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ABSTRACT. The study of vector measures has progressed toward the extensive scrutiny of the
interplay between properties of Banach spaces and measures with values in Banach spaces.
Recently, the notion of weak convergence of vector measures was introduced by M. Dekiert,

and the study of topological properties of spaces of vector measures presents new and interested
problems to the field of vector measures. In this survey, we try to explain certain aspects of
the recent development in the theory of weak convergence of vector measures.

1. Introduction

According to asplendid book of J. Diestel and J. J. Uhl, Jr., the study of vector measures
has progressed toward the extensive scrutiny of the interplay between properties of Banach

spaces and measures with values in Banach spaces. Indeed, it has headed for the study of

Radon-Nikodym theorem and the martingale convergence theorem and their relation to the

topological and geometric structure of Banach spaces, the study of structural properties of

operators on spaces of continuous functions, the study of the range of avector space, the
study of the existence of products of vector measures and the Fubini theorem, and so on.
These studies are still important and continue to give significant outcomes to the field of vector
measures and its related fields. However, most of those studies deal with problems which are
involved in not collections of vector measures but asingle vector measure.

Recently, the notion of weak convergence of vector measures was introduced by M. Dekiert.

It is anatural generalization of the weak convergence of probability measures, which plays

an important role in the study of stochastic convergence in probability theory and statistics.
Thanks to this weak convergence, the study of topological properties of spaces of vector mea-
sures presents new and interested problems to the field of vector measures.
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In this survey, we try to explain certain aspects of the recent development in the theory
of weak convergence of vector measures. This will be only avery partial survey, because it is
beyond my power to cover adequately all the directions taken by recent research. It $\mathrm{w}\mathrm{i}\mathrm{U}$ also
reflect my personal interests in the area.

Some definitions and basic facts of vector measures are collected in Section 2.
Section 3deals with compactness and metrizability in the space of vector measures. In-

cluded here are Prokhorov-LeCm’s compactness criteria and Varadarajan’s metrizability cri-
terion for vector measures.

Section 4devoted to the weak convergence of injective tensor products of vector measures.
Presented here are some results concerning the joint continuity of injective tensor products of
vector measures with respect to the weak convergence in the following two cases: One is the
case that vector measures take values in some nuclear spaces. The other is the case that they
take values in the positive cone of Banach lattices.

Strassen’s theorem for positive vector measures are dealt with in Section 5. Atype of
Strassen’s theorem is given for positive vector measures with values in the weak dual of a
barreled localy convex space which has certain order conditions.

2. Preliminaries

All the topological spaces, uniform spaces, and topological vector spaces are Hausdorff and
the scalar fields of topological vector spaces are taken to be the field $\mathrm{R}$ of all real numbers.
Denote by $\mathrm{N}$ the set of all natural numbers.

Let $X$ be alocally convex Hausdorff space (for short, lcHs). Denote by $X^{*}$ the topological
dual of $X$ . The weak topology of $X$ means the $\mathrm{a}(\mathrm{X}$, topology on $X$ . If $x^{*}\in X^{*}$ and $p$ is
aseminorm on $X$ , we write $x^{*}\leq p$ whenever $|x^{*}x|\leq p(x)$ for all $x\in X$ .

Let $\mathcal{E}$ be aa-field of subsets of anon-empty set $\Omega$ and $\mu$ : $\mathcal{E}arrow X$ afinitely additive set
function. We say that $\mu$ is avector measure if it is countably additive, that is, for any sequence
$\{E_{n}\}$ of pairwise disjoint subsets of $\mathcal{E}$ , we have $\sum_{n=1}^{\infty}\mu(E_{n})=\mu(\bigcup_{n=1}^{\infty}E_{n})$ in the original
topology of $X$ . Denote by $\mathcal{M}(\Omega,X)$ the set of all vector measures $\mu$ : $\mathcal{E}arrow X$ . When $X=\mathbb{R}$,
we write $\mathcal{M}(\Omega):=\mathcal{M}(\Omega, \mathrm{R})$ . Then, $\mathcal{M}(\Omega)$ is aBanach space with the total variation norm
$|m|:=|m|(\Omega)$ .

If $\mu$ is avector measure, then $x^{*}\mu$ is areal measure for each $\’\in X^{*}$ . Conversely, atheorem
of Orlicz and Pettis ensures that afinitely additive set function $\mu$ : $\mathcal{E}arrow X$ is countably additive
if $x^{*}\mu$ is countably additive for every $x^{*}\in X^{*}$ ;see, for instance, C. W. McArthur [31, Corollary
1].

Let $\mu$ : $\mathcal{E}arrow X$ be avector measure and $p$ aseminorm on $X$ . Then the $p$-semivariation of
$\mu$ is the set function $||\mu||_{p}$ : $\mathcal{E}arrow[0, \infty)$ defined by $|| \mu||_{p}(E):=\sup_{x\leq p}.|x^{*}\mu|(E)$ for $\mathrm{a}\mathrm{A}$ $E\in \mathcal{E}$ ,
where $|x^{*}\mu|(\cdot)$ is the total variation of the real measure $x^{*}\mu$ . When $X$ is aBanach space, the
semivariation of $\mu$ is defined by $|| \mu||(E):=\sup_{||x||\leq 1}.|x^{*}\mu|(E)$ for $\mathrm{a}\mathbb{I}$ $E\in \mathcal{E}$ .

Let $\mu$ : $\mathcal{E}arrow X$ be avector measure. An $\mathcal{E}$-measurable, real function $f$ on $\Omega$ is said to be
fi-integrable if (a) $f$ is $x^{*}\mu$-integrable for each $x^{*}\in X^{*}$ , and (b) for each $E\in \mathcal{E}$ , there exists an
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element of $X$ , denoted by $]_{E}fd\mu$ , such that

$x^{*}( \int_{E}fd\mu)=\int_{E}fd(x^{*}\mu)$

for each $x^{*}\in X^{*}$ . We note here that if $X$ is sequentially complete, then every bounded,
$\mathcal{E}$-measurable real function $f$ is $\mu$-integrable, and

$p( \int_{E}fd\mu)\leq\sup_{x^{*}\leq p}\int_{E}|f|d|x^{*}\mu|\leq\sup_{\omega\in E}|f(\omega)|\cdot||\mu||_{p}(E)$

for every $E\in S$ and every continuous seminorm $p$ on $X$ . See R. G. Bartle, N. Dunford and

J. T. Schwartz [1], J. Diestel and J. J. Uhl, Jr. ’[6], D. R. Lewis [30], and I. Kluv\’anek and

G. known les [28] for some additional definitions and properties of vector measures.
In what follows, let $S$ be atopological space and $B(S)$ the a-field of all Borel subsets of $S$ .

Denote by $\mathcal{M}(S, X)$ the set of all vector measures $\mu$ : $B(S)arrow X$ . We define several notions of

regularity for vector measures on atopological space. Avector measure $\mu$ : $B(S)arrow X$ is said to

be Radon if for each $\epsilon>0$ , $E\in B(S)$ , and continuous seminorm $p$ on $X$ , there exists acompact

subset $K$ of $E$ such that $||\mu||_{p}(E-K)<\epsilon$ , and it is said to be tight if the condition is satisfied
for $E=S$ . We say that $\mu$ is $\tau$-smooth if for every continuous seminorm $p$ on $X$ and every

increasing net $\{G_{\alpha}\}$ of open subsets of $S$ with $G= \bigcup_{\alpha}$ Ga, we have $\lim_{\alpha}||\mu||_{p}(G-G_{\alpha})=0$ . We

say that $\mu$ is scalarly Radon (respectively, scalarly tight, scalarly $\tau$-smooth)if for each $x^{*}\in X^{*}$

the real measure $x^{*}\mu$ is Radon (respectively, tight, $\tau$-smooth). It is known that $\mu$ is Radon
(respectively, tight, $\tau$-smooth)if and only if it is scalarly Radon (respectively, scalarly tight,

scalarly $\tau$-smooth). In fact, for Banach space-valued vector measures, this is aconsequence
of the Rybakov theorem [6, Theorem IX.2.2], which ensures that there exists $x_{0}^{*}\in X^{*}$ for
which $x_{0}^{*}\mu$ and $\mu$ are mutually absolutely continuous. For general lcHs-valued vector measures,

see [30, Theorem 1.6] and [23]. Consequently, all of the regularity properties which are valid for
positive, finite measures remain true for vector measures. For instance, every vector measure
on atopological space with acountable base (in particular, on aseparable metric space) is
$\tau$-smooth. Further, every vector measure on acomplete separable metric space is Radon, so
that it is $\tau$-smooth and tight; see N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan [43,

Proposition 1.3.1 and Theorem 1.3.1].
By $\mathrm{M}_{\mathrm{t}}\{\mathrm{S},$ $X$ ) we denote the set of all Radon vector measures $\mu$ : $B(S)arrow X$ . As before, we

write $\mathcal{M}_{t}(S):=\mathcal{M}_{t}(S, \mathbb{R})$ . Denote by $C(S)$ the Banach space of all bounded, continuous real
functions on $S$ with the norm $||f||_{\infty}:= \sup_{s\in S}|f(s)|$ .

