NUCLEARITY OF REDUCED AMALGAMATED FREE PRODUCT

C*-ALGEBRAS まざれ なるたか NARUTAKA OZAWA 川沢 変高

ABSTRACT. We show that the reduced free product between two nuclear C^* -algebras is nuclear provided that at least one of the states is pure. We also show that some reduced amalgamated free product C^* -algebras are nuclear. These generalize an unpublished work of Dykema and Smith and verify Dykema's conjecture. Our proof is modeled after Dykema's work on exactness of reduced amalgamated free product C^* -algebras.

1. Introduction

The reduced amalgamated free product of C^* -algebras was introduced by Voiculescu [Vo] [VDN]. Dykema [Dy] proved that the reduced amalgamated free product of exact C^* -algebras is exact. We will follow his paper [Dy] the notation. Dykema and Smith [DS] proved, among other things, that if ω is a pure state on the full matrix algebra \mathbb{M}_n and ϕ is a state on a nuclear C^* -algebra A, then the reduced free product $(\mathbb{M}_n, \omega) * (A, \phi)$ is nuclear. We generalize their result and verify Dykema's conjecture that the reduced free product between two nuclear C^* -algebras is nuclear provided that at least one of the states is pure.

Theorem 1.1. Let B be a unital C*-algebra and let A_i (i=1,2) be a unital nuclear C*-algebra containing B as a unital C*-algebra and having a conditional expectation ϕ_i , from A_i onto B, whose GNS representation is faithful. Let $(A,\phi)=(A_1,\phi_1)*(A_2,\phi_2)$ be the reduced amalgamented free product of C*-algebras. Suppose either (i) ϕ_1 is a pure state (and $B=\mathbb{C}1$) or (ii) $\mathbb{K}(E_1)\subset A_1$ in its GNS representation. Then, A is nuclear.

We remark that the same assertion holds if one replaces nuclearity with one of the following, the LLP, the WEP and exactness. In particular, we recover Dykema's theorem [Dy].

We recall that a C^* -algebra A is nuclear if $A \otimes C = A \otimes_{\max} C$ for any C^* -algebra C. It is well known that the class of nuclear C^* -algebras is closed under (i) passing to a C^* -subalgebra that is a range of a conditional expectation, (ii) passing to a quotient and (iii) taking an extension.

We recall the definition of reduced amalgamated free product. See [Dy] [Vo] for the detail. Let B be a unital C^* -algebra and let A_i (i=1,2) be a unital nuclear C^* -algebra containing B as a unital C^* -algebra and having a conditional expectation ϕ_i from A_i onto B such that for any nonzero $a \in A_i$, there is $x \in A_i$ with $\phi_i(x^*a^*ax) \neq 0$. Let $\langle \cdot, \cdot \rangle_{E_i}$ be the B-valued inner product on A_i , given by $\langle a,b\rangle_{E_i}=\phi_i(a^*b)$, and let E_i be the Hilbert B-module obtained from A_i by separation and completion. We denote by \widehat{a} the element in E_i arising from a in A_i . Then A_i is faithfully represented on E_i by $a\widehat{b}=\widehat{ab}$. Let $\xi_i=\widehat{1_{A_i}}\in E_i$ be the distinguished element and let E_i° be the complementing B-submodule of $\xi_i B$ in E_i , i.e., $E_i=\xi_i B\oplus E_i^\circ$. Then the reduced amalgamated free product C^* -algebra $(A,\phi)=(A_1,\phi_1)*(A_2,\phi_2)$ is a C^* -subalgebra of $\mathbb{B}(E)$ generated by copies of A_1 and A_2 , where

$$E = \xi B \oplus \bigoplus_{\substack{n \in \mathbb{N}, \ i_1, \dots, i_n \in \{1, 2\}, \\ i_1 \neq i_2, \dots, i_{n-1} \neq i_n}} E_{i_1}^{\circ} \otimes_B \dots \otimes_B E_{i_n}^{\circ}.$$

Date: September 8, 2001.

Here ξB is the C^* -algebra B regarded as a Hilbert B-module with the distinguished element $\xi = 1_B$. For $a \in A_i^{\circ} = A_i \cap \ker \phi_i$ and for $\zeta_j \in E_{i_j}^{\circ}$ $(j = 1, \ldots, n, n \geq 2)$ with $i_1 \neq \cdots \neq i_n$, we have

$$a(\zeta_1 \otimes \cdots \otimes \zeta_n) = \begin{cases} (a\zeta_1 - \xi_i \langle \xi_i, a\zeta_1 \rangle) \otimes \zeta_2 \otimes \cdots \otimes \zeta_n \\ + \langle \xi_i, a\zeta_1 \rangle \zeta_2 \otimes \cdots \otimes \zeta_n \\ \widehat{a} \otimes \zeta_1 \otimes \cdots \otimes \zeta_n \end{cases} \text{ if } i_1 = i$$

The reduced amalgamated free product C^* -algebra A is the closed linear span of B and the elements of the form $a_1 \cdots a_n$ where $n \in \mathbb{N}$, $a_j \in A_{i_j}^{\circ}$ with $i_1 \neq \cdots \neq i_n$.

