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Abstract

Anew horizon has been opened for functional analysis. Supervised learning is
afruitful problem for functional analysis. This paper reviews afunctional analytic
theory of supervised learning. It is aproblem of estimating an underlying rule of

training samples. When the rule can be expressed by afunction, supervised learn-

ing can be regarded as afunction approximation problem. We first formulate the
problem by using areproducing kernel Hilbert space. Then, three kinds of learn-
ing, i.e., projection learning, partial projection learning, and averaged projection
learning are introduced. They are unified into the concept of afamily of projection

learnings, which includes an infinite kind of learning. By using the general theory

of the family, minimum variance projection learning is introduced.

1Introduction

Learning is one of the most important abilities of human beings. For example, most chil-

dren can speak and understand language by the time they are about five years old. By

imitating what adults are doing, they seem to obtain some rule for speaking or under-
standing language.

As shown in this example, obtaining an underlying rule by using samples is supervised
learning. When the rule can be expressed by afunction, supervised learning can be
regarded as afunction approximation problem [7]. Hence, it is naturally connected to

functional analysis.
In this paper, we review afunctional analytic theory of supervised learning. First, the

problem of supervised learning is formulated by using areproducing kernel Hilbert space.
Then, projection learning [7], partial projection learning [9], and averaged projection
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learning [13] are introduced. Furthermore, these individual theories of learning are unified
into afamily of projection learnings. It is atheory that treats an infinite kind of learning
in aunified way. By using the theory, minimum variance projection learning is introduced.

2Learning as an Inverse Problem

In this section, aframework to discuss the learning problem proposed in $[5, 7]$ is reviewed.
Supervised learning is aproblem of estimating an underlying rule of training examples.
In this paper, we discuss the case that the rule can be expressed by acomplex-valued
function. Let $f(x)$ be atarget function where $x$ is an $L$-dimensional vector. We assume
that $f$ belongs to aHilbert space, $H$ , which has the reproducing kernel $K(x, x’)$ . Let $D$

be the domain of functions in $H$ .
The reproducing kernel $K(x$ , $’ $)$ is abivariate function defined on $V$ $\cross V$ that satisfies

the following two conditions [1]:

-For any fixed $x’$ in 2), $K(x, x’)$ belongs to $H$ as afunction of $x$ .

-It holds for any $f$ in $H$ and any $x’$ in $D$ that

( $f(\cdot)$ , $K(\cdot,x’)\rangle=f(ax’)$ , (1)

where $\langle$ $\cdot$ , $\cdot)$ is the inner product in $H$ .

In ageneral Hilbert space, afunction $f$ is treated as apoint. Hence, avalue of $f$ at
apoint $x$ , denoted by $f(x)$ , can not be discussed. If the space has the the reproducing
kernel, however, $f(x)$ can be discussed by using the inner product of the space as shown
in Eq.(l). In supervised learning, it is an essential requirement for functions to have a
value at apoint $x$ as shown in Eq.(2) below.

The goal of learning is to obtain afunction, $f_{0}$ , which is the best approximation to $f$

under some learning criterion $J$ using training examples $\{x_{m}, y_{m}\}_{m=1}^{M}$ , where

$y_{m}=f(x_{m})+n_{m}$ , (2)

and $n_{m}$ is additive noise. Hence, supervised learning can be considered as afunction
approximation problem.

This problem can be formulated by using afunctional analytic approach. Let $y$ and
$n$ be vectors in an $M$-dimensional unitary space $\mathrm{C}^{M}$ whose $m$-th elements are $y_{m}$ and
$n_{m}$ , respectively. Once $\{x_{m}\}_{m=1}^{M}$ is fixed, $\{f(x_{m})\}_{m=1}^{M}$ is uniquely determined from $f$ .
Therefore, we can introduce asampling operator, $A$ , which maps $f$ to the vector consisting
of $\{f(x_{m})\}_{m=1}^{M}$ :

A$f=(\begin{array}{l}f(x_{1})\vdots f(x_{M})\end{array})$ . (3)
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It can be expressed by the reproducing kernel $K(x, x’)$ and the Neumann-Schatten prod-
uct [10] as

$A= \sum_{m=1}^{M}e_{m}\otimes \mathrm{A}(\cdot, oe_{m})$ , (4)

where $\{e_{m}\}_{m=1}^{M}$ are standard basis in $\mathrm{C}^{M}$ , i.e., the $M$-dimensional vector consisting of
zero elements except the $m$-th element equal to 1. Note that $A$ is linear even when we
are concerned with nonlinear functions.

