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Uncertainty, intrinsic value, and optimal development timing
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Abstract

A type of optimal land development problem can be regarded as an optimal stopping
problem in the field of applied stochastic analysis. This study derives the existence conditions
of the optimal stopping time when the stochastic process is a geometric Brownian motion
or an arithmetic Brownian motion. The conditions concern the intrinsic value function and
are simple and meaningful. They are also applied to an optimal land development problem.
From this analysis, the results of some existing studies can be systematically understood.
Especially, it is shown that an essential assumption in Clarke and Reed [A stochastic analysis
of land development timing and property valuation, Regional Science and Urban Economics
18, 357-381, 1988] is a part of the derived conditions.
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1 Introduction

This study treats an optimal land development problem under uncertainty. In other words,
we ask when and what type of building we should build if the development reward fluctuates
stochastically. Titman (1985) first studied such a problem using the financial option theory.
The basic idea is that the vacant land gives the right to gain a development reward in the future
and can be valued by the no-arbitrage theorem used for option pricing. His model, however, is
a two-period type and, thereafter, Clarke and Reed (1988), Williams (1991), and Capozza and
Li (1994) analyzed continuous-time models for the problem.! All of them set development time
and capital intensity (i.e., building size) as controlled variables and concluded that uncertainty
delays development and increases capital intensity. However, Williams (1991) and Capozza and
Li (1994) limited building production function to the Cobb-Douglas type. Clarke and Reed
(1988), on the other hand, assumed a more general production function and derived the optimal
development time, but the verification of its optimality was not sufficient.

Such an optimal land development problem can be regarded as a version of an optimal
stopping problem in the field of applied stochastic analysis. The conditions required for optimal
stopping time when the stochastic process is Ito diffusion were derived by Dynkin (1963). His
theorem gives a general solution of optimal stopping problems, but it is not necessarily useful for
specific economic problems. Recently, Brekke and @Jksendal (1991) derived a relation between
optimal stopping time and the smooth-pasting condition, that is often used in economic analysis
(e.g. Dixit, 1993; Dixit and Pindyck, 1994). The smooth-pasting condition is essentially con-
sidered as a first-order condition in the optimization of the stopping time (e.g. Merton, 1973,
p.171; Qksendal, 1990). These authors derived the second-order conditions that guarantee the
optimality of the solutions that satisfy the smooth-pasting condition. Clarke and Reed .(1988)
did not consider the second-order conditions for their solution.

In this article, we first derive the existence conditions of the optimal stopping time when
the stochastic process is a geometric Brownian motion or an arithmetic Brownian motion using
the Brekke=(ksendal theorem (Section 2). Second, we apply the result to an optimal land
development problem (Section 3). From this analysis, we can systematically understand the
results of Clarke and Reed (1988) and discussions about the existence of internal solutions by
Williams (1991) and Capozza and Li (1994).

. ! The continuous-time model for financial-option pricing was developed by Merton (1973), and its application
to a real-option problem was studied by McDonald and Siegel (1986). Recently, Williams (1993) and Grenadier
(1996) analyzed market equilibrium models of land development under uncertainty.
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2 Existence conditions for an optimal stopping problem

We specify an optimal land development problem as follows:

T (o o]
sup Eyp [/ CFu(Y;)e ™dt + / CF(Y:, X)e ™dt — c,(X)e ™), (1)
7,X 0 T

where Ej is the expectation conditional on the present (time 0) information, CF} is the cash-
flow function for ante-development land, CF is the cash-flow function for post-development
land, Y} is a one-dimensional stochastic process influencing cash flow, X is a vector of building
characteristics (capacity, grade, etc.), ¢; is the development-cost function at ¢, and r is the real
interest rate. Problem (1) implies that the land can be developed only once, the new building
lasts forever, and the agent is risk-neutral. We should notice that 7 is a F;-stopping time, where
F; is the o-algebra generated by Y;, s < t.
The objective function of (1) can be restated as

T (o o]
Eo| / CFA(Yy)e "tdt + / CF(Y;, X)e~"dt — cr(X)e!]
0 T

B E°[/ T{CF (¥, X) — CEA(¥)e™dt - er ()™ + /0 "~ CFa(¥)ed)
= Eol[{P(Yr,X) - Pa(¥r) = er(X)}e™™] + Pa(¥o), (@)

where E, [° CF(Y;, X)e "¢~%)dt and E, J° CFA(Y;)e "(t=9)dt are assumed to have the form
P(Y;, X) and P4(Y;), respectively.

