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1 Introduction

Software reliability is an important dependability measure in supplying reliable software products to
users. However, the problem of assessing the software reliability accurately is not easy, since atypical
program involves alarge number of logical paths, and the faults which may have remained on some
logical paths are not completely detected within the limited testing period. Hence, many mathematical
models called software reliability growth models (SRGMs) have been developed to describe the software
debugging phenomenon and to assess the software reliability from the empirical software failure data
[22, 25, 26, 27, 31, 32, 38]. Usually, two kinds of modeling approaches, white-box approach and black-box
approach, are applied in the actual software testing phase. In the white box approach, the software test
is executed based on the software architecture taking account of the action by each software module,
and strongly depends on the internal structure of the software [2, 16, 17, 18, 19, 20]. However, such a
modeling approach is not always possible, since it is very hard to identify the module structure and its
transition probability law, especially for large scale real software systems. On the other hand, the black-
box approach ignores the software architecture and regards the software failure occurrence phenomenon
as well-defined stochastic processes [1, 14, 21, 24, 30, 41]. The advantage in the black-box approach is
the ease of parameter estimation from the real software failure data. Thus, during the past three decades
this modeling approach has often been applied to actual software development projects. In the recent
software development process, these approaches are used in conjunction with each other.

The hypergeometric distribution software reliability model (HGDSRM) should be classified into
the black-box model, but would be adistinguished SRGM from the other models based on the non-
homogeneous Poisson processes (NHPPs) or the $\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{o}\mathrm{v}/\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}$-Markov processes [1, 14, 21, 24, 30, 41].
The HGDSRM can model the physical and myopic debugging behavior in the probability distribution
function. First, Xizi $[39, 40]$ proposed the idea to apply the hypergeometric distribution for predicting
software reliability. Independently, Tohma et al. $[33, 34]$ developed an interesting SRGM based on
the hypergeometric distribution to estimate the number of faults remaining in the software. Since the
seminal contribution by Tohma et al. $[33, 34]$ , this type of SRGM has been improved from the various
points of view. Jacoby and Tohma $[10, 12]$ gave adynamic representation for the HGDSRM in $[33, 34]$
by solving arecursive equation, and referred to the relationship between the HGDSRM and the NHPP
tyPe of SRGMs in $[1, 41]$ . That is, they succeeded to express the typical patterns such as the exponential
growth curve and the $\mathrm{S}$-shaped growth curve in the model parameters of the HGDSRM. Similar ap-
proaches were made by Hou et al. $[3, 4]$ . They also proposed several parametric models taking account
of the learning curve effect and the imperfect debugging. Jacoby and Masuzawa [13] showed that the
HGDSRM can be described as afunction of the test coverage for software under test. Other coverage
models were developed by [28, 29, 31].

Parameter estimation methods for the HGDSRMs have also been studied. Tohma et al. [11, 35, 36, 37]
focused on both the maximum likelihood method and the least square method to estimate the model
parameters from the software fault data, and compared the methods on some real data sets. In fact,
the problem to estimate the model parameters has not been solved consistently in the statistical theory
even for asimple two parameter hypergeometric distribution function [15]. Hence, their effort should
be encouraged to apply the HGDSRM to the real software testing process. However, every method
proposed in [11, 35, 36, 37] is not always acceptable, since some of their methods are based on intuitive
approximation schemes. The method with the genetic algorithm in [23] may be positioned as aheuristic
estimation method. In the recent years, Hou et al. [6, 8, 9] considered the optimal software releas
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problems based on the HGDSRM and gave the optimal release schedules which minimize the total
expected software costs. Also, the optimal allocation problems of testing resources for software module
testing were formulated by the same authors $[5, 7]$ using the HGDSRM. In this way, though the HGDSRM
is quite asimple probability model to describe the software debugging phenomenon, it has received
considerable attention in software reliability engineering over the last decade.