3. Compactness and metrizability in the space of vector measures

Compactness and metrizability for the weak convergence of measures are important and
applicative properties in the space of positive or real measures on topological spaces. In this
section, we explain some recent results of the study of compactness and metrizability in the
space of vector measures.

3.1. Compactness and metrizability criteria for real measures. Let S be acom-
pletely regular space. Let {ma} be anet in $\mathrm{M}\{\mathrm{S}$ ) and m $\in \mathrm{M}\{\mathrm{S}$). We say that $\{m_{\alpha}\}$ converge$s$
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weakly to $m$ and write $m_{\alpha}arrow mw$ if for every $f\in C(S)$ we have lima $\int_{S}fdm_{\alpha}=\int_{S}fdm$ . In
what follows, we always equip $\mathrm{M}(\mathrm{S})$ with the topology determined by this weak convergence
and call it the $weak$ topology of measures.

Asubset $M$ of $\mathrm{M}(\mathrm{S})$ is said to be unifo rmly bounded if $\sup_{m\in M}|m|(S)<\infty$. We say
that $M$ is uniformly tight if for each $\epsilon>0$ there exists acompact subset $K$ of $S$ such that
$|m|(S-K)<\epsilon$ for aU $m\in M$ .

In 1956, Yu. V. Prokhorov [33, Theorem 1.12] gave acompactness criterion for the weak
topology of measures in the space of aU positive, finite measures on acomplete separable
metric space. This criterion was extended by L. LeCm [29, Proposition 1and Theorem 6]
to real Radon measures on an arbitrary completely regular space. These results are called
Prokhorov-LeCam’s compactness criteria, and play an important role in the study of stochastic
convergence in probability theory and statistics.

THEOREM 3.1 (Prokhorov-LeCam’s compactness criteria). Let $S$ be a completely regular
space. Assume that $M\subset \mathrm{M}_{\mathrm{t}}(\mathrm{S})$ is unifo rmly bounded and unifo rmly tight Then $M$ is relatively
compact in $\mathcal{M}_{t}(S)$ . If compact subsets of $S$ are all metrizable, then $M$ is relatively sequentially
compact in $\mathcal{M}_{t}(S)$ .

As to metrizability in the space of measures, it is known that the space of aU positive, finite
measures on aseparable metric space is metrizable; see V. S. Varadarajan [44, Theorem 3.1].
This is not the case for real measures, and in fact it was proved in [45, Theorem 16, Part $\mathrm{I}\mathrm{I}$]
that the set of all real $\tau$-smooth measures on ametric space $S$ is metrizable if and only if $S$ is
afinite set. Nevertheless, in [45, Theorem 26, Part $\mathrm{I}\mathrm{I}$] the following result was actually proved
and is called Varadarajan’s metrizability criterion.

THEOREM 3.2 (Varadarajan’s metrizability criterion). Let $S$ be a locally compact separable
metric space. Then, every compact subset $M$ of $\mathcal{M}_{t}(S)$ is metrizable, so that it is sequentially
compact in $\mathcal{M}_{t}(S)$ .

3.2. Weak convergence of vector measures. Recently, M. Dekiert [5] introduced the
notion of weak convergence of Banach space valued vector measures. Let $S$ be acompletely
regular space. Let $X$ be asequentialy complete lcHs with locally convex topology $\tau$ . Let $\{\mu_{\alpha}\}$

be anet in Mt(S, X) and $\mu\in \mathrm{M}\mathrm{t}(\mathrm{S},\mathrm{X})$ . We say that $\{\mu_{\alpha}\}$ converges weakly to $\mu$ for $\tau$ if for
every $f\in C(S)$ we have $\int_{S}\mathrm{f}\mathrm{d}\mathrm{m}\mathrm{a}arrow\int_{S}fdp$ for the topology $\tau$ of $X$ .

This is anatural analogy of the convergence studied by [5, Sections 2and 3, Chapter $\mathrm{I}\mathrm{V}$]
for Banach $\mathrm{s}\mathrm{p}\mathrm{a}\varpi \mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{d}$ vector measures, and coincides with the usual weak convergence of
measures in the case that $X=\mathbb{R}$;see [33], [29], [45], and [43]. The topology determined by
this weak convergence is called the weak topology of vector measures for $\tau$ (for short, WTVM
for $\tau$).

In 1994, M. Miz and R. M. Shortt [32, Theorem 1.5 and Corolary 1.6] gave asequential
compactness criterion for Banach space-valued vector measures on ametric space, which is the
starting point of our studies of weak convergence of vector measures. Let $S$ be atopological
space and $X$ aBanach space. Let $\mathcal{V}\subset \mathcal{M}_{t}(S,X)$ . We say that $\mathcal{V}$ is unifo rmly bounded if
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$\sup_{\mu\in \mathcal{V}}||\mu||(S)<\infty$ and that it is uniformly tight if for each $\epsilon$ $>0$ there exists acompact

subset K of S such that $\sup_{\mu\in \mathcal{V}}||\mu||(S-K)<\epsilon$ .

THEOREM 3.3 (M\"arz-Shortt’s sequential compactness criterion). Let $S$ be a metric space
and $X$ a Banach space. Assume that $\mathcal{V}\subset \mathcal{M}_{t}(S, X)$ satisfies the following conditions:

(i) $\mathcal{V}$ is uniformly bounded.
(ii) $\mathcal{V}$ is unifomly tight.
(iii) For each compact subset $K$ of $S$ , $\{\int_{K}fd\mu : f\in C(S), ||f||\infty\leq 1,\mu\in \mathcal{V}\}$ is a relatively

weakly compact subset of $X$ .
Then $\mathcal{V}$ is relatively sequentially compact in $\mathcal{M}_{t}(S, X)$ with respect to the WTVMfor $\sigma(X, X^{*})$ .

$\mathbb{R}\hslash her$, if $X$ is refieive, (iii) follows from (i).

3.3. Uniform tightness for vector measures with values in alcHs. The notion of
uniform boundedness and uniform tightness can be naturally extended to vector measures with

values in alcHs. Let $S$ be acompletely regular space and $X$ alcHs. Let $\mathcal{V}\subset \mathcal{M}(S, X)$ . We
say that $\mathcal{V}$ is uniformly bounded if $\sup_{\mu\in \mathcal{V}}||\mu||_{p}(S)<\infty$ for every continuous seminorm $p$ on
$X$ and that $\mathcal{V}$ is scalarly uniformly bounded if for each $x^{*}\in X^{*}$ the set $x^{*}(\mathcal{V}):=\{x^{*}\mu : \mu\in \mathcal{V}\}$

of real measures is uniformly bounded. Since every weakly bounded subset of $X$ is bounded,
$\mathcal{V}$ is uniformly bounded if and only if it is scalarly uniformly bounded. Further, the principle

of uniform boundedness (see H. H. Schaefer [34, Corollary to III.4.2]) ensures that if every
element of $x^{*}(\mathcal{V})$ is Radon, then the scalarly uniform boundedness follows from the condition
that $\sup_{\mu\in \mathcal{V}}|\int_{S}fd(x^{*}\mu)|<\infty$ for every $x^{*}\in X^{*}$ and $f\in C(S)$ .

We say that $\mathcal{V}$ is uniformly tight if for each $\epsilon$ $>0$ and continuous seminorm $p$ on $X$ there
exists acompact subset $K$ of $S$ such that $\sup_{\mu\in \mathcal{V}}||\mu||_{p}(S-K)<\epsilon$ and that $\mathcal{V}$ is scalarly
unifomly tight if for each $x^{*}\in X^{*}$ the set $x^{*}(\mathcal{V})$ is uniformly tight.

As is stated above, the notions of countable additivity, Radonness, and uniform bounded-
ness for vector measures are equivalent to the corresponding scalarly notions. However, the
following example shows that the notion of uniform tightness is not the case even for Hilbert
space-valued vector measures.

EXAMpLE 3.4 ([19, Example]). We give aset of Radon vector measures, which is scalarly
uniformly bounded and scalarly uniformly tight, but which is not uniformly tight.

Let $H$ be aseparable Hilbert space with inner product $(\cdot, \cdot)$ , and $\{e_{n}\}$ acomplete orthonor-
mal basis in $H$ . Let $\{m_{n}\}$ be asequence of Gaussian measures on $\mathbb{R}$ with zero mean and
variance $n$ .

For each $n\in \mathrm{N}$ , define avector measure $\mu_{n}$ : $B(\mathbb{R})arrow H$ by $\mu_{n}(E):=m_{n}(E)e_{n}$ for all
$E\in B(\mathbb{R})$ . Then it is easy to see that $\mu_{n}\in \mathcal{M}_{t}(\mathbb{R}, H)$ for all $n\in \mathrm{N}$ .