Acknowledgment. The author thank Professor Kenneth Dykema for helpful comments. Most part of this work was carried out while the author was visiting Texas A&M University in summer 2001. He gratefully acknowledges the kind hospitality from Texas A&M University.

2. Proof of Theorem 1.1

The case (i) immediately follows from Choda's proposition [Ch] (see also [BD]), Kishimoto and Sakai's lemma [KS] and the result of Dykema and Smith [DS] (or the case (ii) of our theorem). We now concentrate our attention on the case (ii) and assume that $K(E_1) \subset A_1$. We may assume that A_1 and A_2 are separable thanks to Blanchard and Dykema's theorem [BD].

Following [Dy], we will construct, in this section, a sequence of ucp maps which approximates the identity map on A. Let $p_1 \in \mathbb{B}(E_1)$ be the projection from E_1 onto $\xi_1 B$. Then $p_1 \in A_1$ by the assumption. For $\zeta_j \in E_{i_j}^{\circ}$ $(j = 1, \ldots, n, n \geq 2)$ with $i_1 \neq \cdots \neq i_n$, we have

$$\text{if } a \in p_1 A_1(1-p_1), \text{ then } \qquad a(\zeta_1 \otimes \cdots \otimes \zeta_n) = \begin{cases} \langle \xi_i, a\zeta_1 \rangle \zeta_2 \otimes \cdots \otimes \zeta_n & \text{if } i_1 = 1 \\ 0 & \text{if } i_1 = 2, \end{cases}$$

$$\text{if } a \in (1-p_1)A_1(1-p_1), \text{ then } \qquad a(\zeta_1 \otimes \cdots \otimes \zeta_n) = \begin{cases} a\zeta_1 \otimes \zeta_2 \otimes \cdots \otimes \zeta_n & \text{if } i_1 = 1 \\ 0 & \text{if } i_1 = 2, \end{cases}$$

$$\text{if } a \in (1-p_1)A_1p_1, \text{ then } \qquad a(\zeta_1 \otimes \cdots \otimes \zeta_n) = \begin{cases} 0 & \text{if } i_1 = 1 \\ \widehat{a} \otimes \zeta_1 \otimes \cdots \otimes \zeta_n & \text{if } i_1 = 2. \end{cases}$$

We let, for $m, n \geq 0$,

$$X_{(m,0,n)} = \{b_0 a_1 b_1 \cdots a_{m+n} b_{m+n} : b_0, b_{m+n} \in \mathbb{C}1 \cup A_2^{\circ}, b_1, \dots, b_{m+n-1} \in A_2^{\circ}, a_1 \dots, a_m \in (1-p_1)A_1 p_1, a_{m+1}, \dots, a_{m+n} \in p_1 A_1 (1-p_1)\}$$

and

$$X_{(m,1,n)} = \{b_0 a_1 b_1 \cdots a_{m+n+1} b_{m+n+1} : b_0, b_{m+n+1} \in \mathbb{C}1 \cup A_2^{\circ}, b_1, \dots, b_{m+n} \in A_2^{\circ}, a_1 \dots, a_m \in (1-p_1)A_1 p_1, a_{m+1} \in (1-p_1)A_1 (1-p_1), a_{m+2}, \dots, a_{m+n+1} \in p_1 A_1 (1-p_1)\}$$

be the subsets of A.

Lemma 2.1. We have

$$(1-p_1)b(1-p_1)=\phi_2(b)(1-p_1)$$

for $b \in A_2$. In particular,

$$A = \overline{\operatorname{span}} \bigcup_{m,n \geq 0} (X_{(m,0,n)} \cup X_{(m,1,n)}).$$

Proof. Straightforward.