The relationship between $f$ and $y$ can be expressed by

$y=Af+n$ . (5)

Let $X$ be an operator which maps $y$ to $f_{0}$ :

$f_{0}=Xy$ . (6)

$X$ is called alearning operator. Eqs.(5) and (6) reformulates the learning problem as that

of obtaining $X$ which provides the best approximation $f_{0}$ to $f$ from $y$ under the criterion
$J$ . We discuss the case that $X$ is linear.

One of the most widely used learning criteria is the training error defined by

$J_{M}[X]$ $=$ $\sum_{m=1}^{M}|f_{0}(x_{m})-y_{m}|^{2}$ (7)

$=$ $||AXy-y||^{2}$ , (8)

where $||\cdot||$ denotes the norm i $\mathrm{n}$

$\mathrm{C}^{M}$ . $J_{M}$ evaluates only the errors between $y_{m}$ and $f\mathrm{o}(x_{m})$

$(m=1,2, \ldots, M)$ . Our goal is, however, to minimize an overall error between $f$ and $f_{0}$ .
The following criterion is also used widely:

$J_{R}[X]=J_{M}[X]+\alpha||T(Xy)||^{2}$ , (9)

where $\alpha$ is apositive constant, and $T$ is alinear operator. For example, $T$ is the identity

operator or adifferential operator. $||T(Xy)||^{2}$ in Eq.(9) is called aregularization term,

and the technique to add the term to $J_{M}$ is called regularization. $J_{R}$ still does not evaluate

the overall error between $f$ and $f_{0}$ .
In order to evaluate the error between $f$ and $f_{0}$ , one of the author, H. Ogawa, has pr0-

posed projection learning, partial projection learning, and averaged projection learning,

which are described in the following section.

3Projection Learning, Partial Projection Learning,

and Averaged Projection Learning

We start with projection learning, because it create partial projection learning, averaged

projection learning, and so on. Let $A^{*}$ be the adjoint operator of $A$ , $\mathcal{R}(A^{*})$ be the range

of $A^{*}$ , and $P_{\mathcal{R}(A^{\mathrm{r}})}$ be the orthogonal projection operator onto $\mathcal{R}(A^{*})$ .
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Definition 1(Projection learning [4, 6]) An operator X is called a projection learn-
ing operator and denoted by $A^{(\mathrm{P})}$ if X, under the constraint

$XA=P_{R(A)}.$ , (10)

minimizes the following functional
$J_{n}[X]=E_{n}||Xn||^{2}$ , (11)

where $E_{l}$,is the ensemble average for $\{n\}$ and $||\cdot$ $||$ is the norm in H. Obtaining $f_{0}$ by
an $A^{(\mathrm{P})}$ is called ‘projection learning,

Projection learning is based on the following idea. Eqs.(5) and (6) yield

$f_{0}=XAf+Xn$ . (12)

The first and second terms in the right-hand side of Eq.(12) are called the signal com-
ponent and the noise component of $f_{0}$ , respectively. The target function $f$ is unknown.
However, we discuss the case that the space $H$ to which $f$ belongs is known. Hence,
we attempt to achieve that signal component $XAf$ agrees with the best approximation
for each $f$ in $H$ . The totality of $XAf$ for all $f$ in $H$ is the subspace $\mathcal{R}(XA)$ , and the
best approximation of $f$ in $\mathcal{R}(XA)$ is the orthogonal projection of $f$ onto this subspace.
Therefore, we try to achieve for each $f$ in $H$ that

$XAf=P_{R(XA)}f$ , (13)

which yields
$XA=P_{R(XA)}$ . (14)

It follows from Eq.(14) that $\mathcal{R}(XA)=\mathcal{R}((XA)^{*})=\mathcal{R}(A^{*}X^{*})\subset \mathcal{R}(A^{*})$ . Hence, it holds
that

$\mathcal{R}(XA)\subset \mathcal{R}(A^{*})$ . (15)

The larger $\mathcal{R}(XA)$ provides the better approximation $P_{R(XA)}f$ . Hence, we consider the
largest $\mathcal{R}(XA)$ , i.e.,

$\mathcal{R}(XA)=\mathcal{R}(A^{*})$ . (16)

Eqs.(14) and (16) yield Eq.(10).
Eqs.(10) and (12) imply that $f_{0}$ is distributed around $P_{R(A)}.f$ due to $Xn$ . Hence, the

variance of the distribution is minimized, which is expressed by $J_{n}[X]$ in Eq.(ll). These
discussions lead us to Definition 1.