For each $x\in H$ and $\mu\in \mathcal{M}_{t}(\mathbb{R}, H)$ , define areal measure $x\mu$ on $\mathbb{R}$ by (xfi)(E) $:=(x, \mu(E))$

for all $E\in B(\mathbb{R})$ . Then we have $|x\mu_{n}|=|(x, e_{n})|m_{n}$ and $||\mu_{n}||=m_{n}$ for all $n\in \mathrm{N}$ .
Put $\mathcal{V}=\{\mu_{n}\}$ and fix $x\in H$ . Then we have $|x\mu_{n}|(\mathbb{R})=|(x, e_{n})|m_{n}(\mathbb{R})\leq||x||$ for all $n\in \mathrm{N}$ ,

so that $x(\mathcal{V}):=\{x\mu : \mu\in \mathcal{V}\}$ is uniformly bounded.
Let $\epsilon$ $>0$ . Since $(x, e_{n})$ converges to 0, there exists $n_{0}\in \mathrm{N}$ such that $n\geq n_{0}$ implies

$|(x, e_{n})|<\epsilon$ . Hence we have $\sup_{n\geq n_{0}}|x\mu_{n}|(\mathbb{R})=\sup_{n\geq n_{0}}|(x, e_{n})|\leq\epsilon$ .
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On the other hand, since each $x\mu_{n}$ is Radon, the finite set $\{x\mu_{n};1\leq n<n\mathrm{o}\}$ is uniformly
tight, so that there exists acompact subset $K$ of $\mathbb{R}$ such that $\sup_{1\leq n<n_{\mathrm{O}}}|x\mu_{n}|(\mathbb{R}-K)<\epsilon$.
Consequently, we have

$\sup_{n\geq 1}|x\mu_{n}|(\mathbb{R}-K)\leq\max(\sup_{1\leq n<\mathrm{n}_{0}}|x\mu_{n}|(\mathbb{R}-K),\sup_{n\geq n_{\mathrm{O}}}|x\mu_{n}|(\mathbb{R}))=\epsilon,$

.

which implies that $x(\mathcal{V})$ is uniformly tight.
However, $\mathcal{V}$ is not uniformly tight, which $\mathrm{w}\mathrm{i}\mathrm{U}$ be proved below: Put

$\epsilon_{0}=2\int_{1}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-t^{2}/2}dt>0$ .

Since any compact subset $K$ of $\mathbb{R}$ is contained in some bounded interval $[-N_{0},N_{0}](N_{0}\in \mathrm{N})$ ,
we have

$||\mu_{N_{0}^{2}}||(\mathbb{R}-K)\geq m_{N_{0}^{2}}(\mathbb{R} -[-N_{0},N_{0}])$

$=2 \int_{N_{\mathrm{O}}}^{\infty}\frac{1}{\sqrt{2\pi N_{0}^{2}}}e^{-t^{2}/(2N_{\mathrm{O}}^{2})}dt$

$=2 \int_{1}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-t^{2}/2}dt=\epsilon_{0}$ ,

so that $\mathcal{V}$ is not uniformly tight.

Thanks to the above example, it is an interested problem to study the relation between the
scalarly uniform tightness and the uniform tightness. In addition, the above example suggests
that we need to study vector measures with values in not only normable spaces but locally
convex spaces such as nuclear spaces.

3.4. Compactness and metrizabilty –Frechet space-valued case. Now we shaU
explain some recent results of the study of compactness and metrizability in the space of vector
measures. Let us begin with extending Prokhorov-LeCm’s compactness criteria and Varadara-
jan’s metrizability criterion to vector measures with values in aFrechet space. The following
theorem contains those criteria for real measures and asequential compactness criterion given
by [32, Theorem 1.5 and Corollary 1.6]; see also [20, Theorem 2].

THEOREM 3.5 ([20, Theorem 3]). Let $S$ be a completely regular space whose compact sub-
sets are all metrizable. Let $X$ be a Frechet space whose topological dual $X^{*}$ has a countable
set which separates points of $X$ (this is equivalent to $X^{*}$ being sepa rable for the weak topology
$\sigma(X^{*},X))$ . Assume that $\mathcal{V}\subset \mathcal{M}\mathrm{t}(S,X)$ satisfies the following three conditions:

(i) $\mathcal{V}$ is unifomly bounded.
(ii) $\mathcal{V}$ is unifomly tight.
(iii) The set $\{\int_{S}fd\mu : f\in C(S), ||f||_{\infty}\leq 1,\mu\in \mathcal{V}\}$ is relatively weakly compact in $X$ .

Then, the closure of $\mathcal{V}$ with respect to the WTVM for $\sigma(X,X^{*})$ is compact and metrizable, so
that it is sequentially compact in $\mathrm{M}_{\mathrm{t}}(\mathrm{S},\mathrm{X})$ with respect to the WTVMfor $\sigma(X,X^{*})$ . $R\iota\hslash her$,
if $X$ is reflexive, (iii) follows from (i).

REMARK 3.6. (1) Let S be ametric space and X aBanach space. Then the condition
(iii) of Theorem 3.3 follows ffom the condition (iii) of Theorem 3.5. Indeed, we.have only to
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observe that for each compact subset $K$ of $S$ the set $\{\int_{K}fd\mu : f\in C(S), ||f||_{\infty}\leq 1, \mu\in \mathcal{V}\}$ is
contained in the weak closure of the set $\{\int_{S}fd\mu : f\in C(S), ||f||_{\infty}\leq 1, \mu\in \mathcal{V}\}$ . On the other
hand, using Grothendieck’s lemma [7, Lemma XIII.2], it is proved in [20, Remark] that for a
uniformly tight subset $\mathcal{V}$ of $\mathcal{M}_{t}(S, X)$ the condition (iii) of Theorem 3.3 implies the condition
(iii) of Theorem 3.5.

(2) Every locally compact separable metric space $S$ is aPolish space (see L. Schwartz [37,

Theorem 6, Chapter $\mathrm{I}\mathrm{I}$]), so that by [45, Theorem 30, Part $\mathrm{I}\mathrm{I}$] relative compactness coincides
with the combination of uniform boundedness and uniform tightness for subsets of $\mathcal{M}_{t}(S)$ .
Therefore, Theorem 3.5 also extends Varadarajan’s metrizability criterion to vector measures
that take their values in aPrechet space with acertain separability condition.

3.5. Compactness and metrizability-semi-reflexive or semi-Montel space aued
case. We turn our attention to vector measures with values in asemi-reflexive or asemi-Montel
space. In this case, we have only to assume the scalarly uniform tightness for abounded subset
of $\mathcal{M}_{t}(S,X)$ to obtain its metrizability and sequential compactness. The following theorem
contains Prokhorov-LeCam’s sequential compactness criteria and Varadarajan’s metrizability
criterion for real measures. Further, it applies to the cases that vector measures take values in
reflexive Banach spaces $L^{p}$ and $\ell^{p}(1<p<\infty)$ and in semi-Montel spaces such as the space
7of all rapidly decreasing, infinitely differentiate functions, the space $\mathscr{D}$ of all test functions,

and the strong duals of those spaces.

THEOREM 3.7 ([21, Theorem 2]). Let $S$ be a completely regular space whose compact sub-
sets are all metrizable. Let $X$ be a seeni-refleive space whose topological dual $X^{*}has$ a countable
set which separates points of $X$ (this is equivalent to $X^{*}$ being separable for the weak topology
$\sigma(X^{*}, X))$ . Assume that $\mathcal{V}\subset \mathrm{M}\mathrm{t}(\mathrm{S},\mathrm{X})$ is scalarly uniformly bounded and scalarly uniformly
tight. Then, the closure of $\mathcal{V}$ with respect to the WTVM for $\sigma(X, X^{*})$ is compact and metric
able, so that it is sequentially compact in $\mathcal{M}_{t}(S, X)$ with respect to the WTVM for $\sigma(X, X^{*})$ .
When $X$ is a semi-Montel space, the same conclusion holds with respect to the WTVM for the
original topology of $X$ .

REMARK 3.8. It is readily seen that the above results characterize locally convex spaces
which are semi-reflexive and semi-Montel.

3.6. Aconverse to Prokhorov-LeCam’s compactness criteria. Let $S$ be acomplete
separable metric space. It is known that asubset $M$ of $\mathcal{M}_{t}(S)$ is uniformly bounded and
uniformly tight if and only if it is relatively sequentially compact in $\mathcal{M}_{t}(S)$ ;see [45, Theorem
30, Part $\mathrm{I}\mathrm{I}$]. This contains aconverse to Theorem 3.1 and does not hold in general (not even
for standard spaces; see, for instance, X. Pernique [11, Example 1.6.4] $)$ . The following theorem
asserts that the same result stated above holds for vector measures that take their values in a
semi-Montel space with acertain separability condition.