鏦

鏦

We define Hilbert B-submodules F_l of E (l = 0, 1, ...) by $F_0 = \xi B \oplus E_2^{\circ}$ and

$$F_{l} = \overbrace{E_{1}^{\circ} \otimes_{B} \cdots \otimes_{B} E_{1}^{\circ}}^{2l-1} \oplus \overbrace{E_{1}^{\circ} \otimes_{B} \cdots \otimes_{B} E_{2}^{\circ}}^{2l} \oplus \overbrace{E_{2}^{\circ} \otimes_{B} \cdots \otimes_{B} E_{1}^{\circ}}^{2l} \oplus \overbrace{E_{2}^{\circ} \otimes_{B} \cdots \otimes_{B} E_{2}^{\circ}}^{2l+1}$$

for $l=1,2,\ldots$ and put $F_{(\to k)}=\bigoplus_{l=0}^k F_l$. We observe that $E=\bigoplus_{l=0}^\infty F_l$. Let Q_l (resp. $Q_{(\to k)}$) be the projection from E onto F_l (resp. from E onto $F_{(\to k)}$).

Lemma 2.2. We have the following.

$$bQ_l = Q_l b$$
 if $b \in A_2$, $aQ_l = Q_{l-1} a$ if $a \in p_1 A_1 (1 - p_1)$
 $aQ_l = Q_l a$ if $a \in (1 - p_1) A_1 (1 - p_1)$, $aQ_l = Q_{l+1} a$ if $a \in (1 - p_1) A_1 p_1$

Proof. Straightforward.

We define the isometry $V_k : E \to \ell_2 \otimes_{\mathbb{C}} F_{(\to k)} \otimes_B E \ (k = 0, 1, ...)$ by

$$\begin{array}{ll} \eta & \delta_{k-l} \ddot{\otimes} \eta \ddot{\otimes} \xi & \text{if } \eta \in F_l \text{ with } l \leq k \\ V_k \colon \zeta_1 \otimes \cdots \otimes \zeta_m \longmapsto \delta_0 \ddot{\otimes} (\zeta_1 \otimes \cdots \otimes \zeta_{2k}) \ddot{\otimes} (\zeta_{2k+1} \otimes \cdots \otimes \zeta_m) & \text{if } \zeta_1 \in E_1^{\circ} \text{ and } m > 2k \\ \zeta_1 \otimes \cdots \otimes \zeta_m & \delta_0 \ddot{\otimes} (\zeta_1 \otimes \cdots \otimes \zeta_{2k+1}) \ddot{\otimes} (\zeta_{2k+2} \otimes \cdots \otimes \zeta_m) & \text{if } \zeta_1 \in E_2^{\circ} \text{ and } m > 2k+1. \end{array}$$

The symbol \otimes is used in order to distinguish various tensor products.

Lemma 2.3. The isometries $\{V_k\}_{k=0}^{\infty}$ have mutually orthogonal ranges and satisfy the following.

$$(1 \otimes b \otimes 1)V_k = V_k b \quad \text{if } b \in A_2,$$

$$(1 \otimes a \otimes 1)V_k = V_{k-1}a \quad \text{if } a \in p_1A_1(1-p_1)$$

$$(1 \otimes a \otimes 1)V_k = V_{k+1}a \quad \text{if } a \in (1-p_1)A_1(1-p_1),$$

$$(1 \otimes a \otimes 1)V_k = V_{k+1}a \quad \text{if } a \in (1-p_1)A_1p_1$$

$$Proof. \text{ Straightforward.}$$

Letting

$$V_{(\rightarrow N)} = \frac{1}{\sqrt{N+1}} \sum_{k=0}^{N} V_k$$

be the isometry from E into $\ell_2 \otimes_{\mathbb{C}} F_{(\to N)} \otimes_B E$, we consider the compression

$$\Phi_N \colon \mathbb{B}(E) \to \mathbb{B}(F_{(\to N)})$$

and the ucp map $\Psi_N \colon \mathbb{B}(F_{(\to N)}) \to \mathbb{B}(E)$ defined by

$$\Psi_N(x) = V_{(\to N)}^* (1 \otimes x \otimes 1) V_{(\to N)}$$

and we put $\Theta_N = \Psi_N \circ \Phi_N$.

Lemma 2.4. The ucp map Θ_N maps A into A and

$$\lim_{N\to\infty}\|x-\Theta_N(x)\|=0$$

for every $x \in A$. Indeed, if $x \in X_{(m,0,n)} \cup X_{(m,1,n)}$ then

$$\Theta_N(x) = \max\{0, \min\{1 - m/(N+1), 1 - n/(N+1)\}\}x.$$

Proof. This follows from Lemma 2.3.

We define the 'diagonal' C^* -subalgebra D in A as

$$D = \overline{\operatorname{span}} \bigcup_{l \geq 0} (X_{(l,0,l)} \cup X_{(l,1,l)}).$$

This is indeed a C^* -algebra as shown below.

