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Abstract

This short note deals with several classes of Boolean formulae which have the property, that
satisfiabilty can be tested for them in polynomial time with respect to the length of the formula.
The studied classes known ffom the literature build uP on the $\mathrm{w}\mathrm{e}\mathrm{U}$-known classes of quadratic on Horn
formulae. We prove several interesting properties of these classes and show their mutual positions
with respect to inclusion, aproblem which was not previously studied.

1Introduction
The class of Horn formulae is avery important and extensively studied subclass of general Boolean
formulae. The principal reason for their importance is the fact, that the $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{a}\mathrm{b}\underline{\mathrm{i}\mathrm{l}\mathrm{i}}\mathrm{t}\mathrm{y}$ problem (SAT),
which is well-known to be $\mathrm{N}\mathrm{P}$-complete for general Boolean formulae, can be solved efficiently (in linear
time with respect to the length of the formula) for Horn formulae [11, 15, 17]. This has significant
practical implications. Many real-life problems require for their solution to solve SAT as asubproblem,
and hence are in general intractable; however, they become tractable if the underlying Boolean formula
in the problem is Horn. Such problems arise in several application areas, among others in artificial
inteUigence [9, 13, 14] and database design $[10, 16]$ . The limiting factor in using Horn formulae is their
expressing power. Not every real-life problem can be formulated in such away, that the underlying
formula is Horn.

For the above reasons it is obvious, that finding broader classes of formulae, which preserve the
property that satisfiability is decidable for them in polynomial time, is highly desirable. Several attempts
in this direction were successfully made. The &st natural generalzation that was considered is the
class of hidden Horn formulae, which are in literature sometimes also called renameable or disguised Horn
formulae. This class consists of formulae, which can be obtained from Horn formulae by so called “variable
complementing” (also known as “vaiable renaming” or “variable switching”), i.e. by replacing some
Boolean variables by their complements. Aspvall showed in [1] that recognizing whether agiven Boolean
formula is hidden Horn can be done in linear time. Moreover, the recognition algorithm combined with
the linear time SAT algorithm for Horn formulae [11, 15, 17] directly yields alinear time SAT algorithm
for the class of hidden Horn formulae.

Yamasaki and Doshita [19] defined adifferent generalzation of Horn formulae, called their class $S_{0}$ ,
and developed acubic time SAT algorithm for formulae in So. This was later improved to quadratic time
by Arvind and Biswas [3]. Moreover, recognizing whether agiven formula belongs to $S_{0}$ can be decided
also in quadratic time by astraightforward algorithm which uses in asimple way the definition of the
class. The class $S_{0}$ was further generalized by Gallo and Scuteu\‘a [12] who came up with arecursively
defined infinite hierarchy of classes of Boolean formulae $\Gamma_{0}\subseteq\Gamma_{1}\subseteq\Gamma_{2}\subseteq\cdots$ such that $\Gamma_{0}$ consists of all
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Horn formulae, $\Gamma_{1}$ equals to $S_{0}$ , and the union $\bigcup_{k=0}^{\infty}\Gamma_{k}$ is the set of all Boolean formulae. For every fixed
$k$ , recognizing whether a given formula belongs to $\Gamma_{k}$ can be done in polynomial time (in $o(\ell n^{k})$ timewhere $\ell$ is the length of the formula and $n$ is the number of Boolean variables). If aformula is in theclass $\Gamma_{k}$ , then the same time bound holds for testing its satisfiability.

Another generalization of Horn formulae was defined by Boros, Crama, and Hammer in [4], wherethe class of $q\prime Hom$ formulae was introduced. This class properly contains not only all Horn formulae,but also all quadratic formulae and hidden Horn formulae. In [4] it was shown, that satisfiability canbe tested in linear time for q-Horn formulae, and recognizing whether agiven formula is $\mathrm{q}$-Horn can bedone in polynomial time by an algorithm based on linear programming. The complexity of recognitionwas later improved by Boros, Hammer, and Sun [5] to linear time by means of apurely combinatorialalgorithm.
Yet another generalization of Horn formulae, so called extended Horn (EH) and hidden extended Horn(HEH) formulae, were defined by Chandru and Hooker in [8]. The definition of the class of EH formulaeuses nontrivial polyhedral techniques and is quite complicated. HEH formulae then originate from EHformulae in the same way as hidden Horn formulae do from Horn formulae. The main property of HEHformulae is that satisfiability can be tested for them in linear time by unit resolution. On the other hand,the biggest drawback of the class is that no polynomial time recognition procedure is known for it, withthe exception of asmall subclass of EH formulae for which recognition can be solved in almost lineartime by the algorithm of Swaminathan and Wagner [18].
Very little is known about the mutual relationships (with respect to inclusion) among the abovedescribed classes (the exception being that both $\mathrm{q}$-Horn formulae and HEH formulae are known tocontain all hidden Horn formulae). In this paper we shall address this question and show, that all ofthe above defined classes ( $S_{0}$ , q-Horn, HEH) are indeed different, i.e. none of them contains any other.