THEOREM 3.9 ([24]). Let $S$ be a complete separable metric space. Let $X$ be a semi-Montel
space whose topologioal dual $X^{*}$ hcns a countable set which sepa rates points of X. We equip
$\mathcal{M}_{t}(S, X)$ with the WTVM for the original topology of X. Let $\mathcal{V}\subset \mathcal{M}(S,X)$ . Then the
following six conditions are equivalent
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(i) $\mathcal{V}$ is scalarly unifomly bounded and scalarly unifomly tight.
(ii) For each $x^{*}\in X^{*}$ , the closure of the set $x^{*}(\mathcal{V})$ is compact and metrizable in $\mathcal{M}_{t}(S)$ .
(iii) For each $x^{*}\in X^{*}$ , the set $x^{*}(\mathcal{V})$ is relatively sequentially compact in $\mathcal{M}_{t}(S.)$ .
(iv) $\mathcal{V}$ is unifomly bounded and unifomdy tight.
(v) The closure of $\mathcal{V}$ is compact and metrizable in $\mathcal{M}_{t}(S,X)$ .
(vi) $\mathcal{V}$ is relatively sequentially compact in $\mathcal{M}_{t}(S,X)$ .

4. Weak convergence of injective tensor products of vector measures

In this section, we explain some results concerning the joint continuity of injective tensor
product of vector measures with respect to the weak convergence in the following two cases:
One is the case that the vector measures take values in some nuclear spaces such as the space
$\mathscr{S}$ , the space 9, and the strong duals of those spaces. The other is the case that they take
values in the positive cone of Banach lattices.

4.1. Product measures of two vector measures. The notion of injective tensor prod-
uct of vector measures was introduced by M. Duchon and I. Kluvanek [8] in 1967: Let $X$ and
$\mathrm{Y}$ be lcHs. Let $(\Omega, \mathcal{E})$ and $(\Gamma,\mathcal{F})$ be measurable spaces. Denote by $X\otimes \mathrm{Y}\wedge$ and $X\otimes_{\pi}\mathrm{Y}\wedge$ the
injective and projective tensor products of $X$ and $\mathrm{Y}$ , respectively; see H. Jarchow [16, 15.1 and
16.1]. Let $\mu\in \mathrm{M}\{\mathrm{O},\mathrm{X}$ ) and $\nu\in \mathcal{M}(\Gamma,\mathrm{Y})$ . If aset $C$ is of the form $C= \bigcup_{k=1}^{n}(E_{k}\cross F_{k})$ , where
the union is disjoint and $E_{k}\in \mathcal{E}$ , $F_{k}\in \mathcal{F}$, then the set function $\mathrm{X}(\mathrm{C})=\sum_{k=1}^{n}\mathrm{v}(\mathrm{F}\mathrm{k})\otimes \mathrm{v}(\mathrm{F}\mathrm{k})$ is
unambiguously defined on the field of sets of the above form $C$ and is finitely additive. Then,
it was proved in [8, Theorem] that Ais countably additive and can be uniquely extended to a
countably additive set function, which is denoted by $\mu\otimes\nu\wedge$, on the field $\mathcal{E}\cross \mathcal{F}$ generated by
all sets of the above form $C$ with values in $X\otimes \mathrm{Y}\wedge$ . This vector measure is called the injective
tensor product of $\mu$ and $\nu$;see also [27, Theorem]. This fact is not true in the case of the
projective tensor product of $X$ and $\mathrm{Y}$ , as it was shown in [26, Remarks]. However, if $X$ is
nuclear, then the projective tensor product $X\otimes_{\pi}\mathrm{Y}\wedge$ coincides with the injective tensor product
$X\otimes \mathrm{Y}\wedge$ , so that the projective tensor product of $\mu$ and $\nu$ exists.

The injective tensor product of two probabilty measures is just the usual product measure,
so that its joint continuity is $\mathrm{w}\mathrm{e}\mathrm{U}$-known in the case that the underlying topological spaces, on
which measures are defined, are separable metric spaces (see P. Bilingsley [3, Theorem 3.2]),
and more generally completely regular spaces (see [43, Proposition 1.4.1]). It was also shown in
I. Csiszar [4, Corollary] that the convolution of probability measures on an arbitrary topological
group is jointly continuous. These results are important and applicative in probability theory.

4.2. Joint continuity problem –nuclear $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\triangleright$-valued case. We consider ajoint
continuity problem of vector measures with values in certain nuclear spaces. Let $X$ be alcHs.
Denote by $X_{\sigma}^{*}$ the weak dual of $X$ , that is, the dual of $X$ with the weak topology $\sigma(X^{*},X)$ .
We also denote by $X_{\beta}^{*}$ the strong dual of $X$ , that is, the dual of $X$ with the strong topology
$\beta(X^{*},X)$ .

Throughout this subsection, let $X$ be astrict inductive limit of an increasing sequence
$\{X_{n}\}$ of nuclear Frechet spaces and $\mathrm{Y}$ astrict inductive limit of an increasing sequence $\{\mathrm{Y}_{n}\}$ of
Frechet spaces; see [16, 4.6]. Denote by $X-\otimes \mathrm{Y}$ astrict inductive limit of the increasing sequence
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$\{X_{n}\otimes_{\pi}\mathrm{Y}_{n}\}\wedge$ of the projective tensor products of $X_{n}$ and $\mathrm{Y}_{n}$ . In this case, for $\mu\in \mathcal{M}(\Omega, X)$

and $\nu\in \mathcal{M}(\Gamma, \mathrm{Y})$ there exists aunique product measure $\mu\otimes\nu-$ : $\mathcal{E}\cross \mathcal{F}arrow X-\otimes \mathrm{Y}$ such that
$(\mu\otimes\nu)-(E\cross F)=\mathrm{n}(\mathrm{E})\otimes \mathrm{i}/(\mathrm{F})$ for all $E\in \mathcal{E}$ and $F\in \mathcal{F}$ . For, since $X$ and $\mathrm{Y}$ are strict

inductive limits of increasing sequences $\{X_{n}\}$ and $\{\mathrm{Y}_{n}\}$ , there exists an $n\circ\in \mathrm{N}$ such that
$\mu\in \mathcal{M}(\Omega, X_{n_{\mathrm{O}}})$ and $\nu\in \mathrm{v}\{\mathrm{F}$) $\mathrm{Y}_{n_{0}}$ ). Since $X_{n_{0}}$ is nuclear, the projective tensor product of
$X_{n_{0}}$ and $\mathrm{Y}_{n_{0}}$ coincides with the injective tensor product $X_{n_{0}}\otimes \mathrm{Y}_{n_{0}}\wedge$ , so that there exists avector

measure $\mu\otimes\nu\wedge$ : $\mathcal{E}\cross \mathcal{F}arrow X_{n_{0}}\otimes \mathrm{Y}_{n_{0}}\wedge$ . It is obvious that $\mu\otimes\nu\wedge$ can be considered as avector

measure with values in $X-\otimes \mathrm{Y}$ , which we denote by $\mu\otimes\nu-$ .
We also obtain aproduct of two vector measures with values in dual spaces. Since $X_{\beta}^{*}$

is nuclear, for any $\mu\in \mathcal{M}(\Omega, X_{\beta}^{*})$ and $\nu\in \mathcal{M}(\Gamma, \mathrm{Y}_{\beta}^{*})$ , there exists aunique vector measure
$\mu\otimes\nu\wedge\in \mathcal{M}(\Omega\cross\Gamma, X_{\beta}^{*}\otimes_{\pi}\mathrm{Y}_{\beta}^{*})\wedge$ such that $(\mu\otimes\nu)(E\wedge\cross F)=\mu(E)\otimes\nu(F)$ for all $E\in \mathcal{E}$ and $F\in \mathcal{F}$ .
Since $X_{\beta}^{*}\otimes_{\pi}\mathrm{Y}_{\beta}^{*}\wedge=(X-\otimes \mathrm{Y})_{\beta}^{*}$ , we may view the product as avector measure with values in
$(X-\otimes \mathrm{Y})^{*}$ , and we still denote it by $\mu\otimes-\nu$ again.

EXAMpLE 4.1. (1) Let $\mathrm{y}(\mathrm{R}\mathrm{m})$ and $\mathscr{S}(\mathbb{R}^{n})$ be the spaces of all rapidly decreasing, infinitely

differentiate functions on Euclidean spaces $\mathbb{R}^{m}$ and $\mathbb{R}^{n}$ respectively. These are examples of

nuclear Frechet spaces. The strong dual spaces $\mathscr{S}^{*}(\mathbb{R}^{m})$ and $\mathscr{S}^{*}(\mathbb{R}^{n})$ are called the spaces of all

slowly increasing distributions. Then, we have the canonical isomorphisms (see F. Treves [42,

Theorem 51.6 and its Corollary]):

$\mathscr{S}(\mathbb{R}^{m})\otimes_{\pi}\mathscr{S}(\mathbb{R}^{n})\wedge=\mathscr{S}(\mathbb{R}^{m+n})$ and $\mathscr{S}^{*}(\mathbb{R}^{m})\otimes_{\pi}\mathscr{S}^{*}(\mathbb{R}^{n})=\mathscr{S}^{*}(\mathbb{R}^{m+n})\wedge$ .