2.1 Constant cost case

When the development cost only depends on X, problem (1) can be rewritten as

iU)I()EO[{P(Y-raX) — PA(Yr) — c(X)}e™™]

= sgp EolV(Y;)e™™], (3)

where V(Y) = m)?.x{P(Y, X) — PA(Y) — ¢(X)} and we call it the intrinsic value of the warrant
to develop the land when Y; = Y. Furthermore, the reward function v and the optimal reward
function v* are defined by v(s,y) = V(y)e ™, v*(s,y) = sup E,[V(Y;)e~""], respectively, where
Y, =y. "

Problem (3) is well-known as a type of optimal stopping problem in the field of applied
stochastic analysis. Brekke and @ksendal (1991) assumed Y; is a multi-dimensional Ito diffusion
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and proved a theorem giving a relation among the optimal stopping time, the optimal reward
function, and the smooth-pasting condition that is often used in economic analysis. In this
section, we assume Y; is a geometric Brownian motion (GBM) or an arithmetic Brownian motion
(ABM) and derive the conditions for the existence of optimal stopping time using their theorem.

The conditions concern the intrinsic value function and are simple and meaningful.

2.1.1 GBM case

We set the following basic assumptions:

Assumption 1 (A1). (t,Y:) € U = Ry X R4y and dY; = gYidt + o0Y;dB;, where both g and o

are positive constants, %02 < g<r, and B, is a one-dimensional standard Brownian motion.

Assumption 2 (A2). We can find nonnegative y° such that the intrinsic value function V :

R+ — R is positive and belongs to C? in (y°,00) and V is nonpositive and continuous in [0,y°}.

(A1) says that Y; is a geometric Brownian motion and that the inequality %02 < g guarantees
that any first exit time inf{t > 0 : ¥; > 4,0 < u < oo} is finite a.s. (almost surely) (e.g.
(@ksendal, 1998, p.63.). (A2) says that we have at most one break-even point (y°) except for
zero. This is a natural assumption in the real world. Differentiability of V' is a technical
assumption.

By the Brekke=@ksendal theorem, if the following conditions are also satisfied, then 7p is
an optimal stopping time and w* is the optimal reward function, where w*(s,y) = w(s,y) if

(s,y) € D, and w*(s,y) = v(s,y) otherwise:

Condition 1 (C1). An open set D C U with a C! boundary ezists, Tp = inf{t > 0: (¢,Y;) ¢
D} < o0 a.s., and, for each s € Ry, the set {y : (s,y) € 8D} has a zero one-dimensional
Lebesgue measure, where 8D 1is the boundary of D. '

Condition 2 (C2). A function w : D — R erzists, and w € C(D) N C(D), where D is the

closure of D.

Condition 3 (C3). v € CY(OD NU) and Lv < 0 outside D, where L is the characteristic
operator of (t,Y;) and

_0 0 1200 |
L—as+gyay+2ayay2. (4)

Condition 4 (C4). w > v in D.
Condition 5 (C5). D and w satisfy (a), (b), and (c):

(a) Lw =0 in D.
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(b) (value-matching condition) w(s,y) = v(s,y) for (s,y) €DNVU. (5)

(c) (smooth-pasting condition) é%w(s,y) = %v(s,y) for (s,y) €eDNU. (6)

These conditions seem to be complex, but they can be roughly interpreted as follows: When
D is given, (C5)(a) and (C5)(b) determine w. (C5)(c) is a first-order condition for determining
optimal D. (C2) and the first part of (C3) guarantee Lv, Lw, %, and % to exist in each
specified region. The second part of (C3) and (C4) are the second-order conditions for the
optimality of D and w. (C1) is a technical condition.2

The next proposition tells us that some conditions for the intrinsic value function V' verify
(C1) - (C5):

Proposition 1 (Ezistence of an optimal stopping time: GBM case). Define h(y) =

y“,”yy in (y°,00) and let B be a positive root of the equation 302B% + (g — 302)B—r = 0. If

K (y) <0, lingo h(y) < B, and lilm h(y) > B, then a unique optimal stopping time Tp exists,
y— yly°

where D = {(s,y) : s € R,,0 <y < y*} and y* = h~1(B). Furthermore, if we let w*(s,y) =

B
V(y*) (_yy;) e~ fory € [0,y*) and w* = v fory > y*, then w* is the optimal reward function.