In partial projection learning and averaged projection learning, the noise component
is suppressed in the same way as projection learning. That is, the functional $J_{n}[X]$

is minimized under some constraint for the signal component, such as Eq.(10). The
constraints make difference between these three projection learnings.

Partial projection learning is used for the case that atarget function $f$ belongs to a
closed subspace $S$ in $H$ .
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Definition 2(Partial projection learning [9]) An operator $X$ is called a partial prO-

jection learning operator and denoted by $A^{(\mathrm{P}\mathrm{T}\mathrm{P})}$ if $X$ minimizes Eq. (11) under the con-
straint

$XAPS=P_{R(PsA}\cdot {}_{)S}P$ , (17)

where $P_{S}$ and $P_{R(P_{\mathit{3}}A)}$.are the orthogonal projection operators onto $S$ and $\mathcal{R}(PsA^{*})$ ,

respectively. Obtaining $f_{0}$ by an $A^{(\mathrm{P}\mathrm{T}\mathrm{P})}$ $is$ called partial projection learning. ’

In case of $S=H$ , the constraint Eq.(17) reduces to Eq.(lO). In other words, pr0-

jection learning is aspecial case of partial projection learning. Note that $A^{(\mathrm{P}\mathrm{T}\mathrm{P})}A$ is the
orthogonal projection operator onto $\mathcal{R}(P_{S}A^{*})$ along $S\cap\Lambda’(A)$ when $A$ is restricted to $S$ ,
where $N(A)$ is the null space of $A$ .

Averaged projection learning is used for the case that more accurate learning results
are required for functions that appear more frequently.

Definition 3(Averaged projection learning [13]) An operator $X$ is called an av-
eraged projection learning operator and denoted by $A^{(\mathrm{A}\mathrm{P})}$ if $X$ minimizes Eq. (17) under

the constraint that $X$ minimizes

$J_{\mathrm{A}\mathrm{P}}[X]=E_{f}||X$ A$f-f||^{2}$ , (18)

where $E_{f}$ is the ensemble average with respect to $\{f\}$ . Obtaining $f_{0}$ by an $A^{(\mathrm{A}\mathrm{P})}$ $is$ called
‘averaged projection learning. ’

The constraint Eq.(18) seems to be different from constraints in projection learning

and partial projection learning. The averaged projection learning operator, however, has

the following property as well as projection learning and partial projection learning. From

Eq.(18), we have the following normal equation:

$XARA=RA$ , (19)

where $R$ is the correlation operator of the ensemble $\{f\}$ . Let $\overline{\mathcal{R}(R)}$ be the closure of
$\mathrm{K}(\mathrm{R})$ . Eq.(19) implies that the operator $A^{(\mathrm{A}\mathrm{P})}A$ is the projection operator onto $\mathcal{R}(RA^{*})$

along $\overline{\mathcal{R}(R)}\mathrm{n}N(A)$ when it is restricted to $\overline{\mathcal{R}(R)}[14]$ .

Properties of projection learning, partial projection learning, and averaged projection

learning have been studied in detail in, for example, [4, 8, 14]. They can be discussed

in aunified way by atheory of afamily of projection learnings which is described in the

following section.

4AFamily of Projection Learnings

In this section, individual theories of learning are unified into afamily of projection
learnings. It is atheory that treats an infinite kind of learning in aunified way. Let us

start with its definition
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Definition 4(SL projection learning [3]) Let S be a closed subspace in H, to which
a target function belongs, and L be a complementary subspace of Sn $N(A)$ in S:

$S=L\dotplus\{S\cap N(A)\}$ . (20)

Let $P$ be a linear operator that becomes the projection operator onto $L$ along $S\cap N(A)$

when it is restricted to S. An operator $X$ is called an $SL$ projection learning operator and
denoted by $A^{(\mathrm{S}\mathrm{L})}$ if $X$ , under the constraint

$XAP_{S}=PP_{S}$ , (21)

minimizes
$J_{n}[X]=En||Xn||^{2}$ . (22)

Obtaining $f_{0}$ by an $A^{(\mathrm{S}\mathrm{L})}$ is called $SL$ projection learning. The totality of $SL$ projection
learnings for all $S$ and $L$ is called a family of projection learnings.