Furtermore we shall show how do the classes of $\mathrm{q}$-Horn formulae and $\mathrm{H}\mathrm{E}\mathrm{H}$ formulae relate to the infinitehierarchy $\mathrm{r}\mathrm{O}$ , $\Gamma_{1}$ , $\Gamma_{2}$ , $\ldots$ defined by Gallo and Scutell\‘a [12].

2 Classes with polynomial time satisfiability testing
Throughout this paper we shall work with the set $x_{1}$ , $x_{2}$ , $\ldots$ , $x_{n}$ of Boolean $va\mathit{7}\dot{\mathrm{r}}ables$ (proposition letters).A literal is either a variable or its negation. The set of all positive literals $\mathrm{x}\mathrm{i}$ , $x_{2}$ , $\ldots$ , $x_{n}$ and all negativeliterals $\overline{x}_{1},\overline{x}_{2}$ , $\ldots$ , $\overline{x}_{n}$ will be denoted by $I$ , i.e.

$I=\{x_{1}, x_{2}, \ldots, x_{n},\overline{x}_{1},\overline{x}_{2}, \ldots,\overline{x}_{n}\}$ .
For every $i$ , the pair $X:,\overline{X}\dot{.}$ is called acomplementary pair of literals. Aclause is adisjunction of literalswhich contains no complementary pair. A clause is called a positive clause if it $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\check{\mathrm{s}}$ only positiveliterals and it is called a negative clause if it contains only negative literals. Alength of aclause is thenumber of literals in it. In the subsequent text we shall frequently treat clauses as sets, e.g the expression
$a\in C$ will denote that clause $C$ contains literal $a$ . Similarly $C\subseteq D$ will mean that all literals of clause
$C$ are contained also in clause $D$ , in which case $C$ is called a subclause of $D$ . A conjunctive nor$mal$ for$m$(CNF) is aconjunction of clauses. It is well-known, that every Boolean formula (of propositional logic)can be transformed into alogically equivalent CNF. Thus, in the remainder of this paper we shall workonly with CNFs, and the word “formula” will always mean aCNF. Alength of aformula is then definedas the sum of lengths of its clauses.

Amodel is an assignment of truth values to variables which extends in an obvious way to an assignmentof truth values to literals (complementary literals receive complementary values). Amodel satisfies aclause if it makes at least one literal in the clause true. A formula is satisfiable if there exists a modelwhich simultaneously satisfies all clauses in the formula. The satisfiability problem (SAT) is defined asfollows:
Instance: Aformula $\phi$ .
Question: Is $\phi$ satisfiable?

SAT is known to be NP-complete, however it is solvable in polynomial time for certain classes of formulae.Perhaps the simplest such class is the class of quadratic formulae. Aformula is quadratic if every clausein it has length at most two. It was proved e.g. in [2] that in such acase SAT can be solved in linear time
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with respect to the length of the formula. Beside that, the class of quadratic formulae (let us denote it
by $Q$) has additional nice properties, namely it is closed under the following five operations:. Lite$rul$ deletion: Let $\phi\in Q$ and let $\phi’$ originate from $\phi$ by deleting aliteral from some clause. Then

$\phi’\in Q$ .. Clause deletion: Let $\phi\in Q$ and let $\phi’$ originate from $\phi$ by deleting an entire clause. Then $\phi’\in Q$ .. Partial assignment: Let $\phi\in Q$ and let $\phi’$ originate from $\phi$ by substituting atruth value for a
variable. Obviously, this simply amounts to literal deletion of au occurences of the selected variable
which evaluate to zero, and to clause deletion of aU clauses in which the selected variable evaluates
to 1. Hence any class of formulae which is closed under both literal and clause $\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{i}\dot{\mathrm{o}}\mathrm{n}$ is closed
also under partial assignment. Thus, $\phi’\in Q$ .. Variable complementation: Let $\phi\in Q$ and let $S\subseteq\{1, \ldots,n\}$ be an index set indexing asubset of
variables. Define aformula $\phi^{S}$ as follows: $\phi^{S}$ is produced from $\phi$ by replacing aU occurences of $x$:
by $\overline{x}.\cdot$ and all occurences of $\overline{x}.\cdot$ by $X$:for every $i\in S$ , and by leaving all other literals (corresponding
to variables $x:$ , $:\not\in S$) unchanged. Then $\phi^{S}\in Q$ .. Disjoint union: Let $\phi_{1}$ , $\phi_{2}\in Q$ be two formulae on disjoint sets of variables, and let $4$) $=\phi_{1}$ A $\phi_{2}$ .
Then $\phi$ $\in Q$ (the class $Q$ is closed even under a“general” union, where the two sets of variables are
not required to be disjoint, however).