Lemma 2.5. If $x \in X_{(l,c,l)}$ and $y \in X_{(l',c',l')}$ with $l \ge l' \ge 0$ and $c, c' \in \{0,1\}$, then

$$xy \in \operatorname{span}(X_{(l,c,l)} \cup X_{(l,1,l)}).$$

Proof. This follows from Lemma 2.1 and the equation

$$(1-p_1)bab'(1-p_1)=\phi_2(b\phi_1(a)b')(1-p_1)$$

for $a \in A_1$ and $b, b' \in A_2^{\circ}$.

湬

We define the ucp map $\Delta: A \to \mathbb{B}(E)$ by

$$\Delta(x) = \text{strict-} \sum_{l=0}^{\infty} Q_l x Q_l.$$

Lemma 2.6. The ucp map Δ is a conditional expectation from A onto D and

$$D = \{x \in A : xQ_l = Q_l x \text{ for all } l = 0, 1, \ldots\}.$$

Proof. This follows from Lemmas 2.1 and 2.2.

Lemma 2.7. The C^* -algebra D is nuclear.

We postpone the proof to Section 3 and now prove Theorem 1.1.

Proof of Theorem 1.1. We may assume that there is $a \in A_1^\circ$ (resp. $b \in A_2^\circ$) such that $\phi_1(a^*a) = 1$ (resp. $\phi_2(b^*b) = 1$). Indeed, we just replace $(B \subset A_1, \phi_1)$ with $(B \otimes \mathbb{C}I \subset A_1 \otimes \mathbb{M}_2, \phi_1 \otimes \psi)$, where $\psi(x) = x_{11}I$ for $x = [x_{ij}] \in \mathbb{M}_2$, and let $a = 1 \otimes e_{21}$. We observe that the conditional expectation id $\otimes \psi$ from $A_1 \otimes \mathbb{M}_2$ onto A_1 is compatible, in the sense of [BD], with the conditional expectations ϕ_1 and $\phi_1 \otimes \psi$. The same for A_2 . Since $A = (A_1, \phi_1) * (A_2, \phi_2)$ is a C^* -subalgebra of $\tilde{A} = (A_1 \otimes \mathbb{M}_2, \phi_1 \otimes \psi) * (A_2 \otimes \mathbb{M}_2, \phi_2 \otimes \psi)$ and is a range of the conditional expectation $(\phi_1 \otimes \psi) * (\phi_2 \otimes \psi)$, the nuclearity of A follows from that of \tilde{A} . We have used here Theorems 1.3 and 2.2 in [BD].

Let a and b be as above. Then, $w = bap_1 + ab(1 - p_1)$ is an isometry in A with $wQ_l = Q_{l+1}w$ for $l = 0, 1, \ldots$ and hence we have $wxw^* \in D$ for all $x \in D$. Therefore, A is *-isomorphic to the crossed product D by the *-endomorphism Ad w and a fortiori is nuclear.

3. Proof of Lemma 2.7

Let $D_{(\to l)} = Q_{(\to l)}D$ be the C^* -subalgebra of $\mathbb{B}(F_{(\to l)})$. Since the ucp map Θ_N appearing in Lemma 2.4 maps D into D and factors through $D_{(\to N)}$, Lemma 2.7 follows from the nuclearity of $D_{(\to l)}$ $(l=0,1,\ldots)$. Following [Dy], we will prove this by induction.

Lemma 3.1. If $x \in (\bigcup_{m \ge l+1} X_{(m,0,m)}) \cup (\bigcup_{m \ge l} X_{(m,1,m)})$, then $Q_{(\rightarrow l)}x = 0$. In particular,

$$D_{(\rightarrow l)} = Q_{(\rightarrow l)} \, \overline{\operatorname{span}}((\bigcup_{m=0}^{l} X_{(m,0,m)}) \cup (\bigcup_{m=0}^{l-1} X_{(m,1,m)})).$$

Proof. Straightforward.

Let

$$F_{\mathbf{l}}^{\bullet} = \overbrace{E_{1}^{\circ} \otimes_{B} \cdots \otimes_{B} E_{2}^{\circ}}^{2l} \oplus \overbrace{E_{2}^{\circ} \otimes_{B} \cdots \otimes_{B} E_{2}^{\circ}}^{2l+1}$$

for $l=0,1,\ldots$ and let Q_l^{\bullet} be the projection from E onto F_l^{\bullet} . We define the unitary $W_l: F_l \to F_{l-1}^{\bullet} \otimes_B E_1^{\circ} \otimes_B E_2$ $(l=1,2,\ldots)$ by