SL projection learning comes from the following idea. Projection learning, partial pr0-

jection learning, and averaged projection learning have the following common properties:

(i) $XA$ is aprojection operator when $A$ is restricted to asubspace of $H$ .

(ii) Eq.(ll) is minimized under the condition (i).

Definition 4expresses these two properties as follows.
In projection learning, partial projection learning, and averaged projection learning,

the target function $f$ belongs to $H$ , $S$ , and $\overline{\mathcal{R}(R)}$, respectively. These subspaces are
denoted by aclosed subspace $S$ in aunified way. In other words, we consider the case
that $f$ belongs to $S$ . Let $P$ be alinear operator that becomes aprojection operator when
it is restricted to $S$ . Then, property (i) is described by

$XAP_{\mathrm{S}}=PPS$ , (23)

This is still different from Eq.(21), since the meaning of the operator $P$ is not specified
as is in Definition 4.

Eq.(23) has asolution $X$ if and only if

$N(P)\supset S\cap N(A)$ , (21)

which yields
$S\mathrm{n}N(P)\supset S\cap N(A)$ . (23)

Eq.(23) implies that the signal component $XAf$ becomes 0for $f$ in $S\cap N(P)$ . Hence, we
consider the smallest case of $S\mathrm{n}1I(P)$ in Eq.(25):

$S\cap N(P)=S\cap N(A)$ . (20)
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Let $L$ be acomplementary subspace of $S\cap N(A)$ in $S$ . Then, $P$ is defined as in Definition

4, and the property (i) is expressed by Eq.(21). Eq.(22) is adirect expression of the

property (ii).
An SL projection learning operator has the following general form. Let $A_{s}$ be an

operator defined by
$A_{s}=AP_{S}$ . (27)

$A_{s}$ is asampling operator for functions in $S$ . Since the target function belongs to $S$ , the

operator $A_{s}$ plays an essential role rather than A. $\mathcal{R}(A_{s})$ is the subspace which consists of

all images of $f\in S$ under $A$ . Hence, all elements in $\mathcal{R}(A_{s})$ could be the signal component

$Af$ of the observed signal $y$ . That implies that noise vectors $n$ in $\mathcal{R}(A_{s})$ can not be

distinguished from A$f$ . We can distinguish $n$ only outside of $\mathcal{R}(A_{s})$ from $Af$ . Therefor\^e

when $\mathcal{R}(A_{s})$ is the entire space $\mathrm{C}^{M}$ , we can not suppress noise. In this paper, we discuss

the case that $\mathcal{R}(A_{s})$ is aproper subspace of $\mathrm{C}^{M}$ .
Let us define asubspace $S_{t}$ by

$S_{t}=\mathcal{R}(A_{s})+\mathcal{R}(Q)$ , (28)

where $Q$ is the correlation matrix of the noise ensemble:

$Q=En(n\otimes\overline{n})$ . (29)

$\mathcal{R}(Q)$ is the smallest subspace that includes all noise vectors $n$ in the sense of mean

square [14]. Hence, we take only $n$ in $\mathcal{R}(Q)$ into account, hereafter. Since $Af$ is avector

in $\mathcal{R}(A_{s})$ , $y=Af+n$ belongs to the subspace $S_{t}$ . Let $P_{S_{t}}$ be the orthogonal projection

matrix onto $S_{t}$ .
The subspace $S_{t}$ has the following direct sum decomposition [3]:

$S_{t}=\mathcal{R}(A_{s})\dotplus Q\mathcal{R}(A_{s})^{[perp]}$ . (30)

Then, $\mathrm{C}^{M}$ can be decomposed as follows:

$\mathrm{C}^{M}$
$=$ $S_{t}\oplus S_{t}^{[perp]}$

$=$ $\mathcal{R}(A_{s})\dotplus\{Q\mathcal{R}(A_{s})^{[perp]}\oplus S_{t}^{[perp]}\}$ , (31)

where $\oplus \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the orthogonal direct sum. Let $P_{t}$ be the projection matrix onto $\mathcal{R}(A_{s})$

along $Q\mathcal{R}(A_{s})^{[perp]}\oplus S_{t}^{[perp]}$ .