The above five operations are very useful in working with examples of formulae which belong to agiven
class. Therefore we shall study these operations for au classes which we shall work with in the subsequent
text. However, as we shall see, not $\mathrm{a}\mathbb{I}$ of these classes will behave as “nicely” as the class of quadratic
functions, which is closed under all five operations. The biggest drawbadc of quadratic formulae is
their low “expressing power”, i.e. few “real world” problems can be formulated in terms of quadratic
formulae. Awidely studied class of formulae with aconsiderably higher expressing power is the class
of Horn formulae. Aclause is Horn if it contains at most one positive literal. Aformula is Horn if it
consists only of Horn clauses. Again, SAT can be solved in linear time for Horn formulae, as was shown
e.g. in [11, 15, 17]. The class of Horn formulae is clearly closed under both literal and clause deletion
and hence also under partial assignment. It is also closed under disjoint union (even “general” union).
However, it is not closed under variable complementation. This feature is rather unfortunate. Amore
or less random choice of which “real world” phenomenon is associated with apositive literal and which
with the corresponding negative literal (e.g. for dual pairs like $\mathrm{l}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}/\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{k}$ , switch-0n/switch-off, etc.)
may influence whether the resulting Boolean formulation of the underlying “real-world” problem yields
aHorn formula or not. That in turn determines whether the obtained formulation is practicaly usable
or not. This drawback of Horn formulae is elminated in the following class, which can be thought of as
the “complementation closure” of the class of Horn formulae.

2.1 Hidden Horn formulae
Aformula $\phi$ is hidden Horn if there exists an index set $S$ for which $\phi^{\mathrm{S}}$ is Horn. The following easy
observation follows immediately from the definition and the properties of Horn formulae and hence is left
without aproof.

Proposition 2.1 The class of hidden Horn formulae is closed under literal deletion, clause deletion,
partial assignment, variable complementation, and disjoint union.

Note however, that unlike in the Horn case, the class of hidden Horn formulae is not closed under“general”
union, as two hidden Horn formulae may require conflicting sets of variables to be complemented (no
class introduced&0m now on will be closed under “general” union, so we will stop referring to it). In [1]
alinear time algorithm was designed, which for any given formula $\phi$ tests whether it is hidden Horn,
and in the positive case outputs the appropriate index set $S$ , such that $\phi^{S}$ is Horn. Since there is an
obvious one-t0-0ne correspondence between satisfying models of $\phi$ and satisfying models of $\phi^{S}$ , this lnear
time recognition algorithm combined with any lnear time SAT algorithm for Horn formulae immediately
yields alinear time algorithm for SAT on hidden Horn formulae. Now let us define another three different
generalizations of Horn formulae: $\mathrm{q}$-Horn, (hidden) extended Horn, and $S_{0}$ formulae.
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2.2 $\mathrm{Q}$-Horn formulae
An assignment of truth values to variables, which can be simply defined as afunction $t:\{x_{1}, \ldots, x_{n}\}arrow$

$\{0, 1\}$ can be generalized to aso called valuation $\alpha$ : $\{x_{1}, \ldots, x_{n}\}arrow[0, 1]$ by relaxing the integrality
requirement. Similarly as in the case of truth value assignments, avaluation extends to all literals by
requiring that $\forall i:\alpha(x_{i})+\alpha(\overline{x}\dot{.})=1$. For aclause $C$ we define $\alpha(C)=\sum_{a\in C}\alpha(a)$ , and call valuation $\alpha$

to be feasible for $C$ if $\mathrm{a}(\mathrm{C})\leq 1$ . Aformula $\phi$ is $q$-Horn if there exists avaluation $\alpha$ which is feasible for
all clauses in $\phi$ (such avaluation is then called feasible for $\phi$).