$$W_{l}: \begin{array}{c} \zeta_{1} \otimes \cdots \otimes \zeta_{2l-1} & (\zeta_{1} \otimes \cdots \otimes \zeta_{2l-2}) \ddot{\otimes} \zeta_{2l-1} \ddot{\otimes} \xi_{2} & \text{if } \zeta_{1} \in E_{1}^{\circ} \\ (\zeta_{1} \otimes \cdots \otimes \zeta_{2l} & (\zeta_{1} \otimes \cdots \otimes \zeta_{2l-2}) \ddot{\otimes} \zeta_{2l-1} \ddot{\otimes} \zeta_{2l} & \text{if } \zeta_{1} \in E_{1}^{\circ} \\ (\zeta_{1} \otimes \cdots \otimes \zeta_{2l-1}) \ddot{\otimes} \zeta_{2l} \ddot{\otimes} \xi_{2} & \text{if } \zeta_{1} \in E_{2}^{\circ} \\ (\zeta_{1} \otimes \cdots \otimes \zeta_{2l-1}) \ddot{\otimes} \zeta_{2l} \ddot{\otimes} \zeta_{2l+1} & (\zeta_{1} \otimes \cdots \otimes \zeta_{2l-1}) \ddot{\otimes} \zeta_{2l} \ddot{\otimes} \zeta_{2l+1} & \text{if } \zeta_{1} \in E_{2}^{\circ} \end{array}$$

and the ucp map $\sigma_l \colon D_{(\to(l-1))} \to \mathbb{B}(F_{(\to(l-1))} \oplus F_l) = \mathbb{B}(F_{(\to l)})$ by

$$\sigma_l(x) = x \oplus W_l^*(Q_{l-1}^{\bullet} x Q_{l-1}^{\bullet} \otimes 1 \otimes 1) W_l$$

for $x \in D_{(\to (l-1))} \subset \mathbb{B}(F_{(\to (l-1))})$. We define C^* -subalgebras I_l^1 and $D_{(\to l)}^{\bullet}$ of $D_{(\to l)}$ by

$$I_l = Q_{(\rightarrow l)} \, \overline{\operatorname{span}} \, X_{(l-1,1,l-1)}$$

and

$$D_{(\to l)}^{\bullet} = Q_{(\to l)} \, \overline{\text{span}}((\bigcup_{m=0}^{l-1} X_{(m,0,m)}) \cup (\bigcup_{m=0}^{l-1} X_{(m,1,m)})).$$

It follows from Lemma 2.5 that these are indeed C^* -algebras and that I_l is an ideal of $D_{(-l)}^{\bullet}$.

Lemma 3.2. The ucp map σ_l maps $D_{(\to(l-1))}$ into $D_{(\to l)}^{\bullet}$. Indeed, if $x \in (\bigcup_{m=0}^{l-1} X_{(m,0,m)}) \cup (\bigcup_{m=0}^{l-2} X_{(m,1,m)})$, then

$$\sigma_l(Q_{(\to(l-1))}x) = Q_{(\to l)}x.$$

Proof. Straightforward.

\$\$£

Lemma 3.3. If $D_{(\rightarrow (l-1))}$ is nuclear, then $D_{(\rightarrow l)}^{\bullet}$ is nuclear.

Proof. Let π_l be the quotient map from $D^{\bullet}_{(\to l)}$ onto $D^{\bullet}_{(\to l)}/I_l$ and let $\rho_l = \pi_l \circ \sigma_l$. We claim that ρ is a *-homomorphism from $D_{(\to (l-1))}$ onto $D^{\bullet}_{(\to l)}/I_l$. In view of Lemma 3.1, it suffices to show the multiplicativity of ρ_l on $Q_{(\to (l-1))}((\bigcup_{m=0}^{l-1} X_{(m,0,m)}) \cup (\bigcup_{m=0}^{l-2} X_{(m,1,m)}))$, but this follows from Lemmas 2.5 and 3.2. In particular, $D^{\bullet}_{(\to l)}/I_l$ is nuclear by the assumption.

We next show that I_l is nuclear. Then the nuclearity of $D_{(-l)}^{\bullet}$ follows. As $I_l = Q_l I_l$ by Lemma 3.1, I_l is *-isomorphic to a C^* -subalgebra of $\mathbb{B}(F_{l-1}^{\bullet} \otimes_B E_1^{\circ} \otimes_B E_2)$ via the unitary W_l . We claim that this C^* -subalgebra is $(\mathbb{K}(F_{l-1}^{\bullet}) \bowtie (1-p_1)A_1(1-p_1)) \otimes \mathbb{C}1$ and thus I_l is nuclear. See [Dy] for the definition and the property of the operation \bowtie . Indeed, if $x \in X_{(l-1,1,l-1)}$ is, e.g., of the form

$$x = b_0 a_1 b_1 \cdots b_{2l-2} a_{2l-1} b_{2l-1}$$

with $a_1, \ldots, a_{l-1} \in (1-p_1)A_1p_1$, $a_l \in (1-p_1)A_1(1-p_1)$, $a_{l+1}, \ldots, a_{2l-1} \in p_1A_1(1-p_1)$ and $b_0, \ldots, b_{2l-1} \in A_2^\circ$, then

$$W_l x W_l^* = (\theta_{\widehat{b_0} \otimes \widehat{a_1} \otimes \cdots \otimes \widehat{b_{l-1}}} a_l \theta_{\widehat{b_{2l-1}} \otimes \widehat{a_{2l-1}} \otimes \cdots \otimes \widehat{b_l}}^*) \otimes 1.$$

The other cases are similar and this completes the proof.