This article gives the detailed mathematical results on the hypergeometric software reliability model.
In the earlier papers, Jacoby and Tohma $[10, 12]$ and Tohma et al. $[35, 36]$ derived arecursive formula
on the mean cumulative number of software faults detected up to the $i$-th $(>0)$ test instance in testing
phase. The derivation of the recursive formula is rather heuristic but is correct. Since their results are
based on only the mean value of the cumulative number of faults, however, it is impossible to estimate
not only the software reliability but also the other probabilistic dependability measures. Noting that
the main purpose of the SRGMs is to estimate the software reliability, the probabilistic argument on
the HGDSRMs should be developed similar to other SRGMs [22, 25, 26, 27, 31, 32, 38]. To do this, the
HGDSRMs have to be treated as discrete-time stochastic processes and need to be further studied from
the mathematical view point. We introduce the concept of cumulative trial processes and describe the
dynamic behavior of the HGDSRM exactly. In particular, we derive explicit probability mass function
(Pmf) of the number of software faults detected newly at the $i$-th test instance and its mean as well as
the software reliability defined as the probability that no faults are detected up to an arbitrary time.

The paper is organized as follows. In Section 2, we describe the basic HGDSRM. Section 3derives
some new mathematical results on the HGDSRM with the inductive argument. We give exact expressions
for the software reliability and the expected number of newly detected faults at each test instance. These
software reliability measures are rather complex, but are quite significant for data analysis.

2Basic Results on the HGDSRM
Following Tohma et al. $[33, 34]$ , suppose that the test of asoftware constitutes aset of test instances,
each test instance consists of input test data and observed test result. Define the software test by $D=$
$\{t(i)|i=1,2, \cdots, \}$ , where $t(i)$ is the $i$-th $(i=0,1,2, \cdots)$ test instance. Let $B=\{b(j)|j=1,2, \cdots, m\}$

denote the set of faults in the software before the initial test instance $(i=0)$ , where $b(j)$ means the
fault labelled by $j$ $(=1,2, \cdots, m)$ and $m(>0)$ is the initial number of faults. If asoftware error caused
by $b(j)$ is observed at the test instance $t(i)$ , the fault $b(j)$ is said to be sensed by the test instance $t(i)$ .
Suppose that atest instance $t(i)$ senses $w(i)$ software faults, where $w(i)$ is called the sensitivity factor
and is afunction of the number of test instances (or time). We make the following assumptions:

$(\mathrm{A}-1)$ The software faults that manifest themselves upon the application of atest instance $t(i)$ will be
fixed before the next test instance $t(i+1)$ is applied.

(A-2) No new faults are introduced during software testing. This means that the software reliability is
monotonically nondecreasing as the testing progresses.

(A-3) Arandom set of $w(i)$ software faults is sensed by test instance $t(i)$ out of the total $m$ initial
faults.

From these assumptions, it is evident that the number of faults detected by the first test instance $t(1)$ is
$w(1)$ . However, the number of newly detected faults by $t(2)$ is not necessarily $w(2)$ , since some of $w(2)$

faults may have been already detected and removed by $t(1)$ .
Suppose that the initial number of detected faults at $i=0$ is 0. Let $X_{:}$ be the number of newly

detected faults at $i$-th test instance and be apositive random variable. Then, the cumulative number of
detected faults until test instance $t(i)$ is described by

$c_{:}= \sum_{j=1}^{\dot{l}}X_{j}$ . (1)

We make the following additional assumptions:

(B-1) The initial number of faults $m$ is sufficiently larger than $w(i)$ , i.e. $m\gg w(i)$ for all $i=1,2,3$, $\cdots$ .
(B-2) In the software test, it is impossible to detect all faults with probability one, i.e. $m> \lim_{:arrow\infty}\sum \mathrm{j}_{=1}a$

where $x_{t}$ is the realization of the random variable $X_{i}$ .
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These assumptions are not explained in the literature $[33, 34]$ , but are needed to describe the well-
defined HGDSRM. From (B-1) and (B-2), it can be seen that $\min\{w(i), m-c_{i-1}\}=w(i)$ has to be
always satisfied. In fact, this assumption is plausible intuitively and is implicitly used in the earlier
papers [3, 4, 10, 12, 13, 33, 34, 11, 35, 36, 37, 23]. With this notation, the probability that $x$ faults are
newly detected by the test instance $t(i)$ is given by