It is easy to observe, that every quadratic formula is $\mathrm{q}$-Horn(the valuation $\alpha(x:)=\frac{1}{2}\forall i$ is feasible
for every quadratic formula), every Horn formula is $\mathrm{q}$-Horn(the valuation $\alpha(x:)=1\forall i$ is feasible), and
every hidden Horn formula is $\mathrm{q}$-Horn(take the valuation $\mathrm{a}(\mathrm{x}\mathrm{i})=0$ $\forall i\in S$ and ce(x:) $=1$ $\forall i\not\in S$ ,
where $S$ is the index set for which $\phi^{S}$ is Horn). Moreover, the class of $\mathrm{q}$-Horn formulas has the following
properties.

Proposition 2.2 The class of $q$-Horn formulae is closed under literal deletion, clause deletion, partial
assignment, variable complementation, and disjoint union.

Proof: The fact that the class of $\mathrm{q}$-Horn formulae is closed under both literal and clause deletion
and hence also under partial assignment follows directly from the definition of $\mathrm{q}$-Horn formulae. The
same is true for disjoint union. To see that the class is closed under variable complementation note,
that if valuation $\alpha$ is feasible for $\phi$ then valuation $\alpha’$ defined by $\mathrm{a}’(\mathrm{x}\mathrm{i})=1-\alpha(x\dot{.})$ $\forall i\in s$ and
$\alpha’(x:)=\alpha(x:)\forall i\not\in$ $S$ is feasible for $\phi^{S}$ . Hence, if $\phi$ is $\mathrm{q}$-Horn then $\phi^{S}$ is also $\mathrm{q}$-Horn for all index sets
$S$ . $\blacksquare$

In [4], where the class of $\mathrm{q}$-Horn formulae was introduced, it was shown, that for a $\mathrm{q}$-Horn formula
SAT can be tested in linear time (with respect to the length of the formula), and recognizing whether a
given formula is $\mathrm{q}$-Horn can be done in polynomial time by an algorithm based on linear programming.
The complexity of recognition was later improved in [5] to linear time by means of apurely combinatorial
algorithm.

2.3 (Hidden) Extended Horn formulae
The definition of this class of formulae utilizes polyhedral techniques, namely the results from [7], and is
quite complicated. Because of the required brevity of this note, it is not possible to give the full details of
the definition here. The interested reader shall look into the original paper [8] or into [6] for asummary.
To put the class of hidden extended Horn (HEH) formulae in perspective with other classes discussed in
this note, let us state two propositions from [6].

Proposition 2.3 The class of hidden extended Horn formulae is closed under clause deletion, partial
assignment, variable complementation, and disjoint union, however, it is not closed under literal deletion.

Proposition 2.4 The class of hidden extended Horn formulae properly contains the class of hidden Horn
formulae.

Although the definition of HEH formulae is rather complicated and difficult to grasp, the class behaves
remarkably nice with respect to solving SAT. It was discovered in [8] that SAT can be solved for HEH
formulae in linear time by an algorithm based on unit resolution. On the other hand, the biggest drawback
of the class of HEH formulae is that no polynomial time recognition procedure is known for it, with the
exception of asmall subclass of extended Horn formulae for which recognition can be solved in almost
linear time by the algorithm of Swaminathan and Wagner [18].

2.4 Class $S_{0}$ and infinite hierarchy Fo, $\Gamma_{1}$ , $\Gamma_{2}$ , $\ldots$

The definition of class $S_{0}$ is quite simple. Aformula $\phi$ is in the class $S_{0}$ if there exists an ordering
$\{C_{1}, \ldots, C_{m}\}$ of the clauses of $\phi$ such that each $C_{\dot{l}}$ can be written in the form $C_{:}=P_{\dot{l}}\vee H_{\dot{l}}$ where

1. $\forall i=1$ , $\ldots$ , $m$ : $H\dot{.}$ is aHorn clause
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2. $\forall i=1$ , $\ldots$ , $m$ : P.$\cdot$ is apositive clause, and

3. $\forall i=1$ , \ldots ,m-1 : $P_{+1}.\cdot\subseteq P\dot{.}$ .

Quite clearly, So contains all Horn formulae. On the other hand, unlke in the case of q-Horn and HEH
formulae, the set of hidden Horn formulae is not contained in $S_{0}$ . To see this it is enough to consider e.g.
the formula

$\phi=(x_{1}\vee x_{2})\mathrm{A}(x_{3}\vee x_{4})$ (1)

which is certainly hidden Horn (complementing e.g. $x_{1}$ and $x_{3}$ suffices to get aHorn formula), but is not
in $S_{0}$ (the sets $P_{1}$ and $P_{2}$ must contain at least one literal each, and hence can never fulfil the required
inclusion). This observation immediately implies the following easy statement.