Consequently, for $\mu\in \mathcal{M}(\Omega, \mathscr{S}(\mathbb{R}^{m}))$ and $\nu\in \mathcal{M}(\Gamma, \mathscr{S}(\mathbb{R}^{n}))$ , the tensor product $\mu\otimes-\nu$ exists
and takes values in $\mathscr{S}(\mathbb{R}^{m+n})$ . When $\mu\in \mathcal{M}(\Omega, \mathscr{S}^{*}(\mathbb{R}^{m}))$ and $\nu\in \mathcal{M}(\Gamma, \mathscr{S}^{*}(\mathbb{R}^{n}))$ , then $\mu\otimes\nu-$

also exists and takes values in $\mathscr{S}^{*}(\mathbb{R}^{m+n})$ .
(2) Let $U\subset \mathbb{R}^{m}$ and $V\subset \mathbb{R}^{n}$ be open sets. Denote by $\mathscr{D}(U)$ , $\mathscr{D}(V)$ and $\mathscr{D}(U\cross V)$ the spaces
of all test functions on $U$ , $V$ and $U\cross V$ , respectively. These are examples of lcHs whose type
is astrict inductive limit of an increasing sequence of nuclear Frechet spaces. The strong dual
spaces 9’ (U), $\mathscr{D}^{*}(V)$ , and $\mathscr{D}^{*}(U\cross V)$ are called the spaces of all distributions. Then, we have
the canonical isomorphisms (see A. Grothendieck [13, page 84, Chapter $\mathrm{I}\mathrm{I}$] and [42, Theorem
51.7]):

$\mathscr{D}(U)-\otimes \mathscr{D}(V)=\mathscr{D}(U\cross V)$ and $\mathscr{D}^{*}(U\cross V)=\mathscr{D}^{*}(U)\otimes_{\pi}\mathscr{D}^{*}(V)\wedge$.

Consequently, for $\mu\in \mathcal{M}(\Omega, \mathscr{D}(U))$ and $\nu\in \mathcal{M}(\Gamma, \mathscr{D}(V))$, the tensor product $\mu\otimes\nu-$ exists and
takes values in $\mathscr{D}(U\cross V)$ . When $\mu\in \mathcal{M}(\Omega, \mathscr{D}^{*}(U))$ and $\nu\in \mathcal{M}(\Gamma, \mathscr{D}^{*}(V))$ , then $\mu i\nu$ also
exists and takes values in $\mathscr{D}^{*}(U\cross V)$ .

In what follows, let $S$ and $T$ be completely regular spaces which satisfy $B(S\cross T)=$

$B(S)\cross B(T)$ (it is routine to check that this condition is satisfied, for instance, either $S$ or $T$

has acountable base of open sets). Then, we have an affirmative answer for aproblem of joint
continuity of product of vector measures with values in above nuclear spaces.

The following two theorems insist that the weak convergence of anet of tensor products of
uniformly bounded vector measures follows from that of the corresponding net of real product
measures. We recall that for $\mu\in \mathrm{M}(\mathrm{S},\mathrm{X})$ and $\nu\in \mathcal{M}(T,\mathrm{Y})$ , the tensor product $\mu i\nu$ exists
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and takes values in $Z:=X-\otimes \mathrm{Y}$ , and $Z_{\beta}^{*}$ can be identified with $X_{\beta}^{*}\otimes_{\pi}\mathrm{Y}_{\beta}^{*}\wedge$ as atopological vector
space.

THEOREM 4.2 ([17, Theorem 5]). Let $\{\mu_{\alpha}\}\subset \mathcal{M}(S,X)$ and $\{\nu_{\alpha}\}\subset \mathrm{M}(\mathrm{T},\mathrm{Y})$ be uniformly
bounded nets. Let $\mu\in \mathrm{M}(\mathrm{S},\mathrm{X})$ and $\nu\in \mathcal{M}(T,\mathrm{Y})$ . Assume that for each $x^{*}\in X^{*}$ and $y^{*}\in \mathrm{Y}^{*}$

the net $\{x^{*}\mu_{\alpha}\cross y^{*}\nu_{\alpha}\}$ of real prvxiuct measures converges weakly to the real prvxiuct measure
$x^{*}\mu\cross y^{*}\nu$ . Then $\{\mu_{\alpha}\otimes-\nu_{\alpha}\}\subset \mathrm{M}(\mathrm{S}\mathrm{x}\mathrm{T}, Z)$ converges weakly to $\mu\otimes-\nu\in \mathrm{M}(\mathrm{S}\mathrm{x}\mathrm{T}, Z)$ for $\sigma(Z, Z^{*})$ .
$fb\hslash her$, if $\mathrm{Y}$ is nuclear, it also converges weakly for the inductive limit topology on $Z$ .

In the case of vector measures with values in dual spaces, we have

THEOREM 4.3 ([17, Theorem 7]). Let $\{\mu_{\alpha}\}\subset \mathcal{M}(S,X_{\beta}^{*})$ and $\{\nu_{\alpha}\}\subset \mathcal{M}(T, \mathrm{Y}_{\beta}^{*})kun\dot{l}-$

formly bounded nets. Let $\mu\in \mathcal{M}(S,X_{\beta}^{*})$ and $\nu\in \mathcal{M}(T,\mathrm{Y}_{\beta}^{*})$ . Assume that for each $x\in X$ and
$y\in \mathrm{Y}$ the net $\{x\mu_{\alpha}\cross y\nu_{\alpha}\}$ converges $wMy$ to $x\mu\cross y\nu$ . Then $\{\mu_{\alpha}\otimes-\nu_{\alpha}\}\subset \mathcal{M}(S\cross T, Z_{\beta}^{*})$ can
verges weakly to $\mu\otimes\nu-\in \mathcal{M}(S\cross T, Z_{\beta}^{*})$ for $\sigma(Z^{*}, Z)$ . $R\iota\hslash her,\dot{l}f\mathrm{Y}$ is nuclear, it also converges
weakly for $\beta(Z^{*}, Z)$ .

4.3. Banach lattice- alued measures. Let $(\Omega,\mathcal{E})$ be ameasurable space. Let $(X, \leq)$

be aBanach lattice. When aBanach space $X$ is equipped with the additional structure of a
Banach lattice, we may introduce the notion of positivity for vector measures. We say that a
vector measure $\mu$ : $\mathcal{E}arrow X$ is positive if $\mu(E)\geq 0$ for every $E\in \mathcal{E}$ . By [38, Lemma 1.1], for
every positive vector measure $\mu$ we have $||\mu||(E)=||\mu(E)||$ for all $E\in \mathcal{E}$ . Further, it is easy
to verify that for any $\mu$-integrable, $\mathcal{E}$-measurable real functions $f$ and $g$ with $|f|\leq g$ almost
everywhere, we have

$| \int_{\Omega}fd\mu|\leq\int_{\Omega}|f|d\mu\leq\int_{\Omega}gd\mu$ and $|| \int_{\Omega}fd\mu||\leq||\int_{\Omega}gd\mu||$ .

These facts greatly facilitate the analysis of positive vector measures. For further properties of
positive vector measures on metric spaces see [32] and [38]. We refer the reader to the book
of [35] for the basic theory of Banach lattices.

Let $S$ be auniform space. Denote by $U(S)$ the space of all uniformly continuous real
functions on $S$ . Let $(X, \leq)$ be aBanach lattice. Denote by $\mathcal{M}^{+}(S, X)$ the space of all positive
vector measures $\mu$ : $\mathrm{B}(\mathrm{S})arrow X$ .

Let $\{\mu_{\alpha}\}$ be anet in $\mathcal{M}(S,X)$ and $\mu\in \mathcal{M}(S,X)$ . Recall that $\{\mu_{\alpha}\}$ converges weakly to $\mu$ ,
and we write $\mu_{\alpha}arrow\mu w$ , if for every $f\in C(S)$ we have lima $\int_{S}fd\mu_{\alpha}=\int_{S}fd\mu$ in the norm of $X$ .
The following proposition asserts that the weak convergence of positive vector measures follows
form the validity of the above convergence only for bounded unifo rmly continuous functions $f$

on $S$;see F. TopsOe [41, Theorem 8.1 (the Portmanteau Theorem)] for positive scalar measures.