Theorem 1([3]) An operator $X$ is an $SL$ projection learning operator if and only if

$XP_{S_{t}}=PA_{s}^{1}P_{t}$ , (32)

where $A_{s}^{\uparrow}is$ the Moore-Penrose generalized inverse of $A_{s}$ . A general form of $A^{(\mathrm{S}\mathrm{L})}$ is given

by
$A^{(\mathrm{S}\mathrm{L})}=PA_{s}^{\uparrow}P_{t}+Y(I_{M}-Ps_{t})$ , (28)
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where $I_{M}$ is the identity matrix on $\mathrm{C}^{M}$ and Y is an arbitrary operator. The minimum
value, $J_{n0}$ , of $Jn[X]$ is given by

$J_{n0}=(PA_{s}^{1}P_{t}Q,$ $PA_{s}^{1}\rangle$ , (34)

where $\langle\cdot$ , $\cdot\rangle$ is the Schmidt inner product of operators [10].

It follows from the definition of $P_{t}$ that

$P_{t}=P_{t}P_{S_{t}}$ .

Hence, Eq.(32) implies that $A^{(\mathrm{S}\mathrm{L})}$ i $\mathrm{s}$ an SL projection learning operator if and only if it
maps avector $u$ in $S_{t}$ into $PA_{s}^{1}P_{t}u$ and that in $S_{t}^{[perp]}$ into arbitrary functions in $H$ . This is
reflected in Eq.(33). In fact, since $I_{M}-Ps_{t}$ is the orthogonal projection matrix onto $S_{t}^{[perp]}$ ,
$A^{(\mathrm{S}\mathrm{L})}$ transforms vectors in $S_{t}$ and $S_{t}^{[perp]}$ by the first term $PA_{s}^{1}P_{t}$ and the second term $\mathrm{Y}$ of
Eq.(33), respectively. Since $y$ is avector in $S_{t}$ , the function $f_{\mathrm{S}\mathrm{L}}$ obtained by SL projection
learning is expressed as follows:

Corollary 1([3]) $/\mathrm{s}1$ is given by

$f_{\mathrm{S}\mathrm{L}}=PA_{s}^{\uparrow}P_{t}y$ . (35)

Let us define $y_{0}$ by
$y_{0}=P_{t}y$ . (36)

Then, Eq.(35) yields
$f_{\mathrm{S}\mathrm{L}}=PA_{s}^{1}y_{0}$ . (37)

Transformations in Eqs.(36) and (37), i.e., $P_{t}$ and $PA_{s}^{1}$ , are illustrated in Figure 1with
thick arrows. In order to understand them, the following corollary is important.

Corollary 2([3]) An operator $X$ is an $SL$ projection learning $ope$ rator if and only if

$Xu=\{$
$PA_{s}^{1}u$ : $u\in \mathcal{R}(A_{s})$ ,
0: $u\in Q\mathcal{R}(A_{s})^{[perp]}$ .

(34)

The subspace $S$ has the following direct sum decomposition [3]:

$S=\mathcal{R}(A_{s}^{*})\oplus\{S\cap N(A)\}$ . (39)

Hence, we have $Ps=A_{s}^{1}A_{s}+PsnN(A)$ . Therefore,

$PP_{S}=P(A_{s}^{1}A_{s}+P_{s\mathrm{n}N(A)})=PA_{s}^{1}A_{s}$ .

Then, Eq. (21) yields
$XA_{s}=PA_{s}^{1}A_{s}$ , (40)
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Figure 1: Mechanism of SL projection learning.

which implies that Eq.(21) is equivalent to the first equation of Eq.(38). Moreover, we

can see from Eq.(20) that $A$ is abijection from $L$ to $\mathcal{R}(A_{s})$ . Therefore, whether $X$ is an