Proposition 2.5 The class $S_{0}$ is closed under clause deletion and partial assignment. It is not closed
under literal deletion, variable complementation, and disjoint union.

Proof: Let us start with the negative results. $S_{\mathit{0}}$ is not closed under literal deletion because the formula
$\phi’=(x_{1}\vee x_{2}\vee x_{3})$ A $(x_{3}\vee x_{4})$ is in $S_{\mathit{0}}$ (setting e.g. $P_{1}=x_{2}\vee x_{3}$ and $P_{2}=x_{3}$ proves it), while formula $\phi$

which is obtained from $\phi’$ by deleting literal $x_{3}$ from the first clause is not in $S_{\mathit{0}}$ . Similarly, $S_{\mathit{0}}$ is not closed
under variable complementation since the above formula $\phi$ can be obtained by variable complementation
e.g. from $(\overline{x}_{1}\vee x_{2})\wedge(\overline{x}_{3}\vee x_{4})$ which is Horn and thus also in $S_{0}$ . Finally, $S_{0}$ is not closed under disjoint
union because $(x_{1}\vee x_{2})$ as well as $(x_{3}\vee x_{4})$ (as well as every formula consisting of asingle clause) is in
$S_{0}$ while $\phi$ is not.

On the other hand, it easily follows&0m the definition that the class $S_{\mathit{0}}$ is closed under clause deletion,
and it is not hard to see that it is closed under partial assignment. Indeed, removing aliteral from

$\mathrm{a}\mathbb{I}-$

clauses in which it appears preserves the required nesting of the positive clauses.

In [19] a $O(n^{3})$ SAT algorithm (where $n$ is the number of variables) was developed for formulae in $S_{0}$ ,
which was later improved to $O(n^{2})$ in [3]. Although the recognition problem was not addressed in [19]
or [3], recognizing whether agiven formula belongs to $S_{0}$ can be decided also in quadratic time by a
straightforward algorithm which uses in asimple way the definition of the class. However, we shall not
present this algorithm here, because we shall see later, that the recognition problem for $S_{0}$ is just aspecial
case of amore general recognition problem (solved in [12]), which we shall deal with below.

The definition of class $S_{\mathit{0}}$ , which is based on the idea of nested positive clauses, was further generalized
in [12] in the following way. Let $\phi$ be aformula consisting of clauses $\{C_{1}, \ldots, C_{m}\}$ on the set of variables
$X=\{\mathrm{x}\mathrm{i}, \ldots,x_{n}\}$ . Let us write each clause C.$\cdot$ in the form $C.\cdot=P.\cdot\vee N.\cdot$ , where P.$\cdot$ is apositive clause
and N.$\cdot$ is anegative clause. Furthermore, let us denote $P(\phi)=\{P_{1}, \ldots, P_{m}\}$ and let $J$ be an arbitrary
subset of variables, i.e. $J\subseteq X$ . Then we define two set operations, which use $J$ to restrict $P(\phi)$ in two
different ways to obtain “smaller” sets of positive clauses, by. $P(\phi)_{J}=\mathrm{P}(4)\backslash \{P.\cdot\in \mathrm{P}(4)|J\subseteq P.\cdot\}$ , and

\bullet $P(\phi)\Theta J=\{P_{\dot{1}} \backslash J|P_{j}\in P(\phi)\}$ .

The above two operations enable us to recursively define an infinite hierarchy of sets of positive clauses
$\Sigma_{0}$ , $\Sigma_{1}$ , $\Sigma_{2}$ , \ldots as follows. $\mathrm{P}(4)\in\Sigma_{0}$ iff $\forall P_{}\in \mathrm{P}(4)$ : $|P.\cdot|\leq 1$ ,. $\forall k>0:\mathrm{P}(4)\in\Sigma_{k}$ iff $\exists x_{\mathrm{j}}\in X$ : $P(\phi)\{x_{\mathrm{j}}\}\in\Sigma_{k-1}$ and $P(\phi)\Theta\{x\mathrm{j}\}\in\Sigma k$

The above hierarchy of sets of positive clauses can be extended in anatural way to an infinite hierarchy
of classes of Boolean formulae To, $\Gamma_{1}$ , $\Gamma_{2}$ , $\ldots$ by

$\phi\in\Gamma_{k}\equiv P(\phi)\in\Sigma_{k}$ .