鏦

We define the ideal J_l of $D_{(\rightarrow l)}$ by

$$J_l = Q_{(\rightarrow l)} \, \overline{\operatorname{span}} \, X_{(l,0,l)}$$

It follows from Lemmas 2.5 and 3.1 that this is indeed an ideal.

Lemma 3.4. If $D_{(\rightarrow(l-1))}$ is nuclear, then $D_{(\rightarrow l)}$ is nuclear.

緃

Proof. Assume that $D_{(\to l)}$ is nuclear. Then the nuclearity of $D_{(\to l)}$ follows from that of J_l thanks to Lemma 3.3 and the fact $D_{(\to l)} = D_{(\to l)}^{\bullet} + J_l$. As $J_l = Q_l J_l$ by Lemma 3.1, J_l is *-isomorphic to a C^* -subalgebra of $\mathbb{B}(F_{l-1}^{\bullet} \otimes_B E_1^{\circ} \otimes_B E_2)$ via the unitary W_l . We claim that this C^* -subalgebra is $\mathbb{K}(F_{l-1}^{\bullet} \otimes_B E_1^{\circ}) \bowtie A_2$ and thus J_l is nuclear. Indeed, if $x \in X_{(l,0,l)}$ is, e.g., of the form

$$x = b_0 a_1 b_1 \cdots b_{2l-1} a_{2l} b_{2l}$$

with $a_1, \ldots, a_l \in (1-p_1)A_1p_1$, $a_{l+1}, \ldots, a_{2l} \in p_1A_1(1-p_1)$ and $b_0, \ldots, b_{2l} \in A_2^\circ$, then

$$W_l x W_l^* = \theta_{\widehat{b_0} \otimes \widehat{a_1} \otimes \cdots \otimes \widehat{a_l}} b_l \theta_{\widehat{b_2}_1 \otimes \widehat{a_2}_1 \otimes \cdots \otimes \widehat{a_{l+1}}}^*.$$

The other cases are similar and this completes the proof.

Proof of Lemma 2.7. As we mentioned, it suffices to show that $D_{(\rightarrow l)}$ is nuclear for $l=0,1,\ldots$, but this follows from Lemma 3.4 and the fact that $D_{(\rightarrow 0)}=A_2$ is nuclear.

APPENDIX A. AN ELEMENTARY PROOF OF THE BDS THEOREM ON TOPOLOGICAL ENTROPY OF FREE PRODUCT AUTOMORPHISMS

We give an elementary proof of the following theorem of Brown, Dykema and Shlyakhtenko [BDS]. What they actually proved is more general, namely the same assertion for amalgamated free products with finite dimensional amalgams. Consult [Br] for the definition of the topological entropy.

Theorem A.1. Let A_i (i=1,2) be a unital exact C^* -algebra with a *-automorphism α_i and let $\alpha=\alpha_1*\alpha_2$ be the free product *-automorphism (defined in [Ch]) on the reduced free product C^* -algebra $A=A_1*A_2$. Then, we have

$$ht(\alpha) = max\{ht(\alpha_1), ht(\alpha_2)\},\$$

where ht is the Brown-Voiculescu topological entropy.

The Kadison-Schwarz inequality implies that a ucp map ϕ satisfies

$$\|\phi(x^*y) - \phi(x)^*\phi(y)\| \le \|\phi(x^*x) - \phi(x)^*\phi(x)\|^{1/2} \|\phi(y^*y) - \phi(y)^*\phi(y)\|^{1/2}$$

for any x and y. The following Kolmogorov-Sinai type result is a consequence of this inequality.

Lemma A.2. If ω is a finite subset in A with the property that both x^* and $x^*x \in \omega$ whenever $x \in \omega$ and A is generated (as a C^* -algebra) by $\bigcup_{n \in \mathbb{Z}} \alpha^n(\omega)$, then we have $\operatorname{ht}(\alpha) = \operatorname{ht}(\alpha, \omega)$.