SL projection learning operator, i.e., whether $X$ minimizes Eq.(22) under the constraint

of the first equation of Eq.(38), is determined from which complementary subspace of
$\mathcal{R}(A_{s})$ in $S_{t}$ is mapped into zero. The second equation of Eq.(38) means that Eq.(22) is

minimized by mapping $Q\mathcal{R}(A_{s})^{[perp]}$ into zero. In other words, $Q\mathcal{R}(A_{s})^{[perp]}$ is the subspace that

contains the largest amount of noise vectors among complementary subspaces of $\mathcal{R}(A_{s})$

in $S_{t}$ . This noise suppression is achieved by the matrix $P_{t}$ .
The operator $A$ is asurjection from $L$ to $\mathcal{R}(A_{s})$ . Hence, an original element in $L$ which

is mapped into $y_{0}$ by $A$ is unique. Since $P$ and Pn(At) are the inverse transformations

each other between $L$ and $\mathcal{R}(A_{s}^{*})$ , and it holds that $P_{R(A_{\mathrm{s}}^{l})}=A_{s}^{\uparrow}A_{s}$ , the operator $A$ and
$PA_{s}^{\uparrow}$ are the inverse transformations each other between $L$ and $\mathcal{R}(A_{s})$ . Therefore, Eq.(37)

means that $f_{\mathrm{S}\mathrm{L}}$ is the original element of $y_{0}$ .
The noise suppression of SL projection learning is evaluated in the function space $H$

as we can see in Eq.(22). Note that it is realized in the vector space $\mathrm{C}^{M}$ by mapping

vectors in $Q\mathcal{R}(A_{s})^{[perp]}$ into 0.

The general form of $A^{(\mathrm{S}\mathrm{L})}$ in Eq.(33) can be simplified depending on the nature of

noise. For example,

Theorem 2([3]) If and only if
$Q\mathcal{R}(A_{s})^{[perp]}\subset \mathcal{R}(A_{s})^{[perp]}$ , (41)

$A^{(\mathrm{S}\mathrm{L})}$ is expressed by
$A^{(\mathrm{S}\mathrm{L})}=PA_{s}^{\uparrow}+Y(I_{M}-P_{S_{t}})$ . (42)

The first term $PA_{s}^{\uparrow}P_{t}$ of the right-hand side of Eq.(33) becomes $PA_{s}^{\uparrow}$ in Eq.(42). Since
$N(A_{s}^{\uparrow})=\mathcal{R}(A_{s})^{[perp]}$ , elements in $\mathcal{R}(A_{s})^{[perp]}$ are mapped into 0by $A_{s}^{\uparrow}$ . Hence, if Eq.(41) holds
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elements in $Q\mathcal{R}(A_{s})^{[perp]}$ are also mapped into 0by $A_{s}^{\uparrow}$ . Therefore, the noise suppression of
SL projection learning is realized by $A_{s}^{\uparrow}$ without $P_{t}$ .

For example, if variances of noise $n_{m}$ are identically $\sigma^{2}$ and uncorrelated each other,
then $Q$ is given by $\sigma^{2}I$ , and the condition (41) holds.

SL projection learning becomes projection learning when

$S=H$, $L=\mathcal{R}(A^{*})$ . (43)

In this case, $A_{s}=A$ and $P=P\mathrm{p}(A.)$ . Then, Theorem 1and Corollary 1yield

Corollary 3([3]) A general form of $A^{(\mathrm{P})}$ is given by

$A^{(\mathrm{P})}=A^{\uparrow}P_{t}+\mathrm{Y}(I_{M}-P_{S_{t}})$ . (44)

A function, $f_{\mathrm{P}}$ , obtained by projection learning is given by

$f_{\mathrm{P}}=A^{\uparrow}P_{t}y$ . (45)

Note that, in this corollary, $Pst$ is the orthogonal projection matrix onto the subspace
$S_{t}=\mathcal{R}(A)+\mathcal{R}(Q)$ , and $P_{t}$ is the projection matrix onto $\mathcal{R}(A)$ along $Q\mathcal{R}(A)^{[perp]}\oplus S_{t}^{[perp]}$ .

Furthermore, Theorem 2reduces to

Corollary 4If and only if
$Q\mathcal{R}(A)^{[perp]}\subset \mathcal{R}(A)^{[perp]}$ , (46)

$A^{(\mathrm{P})}$ $is$ expressed by
$A^{(\mathrm{P})}=A^{\uparrow}+\mathrm{Y}(I-P_{S_{t}})$ . (47)

$f\mathrm{p}$ is given by
$f_{\mathrm{P}}=A^{\uparrow}y$ . (48)

Eqs.(45) and (48) are easily calculated by acomputer as follows. It holds that

$A^{\uparrow}=A^{*}(AA^{*})^{\dagger}$. (49)

Because of Eq.(4), $AA^{*}$ in Eq.(49) is amatrix whose $i,j$ -th element is $K(X:, X_{j})$ . It
is denoted by $K$ . Hence, the Moore-Penrose generalized inverse of the operator $A$ is
calculated by using that of the matrix If. As aresult, we have the following algorithm
for projection learning:

Algorithm 11. Calculate the matrix K.