Obviously, $\Gamma_{0}$ consists exactly of all Horn formulae, and it is not hard to see that $\Gamma_{1}$ equals to $S_{0}$ (see
[12] for details). Moreover, the following claims were proved in [12]. If $\phi$ is aformula of length $\ell$ on $n$

variables then
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. $\phi\in\Gamma_{n}$ and hence $\bigcup_{k=0}^{\infty}\Gamma_{k}$ contains all formulae,. recognizing whether $\phi\in\Gamma_{k}$ can be done in $O(\ell n^{k})$ time, and. if $\phi\in\Gamma_{k}$ then SAT for $\phi$ can be tested in $O(\ell n^{k})$ time as well.
To simplify notation and to avoid the need to switch back and forth between $\phi$ and $P(\phi)$ we shall for aset $J$ of positive literals denote by. $\phi_{J}$ the formula originating from $\phi$ by removing every clause which contains all literals in $J$ ,. $\phi\ominus J$ the formula originating from $\phi$ by removing all occurences of all literals in $J$ .

3 Mutual relationships with respect to inclusion
Let us denote by $HH$, $QH$, and $HEH$ the classes of all hidden Horn, $\mathrm{q}$-Horn, and hidden extended Hornformulae respectively. The mutual relationships of these classes as well as of the class $S_{0}$ with respect toinclusion were completely established in [6], where it was proved, that the classes $QH$ , $HEH$ , and $S_{0}$ are

$,,\mathrm{i}\mathrm{n}$ ageneral position”, i.e. all eight sets defined by the partitioning of the set of all formulae by $QH$,$HEH$ , and So are nonempty.
In this note let us turn our attention to the relationship of $HH$ and the infinite hierarchy Fo, $\Gamma_{1}$ , $\Gamma_{2}$ , $\ldots$Anatural question is whether there exists an index $k$ such that $HH\subseteq\Gamma_{k}$ . We shall provide a negativeanswer to this question by showing that for every index $k$ , there exists a hidden Horn formula $\psi_{k}$ , suchthat $\psi_{k}\in(\Gamma_{k+1}\backslash \Gamma_{k})$ . Let us define these formulae by

$\forall k=0,1,2$ , $\ldots$ : $\psi_{k}=.\cdot\Lambda_{0}^{k}(_{X}\mathrm{i}= \vee x_{2}^{\dot{l}})$ (2)

Lemma 3.1 $\forall k=0,1$ , 2, $\ldots$ : $\psi_{k}\in HH\cap(\Gamma_{k+1}\backslash \Gamma_{k})$ .
Proof: First of all, for every $k$ the formula $\psi_{k}$ consists of only positive literals, and thus it is hiddenHorn (by complementing ail variables we get aHorn formula). Let us proceed by induction on $k$ to showthat $\psi_{k}\in(\Gamma_{k+1}\backslash \Gamma_{k})$ .. Case $k=0$ . Clearly, $\psi_{0}=x_{1}^{0}\vee x_{2}^{0}$ is in $S_{0}$ but is not Horn. Thus $\psi_{0}\in(\Gamma_{1}\backslash \Gamma_{0})$ .. Case $k=1$ . Note that $\psi_{1}=(x_{1}^{0}\vee x_{2}^{0})\Lambda(x_{1}^{1}\vee x_{2}^{1})$ is just (up to a renaming of variables) formula (1)from Section 2.4. Thus $\psi_{1}\not\in\Gamma_{1}$ . To see that $\psi_{1}\in\Gamma_{2}$ it suffices to verify that there exists avariable $x$

such that $(\psi_{1})_{\{x\}}\in\Gamma_{1}$ and $(\psi_{1})\Theta\{x\}\in\Gamma_{2}$ . Let us take $x=x_{2}^{1}$ . Then $(\psi_{1})_{\{x\}}=(x_{1}^{0}\vee x_{2}^{0})=\psi_{0}\in\Gamma_{1}$

and $(\psi_{1})\ominus\{x\}=(x_{1}^{0}\vee x_{2}^{0})\wedge(x_{1}^{1})$ . This formula is clearly in $\Gamma_{2}$ since by taking $y=x_{1}^{1}$ we get
$((\psi_{1})\ominus\{x\})_{\{y\}}=\psi_{0}\in\Gamma_{1}$ and $((\psi_{1})\ominus\{x\})\Theta\{y\}=\psi_{0}\in\Gamma_{1}\subseteq\Gamma_{2}$ .. Let the statement be true for 0, 1, ..., $k-1$ and let us assume by contradiction that $\psi_{k}\in\Gamma_{k}$ .That means that there exists avariable $x$ such that $(\psi_{k})\{x\}\in\Gamma_{k-1}$ . However, regardless of thechoice of $x$ , the formula $(\psi_{k})\{x\}$ is just (up to arenaming of variables) the formula $\psi_{k-1}$ , which isacontradiction to the induction hypothesis. Thus $\psi_{k}\not\in\Gamma_{k}$ . To show that $\psi_{k}\in\Gamma_{k+1}$ we can simplyrepeat step by step the proof that $\psi_{1}\in\Gamma_{2}$ , only with $x=x_{2}^{k}$ , $y=x_{1}^{k}$ , and $\Gamma_{k}$ and $\Gamma_{k+1}$ taking theroles of $\Gamma_{1}$ and $\Gamma_{2}$ .