$P\{X:=x|C_{\dot{|}-1}=c:-1\}=P\{x|m$, $c_{-1}.\cdot$ , $w(i) \}=\frac{(\begin{array}{l}m-\mathrm{c}.-1x\end{array})(_{w(\dot{1})-x}^{c_{-1}})}{(_{w(\cdot)}^{m})}.\cdot$

.

(2)

where $0 \leq x\leq\min\{w(i), m-c\dot{.}-1\}$ and $\mathrm{C}$:is the realization of the random variable $c_{:}$ . Since the above
expression is the hypergeometric $\mathrm{p}\mathrm{m}\mathrm{f}[15]$ , the sequential model based on Eq.(2) is called the HGDSRM.

From Eq.(2), the conditional mean number of newly detected faults at the $i$-th test instance and its
variance are

$\mathrm{E}[X\dot{.}|c:-1]=(\frac{m-c\dot{.}-1}{m})w(i)$ (3)

and

Var[X: $|\mathrm{G}_{-1}.$ ] $= \frac{(m-c\dot{.}-1)c.-1w(i)}{m^{2}}.(\frac{m-w(i)}{m-1})$ , (4)

respectively. In the literature [10, 12, 35, 36], substituting $\mathrm{C}:-1=\sum_{k=1}^{-1}.\cdot x_{k}\approx\sum_{k=1}^{-1}.\cdot \mathrm{E}[X_{k}|c_{k-1}]\approx$

$\mathrm{E}[C.\cdot-1]$ into Eq.(3), the following recursive formula is obtained:

$\mathrm{E}[c_{:}]=\mathrm{E}[C_{-1}.\cdot](1-\frac{w(\dot{\iota})}{m})+w(i)$ . (5)

Jacoby and Tohma $[10, 12]$ solved the above recursive equation as follows.

Proposition: The mean cumulative number of faults up to the $i$-th test instance is

$\mathrm{E}[C\dot{.}]$ $=$ $m \{1-\mathbb{I}\mathrm{j}_{=1}(1-\frac{w(j)}{m})\}=m\{1-\exp[\sum_{j=1}.\log(1-\frac{w(j)}{m})]\}$

$\approx$ $m \{1-\exp[-\frac{1}{m}\int_{0}^{:}w(x)dx]$ $\}$ . (6)

The above result is based on the heuristic derivation, but can be shown to be correct from the inde-
pendence of the Bernoulli trials, as we show later. In the following section, we obtain further detailed
mathematical results on the HGDSRM.

3Further Results
Suppose that the probability $P_{1}\{x_{1}|m, w(1)\}$ that $x_{1}$ faults are detected by the test instance $t(1)$ is
the hypergeometric $\mathrm{p}\mathrm{m}\mathrm{f}$. Let $P_{2}\{x_{2}|m, w(2)\}$ denote the probability that $x_{2}$ faults are detected newly
at the second test instance, i.e. $i=2$ . Then, it is straightforward to obtain

$P_{2}\{x_{2}|m$ , $w(2) \}=\sum_{x_{1}=0}^{w(1)}P_{1}\{x_{1}|m,$ $w(1)\}P\{x_{2}|m,$ $c_{1},w(2)\}$ . (7)

From similar manipulation, we have

$P \dot{.}\{X:1m,w(:)\}=.\sum_{x_{-1}=0}^{w(\dot{|}-1)}P_{-1}.\cdot\{x:-1|m,w(i-1)\}P\{x:|m,\mathrm{G}.-1$ , $w(i)\}$ (8)
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where the right-hand side of Eq.(8) is due to (B-1) and (B-2). Of our interest is the derivation of the pmf
$P_{i}\{x_{i}|m, w(i)\}$ . Then, the problem is to solve the above recursive equation with the initial conditions:

$P_{1}\{x_{1}|m$ , $w(1) \}=\frac{(\begin{array}{l}mx_{1}\end{array})(\begin{array}{l}0w(1)-x_{1}\end{array})}{(_{w(1)}^{m})}$ $=1$ (9)

and

$P_{2}\{x_{2}|m$ , $w(2) \}=\frac{(\begin{array}{l}m-x_{1}x_{2}\end{array})(_{w(2)-x_{2}}^{x_{1}})}{(_{w(2)}^{m})}$. (10)

The following is the main result of this paper.

Theorem 1: For the initial number of software faults $m$ , suppose that the sensitivity factor in i-th
test instance $t(i)$ is defined by $w(i)$ . Then, the probability that $x_{i}$ faults are detected newly at $i$-th test
instance, $\mathrm{P}\mathrm{r}\{X_{i}=x_{i}\}=P_{i}\{x_{i}|m, w(i)\}$ , is

$\sum_{x_{2}=0}^{w(2)}\sum_{x_{3}=0}^{w(3)}\ldots.\sum_{x.-1=0}^{w(i-1)}[\dot{.}\prod_{n=2}^{-1}\frac{(^{m-\sum_{x_{n}^{k=1}}x_{k}}n-1)(_{w(n\overline{\overline{)}}-x_{n}}^{\sum x_{k}}kn-1)1}{(_{w(n)}^{m})}$
$.. \cdot\frac{(^{m-\sum_{x^{k=1}}x_{k}}-1)(^{\sum_{w(^{k1}}x_{k}}\overline{\overline{)}}-1)-x}{(_{w(i)}^{m})}.\dot{.}.\cdot$ . (11)

For aproof, see the appendix. From Theorem 1, the probability distribution function and the uncondi-
tional mean are $\mathrm{P}\mathrm{r}(X_{i}\leq x)=\sum_{x}^{x}{}_{:=0}P_{i}\{x_{i}|m,$ $\mathrm{w}(\mathrm{i})$ . and $\mathrm{E}[X_{i}]=\sum_{x.=0}^{w(i)}.x_{i}P_{i}\{x_{i}|m, w(i)\}$ , respectively.
The following result is adirect application of Theorem 1.

Theorem 2: The mean number of newly detected faults at $i$-th test instance is

$\mathrm{E}[X_{i}]=w(1)\prod_{j=2}^{i}(\frac{1}{w(j-1)}-\frac{1}{m})w(j)=w(i)\prod_{j=2}^{i}(1-\frac{w(j-1)}{m})(i\geq 2)$. (12)

Aproof is given in the appendix. From the above result, it can be verified that the unconditional mean
of $X_{:}$ is quite different from the conditional mean in Eq.(3). This mathematical result seems to be new
and is consistent with the earlier result on the HGDSRM.

Corollary 1: The mean cumulative number of detected faults up to $i$-th test instance is

$\mathrm{E}[C_{i}]=\mathrm{E}[\sum_{k=1}^{i}X_{i}]=m[1-\prod_{j=1}^{i}(1-\frac{w(j)}{m})]$ . (13)

This is the same as the Proposition in Section 3. In Theorem 2, note that $\mathrm{E}[X_{i}]$ is different from the
conditional expectation, provided that the observations, $x_{1}$ , $\cdots$ , $x_{i-1}$ , are given, that is,

$\mathrm{E}[X_{i}=x_{i}|X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{i-1}=x:-1]$

$=$
$. \sum_{x.=0}^{w(i)}x_{i}..\cdot\frac{(^{m-\sum_{x^{k=1}}.x_{k}}-1)(^{\sum x_{k)}}w(_{\dot{l}\overline{)}-x}^{k-1}-1}{(_{w(i)}^{m})}.\cdot$

.