PROPOSITION 4.4 ([22, Proposition 5.1]). Let $S$ be a uniform space and $X$ a Banach lat-
tice. Let $\{\mu_{\alpha}\}$ be a net in $\mathcal{M}^{+}(S,X)$ and $\mu$ a tight measure in $\mathcal{M}^{+}(S,X)$ . Then the folloing
teoo conditions are equivalent:

(i) For every $f\in \mathrm{U}(\mathrm{S})$ , we have $\int_{S}fd\mu_{\alpha}arrow\int_{S}fd\mu$.
(i) For every $f\in \mathrm{C}(\mathrm{S})$ , we have $\int_{S}fd\mu_{\alpha}arrow\int_{S}fd\mu$.
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4.4. Injective tensor integral. We define the Bartle bilinear integration in our setting;
see R. G. Bartle [2]. Let $X$ and $\mathrm{Y}$ be Banach spaces. Denote by $X\otimes \mathrm{Y}\wedge$ the injective tensor
product of $X$ and $\mathrm{Y}$;see [6, Chapter VIII]. Denote by $\chi_{E}$ the indicator function of aset $E$ .
Let $(\Gamma, \mathcal{F})$ be ameasurable space and $\nu$ : $\mathcal{F}arrow \mathrm{Y}$ avector measure. A $\nu$-null set is aset $F\in \mathcal{F}$

for which $||\nu||(F)=0$;the term $\nu$-almost everywhere refers to the complement of a $\nu$-null set.
Given an $X$-valued simple function $\varphi=\sum_{k=1}^{m}x_{k}\chi_{F_{k}}$ with $x_{1}$ , $\ldots$ , $x_{m}\in X$ , $F_{1}$ , $\ldots$ , $F_{m}\in \mathcal{F}$ ,

$m\in \mathrm{N}$ , define its integral $\int_{F}\varphi\otimes d\nu\wedge$ over aset $F\in \mathcal{F}$ by $\int_{F}\varphi\otimes d\nu\wedge=\sum_{k=1}^{m}x_{k}\otimes\nu(F_{k}\cap F)$ .
We say that avector function $\varphi$ : $\Gammaarrow X$ is $\nu$-measurable if there exists asequence $\{\varphi_{n}\}$ of
$X$-valued simple functions converging $\nu$-almost everywhere to $\varphi$ . The function $\varphi$ is said to be
$\nu$ -integrable in the sense of Bartle if there exists asequence $\{\varphi_{n}\}$ of $X$-valued simple functions
converging $\nu$-almost everywhere to $\varphi$ such that the sequence $\{\int_{F}\varphi_{n}\otimes d\nu\}\wedge$ converges in the norm
of $X\otimes \mathrm{Y}\wedge$ for each $F\in \mathcal{F}$. This limit $\int_{F}\varphi\otimes d\nu\wedge$ does not depend on the choice of such X-valued
simple functions $\varphi_{n}$ , $n\in \mathrm{N}$ , and the indefinite integral $F arrow\int_{F}\varphi\otimes d\nu\wedge$ is an $X\otimes \mathrm{Y}\wedge$-valued vector
measure on $\mathcal{F}$ .

For simplicity, we say that the $\varphi$ is $\nu$ -integrable if it is $\nu$-integrable in the sense of Bartle.
The integral $\int_{F}\varphi\otimes d\nu\wedge$ is called the injective tensor integral of $\varphi$ over $F$ with respect to $\nu$ . See a
recent paper of F. J. Freniche and J. C. Garcia-Vazquez [12] for further properties of injective
tensor integrals such as some characterizations of integrable functions and the general Fubini
theorem.

Let $T$ be atopological space. Here and in what follows, $C(T, X)$ denotes the Banach

space of all bounded continuous functions $\varphi$ : $Tarrow X$ with the norm $|| \varphi||_{\infty}:=\sup_{t\in T}||\varphi(t)||$ .
When $X=\mathbb{R}$ , we write $\mathrm{C}\{\mathrm{T}$) $:=\mathrm{C}\{\mathrm{T}$) $\mathbb{R}$). By the following proposition, every $\varphi\in C(T, X)$ is
integrable with respect to any tight vector measure $\nu$ : $B(T)arrow \mathrm{Y}$ .

PROpOSITION 4.5 ([22, Proposition 3.3]). Let $T$ be a topological space. Let $X$ and $\mathrm{Y}$ be
Banach spaces. Let $\nu$ : $B(T)arrow \mathrm{Y}$ be a tight vector measure and $\varphi\in C(T,X)$ . Then, $\varphi$ is
$\nu$ -integrable, and $|| \int_{F}\varphi\otimes d\nu|\wedge|\leq\sup_{t\in F}||\varphi(t)||\cdot||\nu||(F)$ for all $F\in B(T)$ .

4.5. Adiagonal convergence theorem. Let $T$ be auniform space and $X$ aBanach
space. Denote by $U(T, X)$ the Banach space of all bounded uniformly continuous functions
$\varphi$ : $Tarrow X$ with the norm $|| \varphi||_{\infty}:=\sup_{t\in T}||\varphi(t)||$ . When $X=\mathbb{R}$, we write $U(T):=U(T, \mathbb{R})$ .

We give adiagonal convergence theorem for injective tensor integrals with respect to pos-
itive vector measures. The following theorem is not only crucial to prove our results, that is
Theorems 4.7 and 4.8, but seems to be of some interest.

THEOREM 4.6 ([22, Theorem 4.1]). Let $T$ be a uniform space with the uniformity $\mathcal{U}_{T}$ . Let
$X$ be a Banach space and $\mathrm{Y}$ a Banach lattice. Consider a net $\{\varphi_{\alpha}\}\subset U(T, X)$ and $\varphi\in U(T,X)$

satisfying the following conditions:

(i) $\varphi_{\alpha}(t)arrow\varphi(t)$ for every $t\in T$;
(ii) $\{\varphi_{\alpha}\}$ is unifomly bounded, that is, $\sup_{\alpha}||\varphi_{\alpha}||_{\infty}<\infty,\cdot$ and
(iii) $\{\varphi_{\alpha}\}$ is uniformly equicontinuous on $T$ , that is, for any $\epsilon$ $>0$ , there exists a set $V\in \mathcal{U}\tau$

such that $\sup_{\alpha}||\varphi_{\alpha}(t)-\varphi_{\alpha}(t’)||<\epsilon$ whenever $(t, \oint)$ $\in V$ .
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Given a net $\{\nu_{\alpha}\}$ of tight measures in $\mathcal{M}^{+}(T,$Y) and a tight and $\tau$-smooth measure $\nu$ in
$\mathcal{M}^{+}(T,$Y), if $\lim_{\alpha}\int_{T}gd\nu_{\alpha}=\int_{T}gd\nu$ for every g $\in U(T)$ , then $\lim_{\alpha}\int_{T}\varphi_{\alpha}\otimes d\nu_{\alpha}\wedge=\int_{T}\varphi\otimes d\nu\wedge$.

4.6. Joint continuity problem-Banach $\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{c}\triangleright$ alued case. In 4.2, we have already
studied ajoint continuity problem for vector measures with values in certain nuclear spaces,
such as the space 7, the space 9, and the strong duals of those spaces. The way of proving
the joint continuity of product of nuclear space-valued measures is essentially based on afinite
dimensional aspect of nuclear spaces, that is, the weak topology coincides with the original
topology on every bounded subset of any barreled, quasi-complete nuclear space. Therefore,
the same method may not apply to the case of vector measures with values in Banach spaces.
We state here that the joint continuity of product measures remains true for the injective tensor
products of positive vector measures in certain Banach lattices. Our approach to this problem
is based on the Bartle bilinear vector integration [2].

Let $S$ and $T$ be uniform spaces. Let $X$ and $\mathrm{Y}$ be Banach lattices. Let us recall that for
any vector measures $\mu\in \mathcal{M}(S, X)$ and $\nu\in \mathcal{M}(T, \mathrm{Y})$ there exists aunique vector measure
$\mu\otimes\nu:B(S)\cross B(T)\wedgearrow X\otimes \mathrm{Y}\wedge$ , which is called an injective tensor product of $\mu$ and $\nu$ , such that
$(\mu\otimes\nu)(E\cross F)=\mu(E)\wedge\otimes\nu(F)$ for all $E\in B(S)$ and $F\in \mathrm{B}\{\mathrm{T})$ .

In the rest of this section, we assume that $S$ and $T$ satisfy $B(S\cross T)=B(S)\cross B(T)$ .
This restriction, however, may be dropped if, for instance, both $\mu$ and $\nu$ are $\tau$-smooth positive
vector measures, and either of the ranges of $\mu$ and $\nu$ is separable, since in this case the injective
tensor product measure $\mu ii\nu$ can be uniquely extended to a $\tau$-smooth positive vector measure
on $B(S\cross T)$ , which contains $B(S)\cross B(T)$ in general; see [23]. We can also obtain the same
form of the general Fubini theorem [12, Theorem 13] for this extended injective tensor product
measure.

Anyway, under our assumption, we can view the injective tensor product $\mu\otimes\nu\wedge$ as avector
measure defined on $B(S\cross T)$ , and integrate every (uniformly) continuous real functions with
respect to $\mu i\nu$ .

As an application of Theorem 4.6, we obtain the following result which seems to be of some
interest.

THEOREM 4.7 ([22, Theorem 5.3]). Let $X$ and $\mathrm{Y}$ be Banach lattices. Let $\{\mu_{\alpha}\}$ be a net in
$\mathcal{M}^{+}(S,X)$ and $\mu\in \mathcal{M}^{+}(S,X)$ . Let $\{\nu_{\alpha}\}$ be a net of tight measures in $\mathcal{M}^{+}(T, \mathrm{Y})$ and $\nu$ a tight
and r-smooth measure in $\mathcal{M}^{+}(T,\mathrm{Y})$ . If $\int_{S}fd\mu_{\alpha}arrow\int_{S}fd\mu$ and $\int_{T}gd\nu_{\alpha}arrow\int_{T}gd\nu$ for every
$f\in U(S)$ and $g\in U(T)$ , then $\int_{S\mathrm{x}T}hd(\mu_{\alpha}\otimes\nu_{\alpha})\wedgearrow\int_{S\mathrm{x}T}hd(\mu\otimes\nu)\wedge$ for every $h\in U(S\cross T)$ .