$\blacksquare$

Corollary 3.2 $\forall k=0$ , 1, 2, $\ldots$ :

1. $(QH\cap HEH)\cap(\Gamma_{k+1}\backslash \Gamma_{k})\neq\emptyset$

2. $(HEH\backslash QH)\cap(\Gamma_{k+1}\backslash \Gamma_{k})\neq\emptyset$

3. $(QH\backslash HEH)\cap(\Gamma_{k+1}\backslash \Gamma_{k})\neq\emptyset$
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Proof: Since $HH\subseteq(QH\cap HEH)$ the first part of the statement follows directly from Lemma 3.1. Note
that formulae $\psi_{k}$ , $k=1,2$ , $\ldots$ are obtained by succesively adding “ copies” of the formula $\phi=\psi_{0}=x_{1}\vee x_{2}$

for which $\phi\in HH\cap(\Gamma_{1}\backslash \Gamma_{0})$ holds. The second and third parts of the statement can be proved in asimilar
manner as Lemma 3.1 where the role of $\phi$ is taken by the formulae $\phi_{2}=(x_{1}\vee x_{2}\vee x_{3})\wedge(\overline{x}_{1}\vee\overline{x}_{2}\vee\overline{x}_{3})$ and
$\phi_{3}=(x_{1}\vee x_{2})\wedge(x_{1}\vee\overline{x}_{2})\mathrm{A}(\overline{x}_{1}\vee x_{2})\mathrm{A}$ ($\overline{x}_{1}$ Vx2). We have already shown that $\phi_{2}\in\overline{QH}\cap HEH\cap So$ and
hence also $4\in(HEH\backslash QH)\cap(\Gamma_{1}\backslash \Gamma_{0})$ (since $\phi_{2}\not\in QH$ it also cannot be Horn, i.e. in $\Gamma 0$). Similarly
$\phi_{3}\in(QH\backslash HEH)\cap(\Gamma_{1}\backslash \Gamma_{0})$ . The raet of the proof is similar to the proof of Lemma 3.1 (although it

is more technical because formulae $\phi_{2}$ and $\phi_{3}$ are more complicated than formula $\phi$) and is left to
$\mathrm{t}\mathrm{h}.\mathrm{e}$

reader as an excercise.

We have remarked in the proof of Lemma 3.1 that formulae $\psi_{k}$ , $k=1,2$, $\ldots$ , play asimilar role for
classes $\Gamma_{k}$ as formula (1) from Section 2.4 did for So (indeed $S_{\mathrm{o}}=\Gamma_{1}$ and (1) after aproper renaming

of variables is just $\psi_{1}$ ). Thus, Lemma 3.1 gives us enough material to prove the properties of class $\Gamma_{k}$ ,

which, as we shall see, are the same as the properties of $S_{0}$ specified in Proposition 2.5.

Proposition 3.3 The class Tk, $k=1,2$, $\ldots$ , is closed under clause deletion and partial assignment. It
is not closed under literal deletion, variable complementation, and disjoint union.

Proof: Let us again start with the negative results. First let us show that $\Gamma_{k}$ is not closed under literal
deletion. Let $\psi’=\psi_{k-1}$ A $(x_{2}^{k-1}\vee x_{1}^{k}\vee x_{2}^{k})$ . We shall prove that $\psi’$ is in $\Gamma_{k}$ while $\psi_{k}$ which is obtained
ffom $\psi’$ by deleting literal $x_{2}^{k-1}$ ffom the laet clause is not in $\Gamma_{k}$ (the latter foUows ffom Lemma 3.1). To
prove that $\psi’\in\Gamma_{k}$ we have to find $x$ such that $\psi_{\{x\}}’\in\Gamma_{k-1}$ and $\psi’\Theta\{x\}\in\Gamma_{k}$ . Let us take $x=x_{2}^{k-1}$ .