2. Calculate the vector z $=K^{\uparrow}P_{t}y$ .

3. Obtain .
$f_{\mathrm{P}}$ in Eq.(45) by

$f_{\mathrm{P}}(x)= \sum_{m=1}^{M}z_{m}K(ox, x_{m})$ , (50)

where $z_{m}$ is the $m$ -th element of the vector z.
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Eq.(48) is also calculated by substituting the identity matrix $I_{M}$ for $P_{t}$ in the step 2.
Similarly, SL projection learning becomes partial projection learning when

$L=\mathcal{R}(P_{S}A^{*})$ , (51)

and averaged projection learning when

$S=\overline{\mathcal{R}(R)}$, $L=\mathcal{R}(RA^{*})$ . (52)

Hence, for example, ageneral form of the partial projection learning operator $A^{(\mathrm{P}\mathrm{T}\mathrm{P})}$ and
the averaged projection learning operator $A^{(\mathrm{A}\mathrm{P})}$ are expressed by

$A^{(\mathrm{P}\mathrm{T}\mathrm{P})}=A_{s}^{\uparrow}P_{t}+Y(I-Ps_{t})$ , (53)

$A^{(\mathrm{A}\mathrm{P})}=RA^{*}(ARA^{*})^{\dagger}AA_{s}^{\uparrow}P_{t}+Y(I-Ps_{t})$ , (54)

respectively.

5Minimum Variance Projection Learning

By using the theory of the family of projection learnings, anew kind of learning is intr0-

duced.

Definition 5([2]) For a fixed subspace S, SL projection learning is called ‘minimum

variance projection learning’ if the subspace L minimizes $J_{n0}$ in Eq. (34).

Due to noise in training examples, resultant functions for afixed $f$ are not unique in
general. They are distributed around afunction obtained from noiseless training examples.

The smaller the variance of the distribution is, the more stable results can be obtained.
The variance is expressed by $J_{n0}$ . These discussions lead us to Definition 5.

Minimum variance projection learning can be characterized as follows:

Theorem 3([2]) $SL$ projection learning is minimum variance projection learning if and

only if $L$ satisfies
$L\supset L_{N}$ , (55)

where $L_{N}$ is a subspace defined as

$L_{N}=\mathcal{R}(A_{s}^{\mathrm{t}}P_{t}Q)$ . (56)

In this case, $J_{n0}$ is given by
$J_{n\mathit{0}}=\langle A_{s}^{\dagger}P_{t}Q, A_{s}^{\uparrow}\rangle$ . (57)

Figure 2(a) and (b) show functions obtained by minimum variance projection learning

and non-minimum variance SL projection learning, respectively, from thirty sets of train-

ing examples. They are shown by dotted lines. In both figures, $f(x)$ and $(Pf)(x)$ are also

shown by solid and dashed lines, respectively. These figures show that minimum variance
projection learning provides more stable results than other SL projection learnings
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(a) (b)

Figure 2: Comparison of minimum variance projection learning (MVPL) and non-MVPL.
(a) Resultant functions by MVPL from 30 sets of training examples, (b) Resultant func-
tions by non-MVPL from the same training examples as in (a).

6Conclusion

In this paper, we reviewed afunctional analytic theory of $\mathrm{s}\mathrm{u}\mathrm{p}\dot{\mathrm{e}}\mathrm{r}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{d}$ learning. First,
we formulated the problem of supervised learning by using areproducing kernel Hilbert
space. Then, projection learning, partial projection learning, and averaged projection
learning were introduced. Furthermore, these individual theories of learning were unified
into atheory of the family of projection learnings. It treats an infinite kind of learning in
aunified way. By using the theory, we introduced minimum variance projection learning.

Model selection and active learning are also important topics in supervised learning.
The former is the problem of determining parameters in learning such as the subspace $S$ ,
while the latter is that of designing the sample points for optimal generalization. They
can also be discussed in this framework (see e.g. [11, 12]).
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