Let $X$ and $\mathrm{Y}$ be Banach lattices. Then, in general, the injective tensor product $X\otimes \mathrm{Y}\wedge$ or
the projective tensor product may not be avector lattice for the natural ordering. However,
the injective tensor products of some important examples of Banach lattices are also Banach
lattices; see Example 4.10.

Let $X$ and $\mathrm{Y}$ be Banach lattices such that the injective tensor product $X\otimes \mathrm{Y}\wedge$ is also a
Banach lattice satisfying the condition $x\otimes y\geq 0$ for every $x\geq 0$ and $y\geq 0$ . Let $(\Omega,\mathcal{E})$ and
$(\Gamma, \mathcal{F})$ be measurable spaces. Let $\mu$ : $\mathcal{E}arrow X$ and $\nu$ : $\mathcal{F}arrow \mathrm{Y}$ be vector measures. Then it is
easy to verify that if $\mu$ and $\nu$ are positive, so is the injective tensor product $\mu\otimes\nu\wedge$ . In this case
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we have an affirmative answer for aproblem of joint continuity of the injective tensor products

with respect to the weak convergence of vector measures.

THEOREM 4.8 ([22, Theorem 5.4]). Let $X$ and $\mathrm{Y}$ be Banach lattices such that the injective

tensor product $X\otimes \mathrm{Y}\wedge$ is also a Banach lattice satisfying the condition $x\otimes y\geq 0$ for every $x\geq 0$

and $y\geq 0$ . Let $\{\mu_{\alpha}\}$ be a net in $\mathcal{M}^{+}(S, X)$ . and $\mu$ a tight measure in $\mathcal{M}^{+}(S, X)$ . Let {&}
be a net of tight measures in $\mathcal{M}^{+}(T, \mathrm{Y})$ and $\nu$ a tight and $\tau$-srnooth measure in $\mathcal{M}^{+}(T, \mathrm{Y})$ . If
$\mu_{\alpha}\mu\underline{w}$ and $\nu_{\alpha}arrow\nu w$ , then $\mu_{\alpha}\otimes\nu_{\alpha}arrow\mu\otimes\nu\wedge w\wedge$ .

REMARK 4.9. In the special case that $X=\mathrm{Y}=\mathbb{R}$ , an alternative proof of Theorem 4.8
is executed by awell-known criterion that one can prove the weak convergence of $\mu_{\alpha}$ to $\mu$ by

showing that $\mu_{\alpha}(E)arrow\mu(E)$ for some special class of sets $E$ (see, for instance, [43, Corollary 1

to Theorem 1.3.5 and Proposition 1.4.1]). However, it seems that the usual proof of the above

criterion does not work well for positive vector measures, since the notions of limit infimum

and limit supremum cannot be extended to general Banach lattices.

We finish this section with examples of Banach lattices $X$ and $\mathrm{Y}$ such that the injective
tensor product $X\otimes \mathrm{Y}\wedge$ is also a Banach lattice satisfying the condition $x\otimes y\geq 0$ for every $x\geq 0$

and $y\geq 0$;see examples in [35, pages 274-276] and [13, page 90, Chapter $\mathrm{I}$].

EXAMPLE 4.10. (1) Let $K$ be acompact space and $\mathrm{Y}$ be any Banach lattice. Then $C(K)\otimes \mathrm{Y}\wedge$

is isometrically lattice isomorphic to the Banach lattice $C(K, \mathrm{Y})$ . Especially, when $\mathrm{Y}=C(L)$

for some compact space $L$ , $C(K)\otimes C(L)\wedge$ is isometrically lattice isomorphic to $C(K\cross L)$ .
(2) Let $P$ be alocally compact space and $\mathrm{Y}$ be any Banach lattice. Denote by $C_{0}(P, \mathrm{Y})$

the Banach lattice with its canonical ordering of all continuous functions $\varphi$ : $Parrow \mathrm{Y}$ such that

for every $\epsilon$ $>0$ the set $\{s\in P:||\varphi(s)||\geq\epsilon\}$ is compact. We write $C_{0}(P):=C_{0}(P,\mathbb{R})$ . Then
$C_{0}(P)\otimes \mathrm{Y}\wedge$ is isometrically lattice isomorphic to $C_{0}(P, \mathrm{Y})$ . Especially, when $\mathrm{Y}=C_{0}(Q)$ for
some locally compact space $Q$ , $C_{0}(P)\otimes C_{0}(Q)\wedge$ is isometrically lattice isomorphic to $C_{0}(P\cross Q)$ .

(3) Let $(\Omega, \mathcal{E}, m)$ be ameasure space and $\mathrm{Y}$ be any Banach lattice. Denote by $L^{\infty}(\Omega, \mathrm{Y})$

the Banach lattice of all (equivalence classes of) $m$-essentially bounded measurable functions
$\varphi$ : $\Omega$ $arrow \mathrm{Y}$ with its canonical ordering. We write $L^{\infty}(\Omega):=L^{\infty}(\Omega,\mathbb{R})$ . Then, $L^{\infty}(\Omega)\otimes \mathrm{Y}\wedge$ is a
Banach lattice. However, in general, $L^{\infty}(\Omega)\otimes \mathrm{Y}\wedge$ is aproper closed subset of $L^{\infty}(\Omega, \mathrm{Y})$ .

5. Strassen’s theorem for positive vector measures

In acelebrated paper, V. Strassen [40] gave necessary and sufficient conditions for the

existence of probability measures with given marginals. His results have been extended by many
authors in more general settings; see, D. A. Edwards [10], G. Hansel and J. P. Troallic [14],

H. G. Kellerer [25], H. J. Skala [39] and so on. In this section, we explain two types of Strassen’s
conditions for the existence of positive vector measures with given marginals.

5.1. Two theorems of V. Strassen. Let $S$ and $T$ be topological spaces. Denote by
$\mathcal{M}_{1}^{+}(S)$ the space of all Radon probability measures on $S$ with the weak topology of measures.
Let us recall that a $r\in \mathcal{M}_{1}^{+}(S\cross T)$ is called ameasure with marginals $p\in \mathcal{M}_{1}^{+}(S)$ and
$q\in \mathcal{M}_{1}^{+}(T)$ if $r(E\cross T)=p(E)$ and $r(S\cross F)=q(F)$ for all $E\in B(S)$ and $F\in B\{T)$ .
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The following two types of Strassen’s conditions for the existence of probability measures
with given marginals are well-known and have many applications in the theory of probability
and statistics.

THEOREM 5.1 ([39, Theorem 1]). Let $S$ and $T$ be topological spaces. Let $R$ be a non-empty
closed convex subset of $\mathcal{M}_{1}^{+}(S)$ . In order that there $n\cdot sk$ a $r\in R$ with given marginals

$p\in \mathcal{M}_{1}^{+}(S)$ and $q\in \mathcal{M}_{1}^{+}(T)$ , it is necessary and sufficient that

$\int_{S}fdp+\mathit{1}^{gdq\leq\sup}\{\int_{S\mathrm{x}T}(f\oplus g)dr$ : $r\in R\}$

for all bounded Borel measurable functions $f$ : $Sarrow \mathbb{R}$ and $g$ : $Tarrow \mathbb{R}$, where $(f\oplus g)(s,t):=$

$f(s)+g(t)$ for all $(s,t)\in S\cross T$ .

THEOREM 5.2 ([39, Corolary 6]). Let $S$ and $T$ be topological spaces. Let $D$ be a non-empty
closed subset of $S\cross T$ . Let $\epsilon>0$ . Then there $n\cdot sk$ a $r\in \mathcal{M}_{1}^{+}(S\cross T)$ with given marginals

$p\in \mathcal{M}_{1}^{+}(S)$ and $q\in \mathcal{M}_{1}^{+}(T)$ such that $r(D)\geq 1-\epsilon$ if and only if$p(E)+q(F)\leq 1+\epsilon$ whenever
$E\cross F\subset D^{e}$ .

An attempt to extend Strassen’s results to vector measures has been made by I. Marz,
R. M. Shortt and A. Hirshberg, and they deal with vector measures with values in the positive
cone of areflexive Banach lattice or aBanach lattice of acertain type: the s0-called KBspaces.
ABanach lattice $(X, \leq)$ is called a $KB$-space if each norm bounded increasing sequence in $X$

is convergent. The folowing extends Theorem 5.2 to positive vector measures with values in a
KB-space.

THEOREM 5.3 ([15, Theorem 2]). Let $\mathcal{E}$ and $\mathcal{F}$ be $\sigma$-fields of subsets of non-empty sets $\Omega$

and $\Gamma$, respectively. Let $X$ be a $KB$-space. Let $\mu\in \mathcal{M}^{+}(\Omega,X)$ and $\nu\in \mathcal{M}^{+}(\Gamma,X)$ satisfy
$\mu(\Omega)=\nu(\Gamma)=u$. Suppose that $\mu$ is perfect {see [38] $)$ and that $D\in \mathcal{E}\cross \mathcal{F}$ is a countable
intersection of sets in the field on $\Omega\cross\Gamma$ generated by all rectangles $E\cross F$ for $E\in \mathcal{E}$ and
$F\in \mathcal{F}$. For every positive element $v\in X$ , the following are equivalent:

(i) There $n\cdot sh$ a vector measure $\mathrm{A}\in \mathcal{M}^{+}(\Omega\cross \mathrm{F},\mathrm{X})$ with marginals $\mu$ and $\nu$ such that
$\lambda(D)\geq v$ .