Then $\psi_{\{x\}}’=\psi_{k-2}\in\Gamma_{k-1}$ (by Lemma 3.1) and $\dot{\psi}’\Theta\{x\}=\psi_{k-2}$ A $(x_{1}^{k-1})$ A $(x_{1}^{k}\vee x_{2}^{k})$ . Let us denote

this last formula by $\psi’$ . To prove that it is indeed in $\Gamma_{k}$ as required, it suffices to take $y=x_{1}^{k-1}$ . Then
.

easy. It is enough

to observe that formula $\psi_{k}$ can be obtained by variable complementation e.g. from aHorn formula
$\bigwedge_{=0}^{k}.\cdot(\overline{x}\mathrm{i}\vee x_{2}^{})$ , as well as by adisjoint union of $\psi_{k-1}$ and $(x_{1}^{k}\vee x_{2}^{k})$ (which are both in $\Gamma_{k}$ ).

To show that $\Gamma_{k}$ is closed under clause deletion, we shaU proceed by adouble induction on $k$ and on
the number of variables which appear as positive literals in the formula. For the basic step notice, that

the statement is true for $\Gamma_{1}=S_{0}$ as well as for all formulas with only one variable appearing as positive

literals (those are all Horn). Now let $\phi$ A $C\in\Gamma_{k}$ where $\phi$ is aformula and $C$ is aclause. We want to

prove that $\phi\in\Gamma_{k}$ . Let $x$ be such that ( $\phi$ A C){x} $\in\Gamma_{k-1}$ and ($ A $C$) $\Theta\{x\}\in\Gamma_{k}$ . We shall show that

also $\phi_{\{x\}}\in\Gamma_{k-1}$ and $\phi\Theta\{x\}\in\Gamma_{k}$ . The first claim follows from the fact that $\phi_{\{x\}}$ consists of asubset of

clauses of the formula (4) A C){x} and $\Gamma_{k-1}$ is closed under clause deletion by the induction hypothesis.

The second claim folows similarly. The formula $\phi\Theta\{x\}$ consists of asubset of clauses of the formula
($\phi$ A $C$) $\Theta\{x\}$ , which is aformula in $\Gamma_{k}$ with asmaller number of variables appearing as positive literals

than $\phi$ A $C$ . Thus by the induction hypothesis $\phi\Theta\{x\}\in\Gamma_{k}$ .
Finally, let us show that $\Gamma_{k}$ is closed under partial assignment. Let $\phi\in\Gamma_{k}$ and let $x$ be avaiable in

$\phi$ . Setting $x=1$ amounts to deleting all clauses containing the literal $x$ (and that leaves the formula in $\Gamma_{k}$

as shown above) and to deleting all occurences of literal $\overline{x}$ (negative literals have no effect on belonging to
$\Gamma_{k})$ . Setting $x=0$ amounts to deleting aU clauses containing the literal $\overline{x}$ (again, that leaves the fomula

in $\Gamma_{k}$ as shown above) and to deleting all occurences of literal $x$ . We have to show that the last operation

also leaves the formula in $\Gamma_{k}$ , i.e. in our notation we have to prove that for every $\mathrm{v}\mathrm{a}\mathrm{r}\cdot \mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ $x$ , $\phi\Theta\{x\}\in\Gamma_{k}$ .
Once more, this claim $\mathrm{w}\mathrm{i}\mathrm{U}$ be proven by adouble induction on $k$ and on the number of variables which

appear as positive literals in the formula. The basic step is again trivial. For the induction step note,

that since $\phi\in\Gamma_{k}$ , there exists $y$ such that $\phi\{y\}\in\Gamma_{k-1}$ and $\phi\Theta\{y\}\in\Gamma_{k}$ . If $x=y$ we are done and if
$x\neq y$ it is enough to show that $(\phi\Theta\{x\})\{y\}\in\Gamma_{k-1}$ and $(\phi\Theta\{x\})\Theta\{y\}\in\Gamma_{k}$ . The first claim follows ffom

the fact that $(\phi\Theta\{x\})\{y\}=(\phi\{y\})\Theta\{x\}$ (it does not matter whether we ffist delete clauses containing $y$

and then all literals $x$ or vice versa) and the induction hypothesis for $\Gamma_{k-1}$ . The second claim follows

from asimilar observation that $(\phi\Theta\{x\})\Theta\{y\}=(\phi\Theta\{y\})\Theta\{x\}$ and the induction hypothesis for $\Gamma_{k}$ and

formulae with asmaller number of variables appearing as positive literals. $\blacksquare$
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