Remarks. (i) The set of conditions, h'(y) < 0, ylirgo h(y) < B, and lilm h(y) > B, is a
— yly°
natural extension of the certainty case. In the certainty case, problem (3) can be rewritten as

sup V(Y;)e™™, and the first-order condition and the second-order condition are as follows:
t

(Bo.c) V() = ZyV'(y°), (7)

(s.0.c) gy2V"(¥°) + (9% — 2rg)y°V' (¥°) + r*V(y¥°) <0, (8)

where y° is the optimal stopping time in this case. From (7) and (8), we have

v+ (1-2) v+ (3) Vo) < o=

2V (y°) V! (y°) 2

2y, .C Y Y cy/!(,,C Yy Yy c
Y=V (y)+(1——————— y¥V'@)+ (507 ) V) < 0=

V(y°) V(y°)

V@) +9 V' @NVE) ~ vV < . (9)

2By (C5)(a), (C5)(b), and the thorem of the stochastic Dirichlet problem (e.g. @ksendal, 1998, p.172), we have

w*(s,y) = E,[V(Y,)e”""P] for a given D, which means w* < v*. By the Dynkin theorem of optimal stopping,

v* must be the least superharmonic majorant of v. On the other hand, w* is a majorant of v by (C3) and (C4), so

w* = v* only if w* is superharmonic. We can easily show this if w* € C2, but (C5)(c) only guarantees w* € C*

on 8DNU. (C1) is a condition that guarantees the double differentiability. For details, see Brekke and @ksendal
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From Equations (7) and (9) mean h(y¢) = - and A/(y°) < 0. Therefore, the set of conditions,
R'(y) <0, lim h(y) < %, and lim h(y) > Z, is sufficient for the existence of y°.
Yy—00 g ylye g
(ii) The condition A'(y) < 0 is meaningful. Since we have h(y*) = G, 5‘%@; <0, lgmoﬂ =
02—

5 >1,and lim = \/g, this condition shows that the optimal stopping time is delayed when

02—2g
uncertainty ( 02) increases (Fig.1). In addition, this condition guarantees

h(y) > 0 in (y°, o). (10)

If y such as h(y) < 0 exists in (y°,00), then we have yll)IIgQ h(y) < 0, which means yli)rgo V'(y) <0
by the definition of A(y). This contradicts V(y) > 0 in (y°, 00); thus, (10) is satisfied, and (10)
implies that V' (y) is strictly increasing in (y°, 00) by the definition of h(y).

(iii) The conditions yli_)rgo h(y) < B and zlillr;‘l’ h(y) > B do not guarantee that the optimal

stopping time exists for any level of uncertainty. If we assume ylggo h(y) < \/% and ;ilg}’ h(y) > %
instead of them, then the optimal stopping time exists for any level of uncertainty, where we
should notice that 0 < 0% < 2g from (A1l).

(iv) Dixit and Pindyck (1994, pp.103-104, 128-130) also discuss a sufficient condition for the
uniqueness of the optimal stopping time, in other words, a sufficient condition of clean division
in the range of the continuation region and the stopping region. In our case, their condition is
that 20%y?V"(y) + gyV'(y) — rV(y) is monotonically decreasing (i.e., Lv(s,y) is monotonically
decreasing w.r.t. (with respect to) y). In contrast to our condition, this condition require more

information about the intrinsic value function V, that is, V. We only require V € C? in

(y°,00).
3 Application to an optimal land development problem

In this section, we consider an optimal land development problem, that is, a special case of the
problem in Section 2. We set Y and X in problem (1) to be the net rent R yielded by the unit
floor and the capital stock K allocated per unit land when it is developed, respectively, and
assume that the development cost at t is C;K. If we let Q(K) be the output of the floor on
land developed with capital K, then we have CF(R,K) = Q(K)R. We suppose Q € Cz(§R+),
Q(0)=0,Q" >0, and Q" < 0.