$=$ $w(i)- \frac{w(i)}{m}\sum_{k=1}^{i-1}x_{k}$ (14)

is given by Eq.(3).
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Next, consider the variance of $X_{i}$ . From some algebraic manipulations, we can derive the following
results.

Theorem 3: The variance of the number of newly detected faults at $\mathrm{i}$-th test instance is

$\mathrm{V}\mathrm{a}\mathrm{r}[X.]$ $=$ $\frac{w(i)(m-w(i))}{m-1}[\prod_{r=1}^{\dot{|}-1}(1-\frac{w(r)}{m})][1-\dot{.}\prod_{r=1}^{-1}(1-\frac{w(r)}{m})]$

$+ \frac{w(i)(w(i)-1)}{m(m-1)^{2}}\sum_{n=2}^{\dot{|}-1}w(n)(m-w(n))[\prod_{r=1}^{n-1}(1-\frac{w(r)}{m})]$

$\cross[1-\prod_{r=1}^{n-1}(1-\frac{w(r)}{m})].\cdot\prod_{\mathrm{j}=n+1}^{-1}(\frac{w(j)(w(j)-1)}{m(m-1)}+1)$ . (15)

Theorem 4: The variance of the cumulative number of detected faults up to $i$-th test instance is

$\mathrm{V}\mathrm{a}\mathrm{r}[c_{:}]$ $=$ $\sum_{n=2}\cdot\frac{w(n)(m-w(n))}{(m-1)}[\prod_{r=1}^{n-1}(1-\frac{w(r)}{m})]$

$\cross[1-\prod_{r=1}^{n-1}(1-\frac{w(r)}{m})]\prod_{\mathrm{j}=n+1}^{\dot{1}}(\frac{w(j)(w(j)-1)}{m(m-1)}+1)$ . (16)

The proofs are omitted for brevity. From Theorem 3and Theorem 4, two random variables, $X_{:}$ and C.$\cdot$ ,
are possible to be evaluated. If the NHPPs are assumed as candidates of the SRGM, the variance of
C. is not attractive as adependability measure, since it is equivalent to the mean value. On the other
hand, the variances in Theorem 3and Theorem 4will be usuful to assess the fluctuation of the prediction
values, $\mathrm{E}[X:]$ and $\mathrm{E}[C:]$ , to the data $x$:and $c:= \sum_{k=1}.x_{k}$ using the HGDSRMs.

Finally, consider the software reliability for the HGDSRM. As mentioned before, the software reliabil-
ity function in the HGDSRM has not been defined in the past literature. We define it as the probability
that no new software faults are detected up to an arbitrary $i$-th test instance. The software reliability
at $i=1$ is Pi {$0|m,$ $\mathrm{w}(1)$ $=0$ , by the assumption $X_{1}=w(1)$ with probability one.

Theorem 5: Suppose that $j(>1)$ test instances are experienced before. Then, the software reliability
at $i$-th test instance $(i>j)$ is

$P \{\sum.\cdot X_{n}=0|m,w(i)$ , $\sum x_{n}\}\mathrm{j}$

$n=\mathrm{j}+1$ $n=1$

$=$
$n1 \mathrm{I}\mathrm{I}\frac{(m-\sum_{0^{\mathrm{n}=1}}jx_{n})(\sum_{w(n)}\mathrm{j}\mathrm{n}=1x_{\mathrm{L})}}{(_{w(n)}^{m})}$ (17)

and has the product form of the non-identical hyper-geometric distributions.

The result is obvious from Theorem 1. The main reason that in the past literature the software reliability
could not be defined in the consistence way is that all results on the HGDSRMs were based on only
the mean value $\mathrm{E}[C\dot{.}]$ . In other words, the mathematical results derived in this section are important to
characterize the HGDSRMs in terms of the probabilistic argument.
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