2 is nuclear.

8 ®

APPENDIX A. AN ELEMENTARY PROOF OF THE BDS THEOREM ON TOPOLOGICAL ENTROPY
oF FREE PRODUCT AUTOMORPHISMS

We give an elementary proof of the following theorem of Brown, Dykema and Shlyakhtenko [BDS].
What they actually proved is more general, namely the same assertion for amalgamated free products
with finite dimensional amalgams. Consult [Br] for the definition of the topological entropy.

Theorem A.l. Let A; (i = 1,2) be a unital eract C*-algebra with a *-automorphism a; and let
a = aj * az be the free product *-automorphism (defined in [Ch]) on the reduced free product C*-
algebra A = Ay * As. Then, we have

ht(a) = max{ht(a1), ht(az)},
where ht is the Brown-Voiculescu topological entropy.

The Kadison-Schwarz inequality implies that a ucp map ¢ satisfies

lp(z*y) — 3(z)*$W) < lp(z"z) — $(z) () ll(y"y) — $(v)" SW)IM/>
for any = and y. The following Kolmogorov-Sinai type result is a consequence of this inequality.

Lemma A.2. If w is a finite subset in A with the property that both =* and z*z € w whenever
T € w and A is generated (as a C*-algebra) by |J,cz o™(w), then we have ht(a) = ht(a,w).

Proof of Theorem. We deal with the following situation: A; C B(H;) is a C*-subalgebra and &; € H;
is a cyclic unit vector. We are given a finite selfadjoint subset w; of unitaries in A; and ucp maps
o;: A; — M, and 8;: M,, — B(H;) such that ||3; o a;(a) — a]| < € for a € w;. Fix N € N.

Since a; extends to a ucp map from B(H;) and any ucp map from a von Neumann algebra
into a matrix algebra can be approximated by normal ones (in the point-norm topology), we may
assume that a; = o} o ®;, where ®;: B(H;) — B(H;) is the compression onto a finite dimensional
subspace H. C H; and o!: B(H.) — M, is a ucp map. Applying the Stinespring theorem to
o} and B;, we obtain an isometry S;: £ — M; ® HS (with some Hilbert space HY) such that
ai(z) = S} (z ® 1y5)S; for all z € B(H,), and an isometry T;: H; — €5’ ® HT (with some Hilbert
space HT) such that §i(x) = T7(z ® lpr)Ti. Defining the isometry Vi: H; — H; ® K; with
Ki=H’®@HI by V;=(S: ® 1gr) o T;, we have IV*(a®1k;)V; —a] < €. for a € w;.

We define ‘length’ of vectors in H; as in the group case: define subspaces by E? = C¢, EfF =
spanw;EF"'fork=1,... ,N—1and EN =H;,and put Ff =EFO Ef 'fork=1,...,N.

Let (H,€) = (H1,&1) * (H2,£&2) and K = Céc @ K1 ® K2 and let xx = N~1/2 E:=1 dp € £2(N).
We define an isometry

V:HoHK®H®LN)
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by
VE=E(R & ®E® XN,
and, for  ®---Q( € Fi’il ®---Fk

i ?

VC1®“'®C11 =V;1C1 ®(<2®"'®Cl)®xk1
+ (1 ®V3,()®((B® - ) ® Xk,
+ o+ (G ®  ®6-2®Viy 1 6a-1)®((® - ® Q) ® Xka—y
+ (@ ®Ci—1® Viyla) ® ((at1® -+ ® Q) ® XN—(ky+-+ka-1)

ifki+--+kg_y < N<ki+---+kq, (here (441 ® ---® (; in the last term should be £ when d = [)
and

VOa® - ®6G =080 - ®4)® Xk
(1 ® - ®G-1 @ Vi) ®E® Xk
(L ® - ®Q) Ok ®E® XN=(ky+--+k)

if k1 + -+ ki < N. We note that {; ® V;,(2 € H;, ® Hi, ® Ky, €.g., should be understood as an
element in H ® K by the usual convention that H{ ® C¢; 3 (®§; = ( € H{ CH.

Let ®: B(H) — B(H) be the ucp map given by ®(a) = V*(a® lxgnee,(N))V- Then, a brute force
computation shows that

() - all <3(e + 37)

for a € U " ,w;. Here, we used the crucial fact that oFF c Ff 'oFfe FF* for a € w; and
k=1,...,N. Since V*(a® 1x,)Vi = V*(e: ® 1gr)(a ® 15 ® 1g7)(ei ® 1y7)V; for the rank r;
projection e; of H; ® HS onto Sif5, and dim EN ™! < (Jw| + 1)V, we have the following estimate of
the rank 7 of the ucp map ® (i.e., ® factors through M,): '

r < 2N (Jw| + l)Nz max{ry, 72} .
Combined with Lemma A.2, this proves Theorem Al : %
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