Arnott and Lewis (1979) supposed a CES and constant-returns-to-scale production function
QK) =X+ (1-NK p]%, where 0 < A < 1, p = 2=, and ¢ is elasticity of the substitution
between land and capital, and estimated o = 0.372,0.342, employing data on Canadian cities
(1975, 1976). This result implies €/ (K) < 0, where the output elasticity of capital € is defined

by e(K) = %{%{g, since €' (K) = f\;\‘% has a negative value if p < 0, that is, o < 1.
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Clarke and Reed (1988) assumed that €¢/(K) < 0, CF4(R) = 0, R;, and C; are geometric
Brownian motions and derived the optimal development time. However, their proof (p.364,
Proposition 1) is not sufficient since they did not show that their solution satisfies the second-
order conditions for optimal stopping.

Our objective in this section is to derive the existence conditions of the optimal develop-
ment time for such a model, directly applying the propositions in Section 2. We generalize the
Clarke=Reed model in the meaning that CF4(R) = aR+ b, where a > 0 and b > 0, and R; can

be an arithmetic Brownian motion when C; is constant.

3.1 Constant cost case

3.1.1 GBM case

In this case, C; = C and the value of a unit floor at s, E; [;° Rie "(t~*)dt, is T—IE‘E, since

Es[Ry] = Rye%~%). Therefore we have P(R,K) = %@gﬁ, P4(R) = ;";% + g, and the intrinsic
value function

V(R) = max [‘{f’_ﬂgR - (T“fg + g) - CK] . (11)

We can show that V(R) satisfies (A2); therefore, we can apply Proposition 1. The conditions in

Proposition 1 can be restated as conditions for the building-production technology:

Proposition 2 (Eristence of an optimal development time: GBM case). Suppose

~ _ QUE)(E+K) . a o = -1 ((r=9C a = -1
(Al). Define ¢(K) = Wﬁ?_a— in (K%, 00) and K° = @ zio— ), where K® = Q7 '(a)
. o = ~ . ~ -1 . ~ -1
and R° is defined as y° in (A2). If€(K) < 0, Kh_rflooe(K) < %—, and ngﬁoe(K) > %—,
where (3 is defined in Proposition 1, then a unique optimal development time Tp exists, where
D={(s,R):s€eR,0<R< R}, R*= g&%";, and K* =¢! ('[%1) Furthermore, if we let
w*(s,R) = V(R") (%)ﬂe_" Jor R € [0, R*) and w*(s,R) = V(R)e™™ for R > R*, then w* is
the optimal reward function.

Remarks. (i) If @ > 0 or b > 0, then the condition I}ilx}%o?(K ) > %—1 is not necessary since
I}iltlr(lo”e'(K y=1> @E—l Also, if a = b= 0 and @” > —o0, the condition is not necessary either.
Otherwise, when a = b = 0 and Q"(0) = —oo, the condition is sufficient.

(ii) The condition €'(K) < 0 supposed in Clarke and Reed (1988) is also effective, since
€(K) <0=¥7(K) <0. If we assume lim €(K) < %_J@ instead of the condition lim €(K) <

K—o0 T K—oo

%—1, then the optimal stopping time exists for any levels of uncertainty, where we should notice
that 0 < 02 < 2g from (Al).
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(iii) When we assume a Cobb-Douglas production function Q(K) = K7 (0 < v < 1), we have
¢ (K) = 0. If we, furthermore, suppose a = b = 0, we also have € (K) = 0, that is, »'(R) = 0.
This implies that R*, which is the value satisfying the the value-matching and smooth-pasting
conditions that are necessary for optimal stopping, does not exist; therefore, we could not find
the optimal development time. This fact is also referred to by Williams (1991, p.204, note 12).3
In a case with a > 0 or b > 0, we have € (K) < 0 and 1{1i—1>nooE(K) = «. Therefore, if v < %,

then the optimal development time exists.

4 Concluding remarks

Many researchers have recently studied land development problems using the optimal stopping
theory. They often use a partial differential equation, the value-matching condition, and the
smooth-pasting condition to derive the optimal solution; however, these are just necessary con-
ditions. In this article, we derive sufficient conditions for the existence of the optimal solution
for a type of optimal stopping problem and apply it to an optimal land development problem.
From this analysis, we can systematically understand the results of existing studies. We show,
especially, that an essential assumption in Clarke and Reed (1988) is a part of the conditions

we derive.
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