Proof of Theorem. We deal with the following situation: $A_i \subset \mathbb{B}(\mathcal{H}_i)$ is a C^* -subalgebra and $\xi_i \in \mathcal{H}_i$ is a cyclic unit vector. We are given a finite selfadjoint subset ω_i of unitaries in A_i and ucp maps $\alpha_i \colon A_i \to \mathbb{M}_{r_i}$ and $\beta_i \colon \mathbb{M}_{r_i} \to \mathbb{B}(\mathcal{H}_i)$ such that $\|\beta_i \circ \alpha_i(a) - a\| < \varepsilon$ for $a \in \omega_i$. Fix $N \in \mathbb{N}$.

Since α_i extends to a ucp map from $\mathbb{B}(\mathcal{H}_i)$ and any ucp map from a von Neumann algebra into a matrix algebra can be approximated by normal ones (in the point-norm topology), we may assume that $\alpha_i = \alpha_i' \circ \Phi_i$, where $\Phi_i \colon \mathbb{B}(\mathcal{H}_i) \to \mathbb{B}(\mathcal{H}_i')$ is the compression onto a finite dimensional subspace $\mathcal{H}_i' \subset \mathcal{H}_i$ and $\alpha_i' \colon \mathbb{B}(\mathcal{H}_i') \to \mathbb{M}_{r_i}$ is a ucp map. Applying the Stinespring theorem to α_i' and β_i , we obtain an isometry $S_i \colon \ell_i^{r_i} \to \mathcal{H}_i \otimes \mathcal{H}_i^{s}$ (with some Hilbert space H_i^{s}) such that $\alpha_i(x) = S_i^*(x \otimes 1_{H_i^s})S_i$ for all $x \in \mathbb{B}(\mathcal{H}_i)$, and an isometry $T_i \colon \mathcal{H}_i \to \ell_i^{r_i} \otimes \mathcal{H}_i^{T}$ (with some Hilbert space H_i^{T}) such that $\beta_i(x) = T_i^*(x \otimes 1_{H_i^T})T_i$. Defining the isometry $V_i \colon \mathcal{H}_i \to \mathcal{H}_i \otimes \mathcal{K}_i$ with $\mathcal{K}_i = H_i^{s} \otimes H_i^{T}$ by $V_i = (S_i \otimes 1_{H_i^T}) \circ T_i$, we have $\|V_i^*(a \otimes 1_{\mathcal{K}_i})V_i - a\| < \varepsilon$. for $a \in \omega_i$.

We define 'length' of vectors in \mathcal{H}_i as in the group case: define subspaces by $E_i^0 = \mathbb{C}\xi$, $E_i^k = \operatorname{span} \omega_i E_i^{k-1}$ for $k = 1, \ldots, N-1$ and $E_i^N = \mathcal{H}_i$, and put $F_i^k = E_i^k \ominus E_i^{k-1}$ for $k = 1, \ldots, N$.

Let $(\mathcal{H}, \xi) = (\mathcal{H}_1, \xi_1) * (\mathcal{H}_2, \xi_2)$ and $\mathcal{K} = \mathbb{C}\xi_{\mathcal{K}} \oplus \mathcal{K}_1 \oplus \mathcal{K}_2$ and let $\chi_k = N^{-1/2} \sum_{p=1}^k \delta_p \in \ell_2(\mathbb{N})$. We define an isometry

$$V: \mathcal{H} \to \mathcal{H} \otimes \mathcal{K} \otimes \mathcal{H} \otimes \ell_2(\mathbb{N})$$

by

$$V\xi=\xi\otimes\xi_{\mathcal{K}}\otimes\xi\otimes\chi_{\mathcal{N}},$$

and, for
$$\zeta_1 \otimes \cdots \otimes \zeta_l \in F_{i_1}^{k_1} \otimes \cdots F_{i_l}^{k_l}$$
,

$$V\zeta_{1} \otimes \cdots \otimes \zeta_{n} = V_{i_{1}}\zeta_{1} \otimes (\zeta_{2} \otimes \cdots \otimes \zeta_{l}) \otimes \chi_{k_{1}}$$

$$+ (\zeta_{1} \otimes V_{i_{2}}\zeta_{2}) \otimes (\zeta_{3} \otimes \cdots \otimes \zeta_{l}) \otimes \chi_{k_{2}}$$

$$+ \cdots + (\zeta_{1} \otimes \cdots \otimes \zeta_{d-2} \otimes V_{i_{d-1}}\zeta_{d-1}) \otimes (\zeta_{d} \otimes \cdots \otimes \zeta_{l}) \otimes \chi_{k_{d-1}}$$

$$+ (\zeta_{1} \otimes \cdots \otimes \zeta_{d-1} \otimes V_{i_{d}}\zeta_{d}) \otimes (\zeta_{d+1} \otimes \cdots \otimes \zeta_{l}) \otimes \chi_{N-(k_{1}+\cdots+k_{d-1})}$$

if $k_1 + \cdots + k_{d-1} < N \le k_1 + \cdots + k_d$, (here $\zeta_{d+1} \otimes \cdots \otimes \zeta_l$ in the last term should be ξ when d = l) and

$$V\zeta_{1} \otimes \cdots \otimes \zeta_{n} = V_{i_{1}}\zeta_{1} \otimes (\zeta_{2} \otimes \cdots \otimes \zeta_{l}) \otimes \chi_{k_{1}}$$

$$+ \cdots + (\zeta_{1} \otimes \cdots \otimes \zeta_{l-1} \otimes V_{i_{l}}\zeta_{l}) \otimes \xi \otimes \chi_{k_{l}}$$

$$+ (\zeta_{1} \otimes \cdots \otimes \zeta_{l}) \otimes \xi_{K} \otimes \xi \otimes \chi_{N-(k_{1}+\cdots+k_{l})}$$

if $k_1 + \cdots + k_l < N$. We note that $\zeta_1 \otimes V_{i_2} \zeta_2 \in \mathcal{H}_{i_1}^{\circ} \otimes \mathcal{H}_{i_2} \otimes \mathcal{K}_{i_2}$, e.g., should be understood as an element in $\mathcal{H} \otimes \mathcal{K}$ by the usual convention that $\mathcal{H}_i^{\circ} \otimes \mathbb{C}\xi_j \ni \zeta \otimes \xi_j = \zeta \in \mathcal{H}_i^{\circ} \subset \mathcal{H}$. Let $\Phi \colon \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ be the ucp map given by $\Phi(a) = V^*(a \otimes 1_{\mathcal{K} \otimes \mathcal{H} \otimes \ell_2(\mathbb{N})})V$. Then, a brute force

computation shows that

$$\|\Phi(a) - a\| < 3(\varepsilon + \frac{1}{N})$$

for $a \in \bigcup_{i=1}^m \omega_i$. Here, we used the crucial fact that $aF_i^k \subset F_i^{k-1} \oplus F_i^k \oplus F_i^{k+1}$ for $a \in \omega_i$ and $k = 1, \ldots, N$. Since $V_i^*(a \otimes 1_{\mathcal{K}_i})V_i = V_i^*(e_i \otimes 1_{H_i^T})(a \otimes 1_{H_i^S} \otimes 1_{H_i^T})(e_i \otimes 1_{H_i^T})V_i$ for the rank r_i projection e_i of $\mathcal{H}_i \otimes H_i^S$ onto $S_i \ell_2^{r_i}$, and dim $E_i^{N-1} \leq (|\omega| + 1)^N$, we have the following estimate of the rank r of the ucp map Φ (i.e., Φ factors through M_r):

$$r \leq 2N(|\omega|+1)^{N^2} \max\{r_1, r_2\}.$$

Combined with Lemma A.2, this proves Theorem A.1.

REFERENCES

- E.F. Blanchard and K.J. Dykema, Embeddings of reduced free products of operator algebras, Pacific J. Math., [BD] 199 (2001), 1-19.
- N.P. Brown, Topological entropy in exact C*-algebras, Math. Ann. 314 (1999), 347-367. [Br]
- [BDS] N.P. Brown, K.J. Dykema and D. Shlyakhtenko, Topological Entropy of Free Product Automorphisms, Acta Math., to appear.
- M. Choda, Reduced free products of completely positive maps and entropy for free product of automorphisms, [Ch] Publ. Res. Inst. Math. Sci. 32 (1996), 371-382.
- K.J. Dykema, Exactness of reduced amalgamated free product C*-algebras, to appear in Ergodic Theory [Dy] Dynam. Systems
- K.J. Dykema and R.R. Smith, Unpublished. [DS]
- A. Kishimoto and S. Sakai, Homogeneity of the pure state space for the separable nuclear C*-algebras, Preprint, [KS] math.OA/0104258.
- D. Voiculescu, Symmetries of some reduced free product C*-algebras, Operator algebras and their connections Vo with topology and ergodic theory (Buşteni, 1983), 556-588, Lecture Notes in Math., 1132, Springer, Berlin,
- [VDN] D. Voiculescu, K.J. Dykema, A. Nica, Free random variables, CRM Monograph Series, 1, American Mathematical Society, 1992.

DEPARTMENT OF MATHEMATICAL SCIENCE, UNIVERSITY OF TOKYO, 153-8914, JAPAN E-mail address: narutaka@ms.u-tokyo.ac.jp