(ii) For all $E\in \mathcal{E}$ and $F\in \mathcal{F}$, we have $\mathrm{p}(\mathrm{E})+\mathrm{v}(\mathrm{F})\leq 2u-v$ whenever $E\cross$ $F\subset D^{c}$ .
5.2. Another type of Strassen’s theorem for vector measures. We extend $\mathrm{T}\mathrm{h}\infty-$

$\mathrm{r}\mathrm{e}\mathrm{m}5.1$ to positive vector measures with values in the weak dual of abarreled lcHs which has
certain order conditions.

recall that avector space $X$ with apartial ordering $\leq \mathrm{i}\mathrm{s}$ an $\mathit{0}$ rdered vector space if
(1) $x\leq y$ implies $x+z\leq y+z$ for all $x,y$, $z\in X$ ;
(2) $x\leq y$ implies $cx\leq \mathrm{c}y$ for all $x,y\in X$ and $c>0$ .

ARiesz space is defined to be an ordered vector space such that every pair of elements $x,y$ of
$X$ has asupremum $x\vee y$ and an infimum $x\Lambda y$ . An element $x\in X$ is said to be positive if $x\geq 0$ .
We say that an ordered vector space is of type (ff) if for each $x\in X$ , there exist two positive
elements $x^{+}$ and $x^{-}$ of $X$ with $x=x^{+}-x^{-}$ . Riesz spaces are of type (R). See Example 5.6
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for other ordered vector spaces of type (R). We refer the reader to the book of [35] for further
information on ordered vector spaces and Riesz spaces.

Let $X$ be alcHs and $X_{\sigma}^{*}$ the weak dual of $X$ , that is, the topological dual of $X$ with the

weak topology $\sigma(X^{*}, X)$ . Denote by $\langle x, x^{*}\rangle$ the natural duality between $X$ and $X^{*}$ .
An element $x^{*}\in X^{*}$ is said to be positive if $\langle x, x^{*}\rangle\geq 0$ for any positive element $x\in X$ . We

say that avector measure $\mu$ : $\mathrm{B}(\mathrm{S})arrow X_{\sigma}^{*}$ is positive if $\mu(E)$ is apositive element in $X^{*}$ for all
$E\in B(S)$ . Then it is easy to prove that $\mu\in \mathrm{M}_{\mathrm{t}}(\mathrm{S}, X_{\sigma}^{*})$ is positive if and only if $\int_{S}fd(x\mu)\geq 0$

for every positive $x\in X$ and every $f\in C(S)$ with $f\geq 0$ . Denote by $\mathcal{M}_{t}^{+}(S,X_{\sigma}^{*})$ the set of all
positive vector measures in $\mathcal{M}_{t}(S, X_{\sigma}^{*})$ and we write $\mathcal{M}_{t}^{+}(S):=\mathcal{M}_{t}^{+}(S,\mathbb{R})$ .

The following extends Theorem 5.1 to positive vector measures with values in the weak
dual of abarreled lcHs which is an ordered vector space of type (R).

THEOREM 5.4 ([18, Theorem 1]). Let $S$ and $T$ be completely regular spaces. Let $X$ be a bar-
reled lcHs which is an ordered vector space of type (R). Assume that $\Gamma$ is a uniformly bounded,
non-empty convex subset of $\mathcal{M}_{t}^{+}(S\cross T,X_{\sigma}^{*})$ which is closed for the WTVM for $\sigma(X^{*},X)$ . In
order that there exists a $\gamma\in\Gamma$ with given marginals $\mu\in \mathcal{M}_{t}^{+}(S,X_{\sigma}^{*})$ and $\nu\in \mathcal{M}_{t}^{+}(T,X_{\sigma}^{*})$ , it is
necessary and sufficient that for ever$ry\{f_{i}\}_{i=1}^{n}\subset \mathrm{C}(\mathrm{S})$ , $\{g_{i}\}_{i=1}^{n}\subset C(T)$ and $\{x_{i}\}_{i=1}^{n}\subset X$ , we
have

$\sum_{i=1}^{n}\langle X_{i,\int_{S}f_{i}d\mu+\mathit{1}^{g_{i}d\nu\rangle}}\leq\sup\{\sum_{i=1}^{n}\langle x_{i}$ , $\int_{S\cross T}(f_{i}\oplus g:)d\lambda\rangle$ : A $\in\Gamma\}$ .

REMARK 5.5. When $X$ is reflexive, the existing measure $\gamma\in\Gamma$ in Theorem 5.4 is countably
additive and Radon for the strong topology $\beta(X^{*}, X)$ since in this case $\mathcal{M}_{t}(S\cross T, X_{\sigma}^{*})=$

$\mathcal{M}_{t}(S\cross T,X_{\beta}^{*})$ ;see [18, Remark 2].

EXAMpLE 5.6. (1) The following $(\mathrm{a})-(\mathrm{g})$ are barreled lcHs which are Riesz spaces, and
hence of type (R):

(a) The Banach lattice $L^{\mathrm{p}}(\Omega, \mathcal{E}, m)$ with ameasure space $(\Omega, \mathcal{E}, m)$ and the Banach lattice
$\ell^{p}(1\leq p\leq\infty)$ . Then $L^{p}(\Omega, \mathcal{E}, m)^{*}=\mathrm{B}(\mathrm{S})\mathcal{E},m)$ and $(\mathrm{f})^{*}=\ell^{q}(1\leq p<\infty, 1/p+1/q=1)$ .

(b) The Banach lattice $C(S)$ with atopological space $S$ . See N. Dunford and J. T.
Schwartz [9, Theorems IV.6.2 and 6.3] for the topological dual of $C(S)$ .

(c) The Banach lattice $\mathcal{M}(\Omega)$ of all real measures on ameasurable space $(\Omega, \mathcal{E})$ .
(d) Let $S$ be a $\sigma$-compact and locally compact space. Denote by $C(S)$ the space of all

continuous real functions on $S$ . We endow $C(S)$ with the topology generated by the family of
seminorms $p_{K}$ given by $f \mapsto*p_{K}(f):=\sup_{s\in K}|f(s)|(K$ varies in the family of all compact
subsets of $S$). Then $C(S)$ is aR\’echet space which is aRiesz space.

(e) Let $S$ be alocally compact space. Denote by $C_{00}(S)$ the space of all continuous real
functions on $S$ with compact support. For any fixed compact subset $K$ of $S$ , denote by $C_{K}$

the Banach space of functions in CooCS) that are supported by $K$ , with the uniform norm. We
endow $C_{00}(S)$ with the inductive topology generated by the family of Banach spaces $C_{K}$ . Then
$C_{00}(S)$ is abarreled lcHs which is aRiesz space, and the dual $C_{00}(S)^{*}$ is the space of all real
Radon measures on $S$ ;see [34, pages 57 and 58].

(f) Let $\mathbb{R}^{\infty}$ be the Fr\’echet-Montel space of all real sequences with the topology of simple
convergence. Let $\mathbb{R}_{0}^{\infty}$ be the Montel space of all real sequences which have only afinite numbe
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of non-zero coordinates with the topology of uniform convergence on compact sets. We endow
those spaces with the canonical coordinatewise order. Then they are Riesz spaces and we have
that $(\mathbb{R}^{\infty})^{*}=\mathrm{R}_{0}^{\infty}$ and (Iq)’ $=\mathrm{R}^{\infty}$ .

(g) Let $\Lambda(P)$ be the Kothe sequence space with aKothe set $P$ . Then it is aFr&het space,
provided that $P$ is countable, and aRiesz space under the canonical coordinatewise order;
see [16, pages 27, 50, 69 and 497] for definition and properties. Especially, the $\mathrm{F}\mathrm{r}6\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{t}$-MOntel
space (s) of all rapidly decreasing sequences is aRiesz space and the dual (s)’ is the space of
all slowly increasing sequences.

(2) We present here some examples which are not Riesz spaces but of type (R). Let $H$ be a
real Hilbert space with inner product $(\cdot, \cdot)$ . Denote by C8(H) and C8(H) the Banach spaces of
all bounded self-adjoint operators on $H$ and of all completely continuous self-adjoint operators
on $H$ with the usual operator norm. We also denote by T8(H) and S8(H) the Banach space
of all $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class self-adjoint operators on $H$ with the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ norm and the Hilbert space of all
Hilbert-Schmidt class self-adjoint operators on $H$ with the Hilbert-Schmidt norm. We endow
those spaces with the order defined by the relation $” A$ $\leq B\Leftrightarrow(Ax, x)\leq(Bx,x)$ for all $x\in H"$ .
For any $A\in \mathrm{C}\mathrm{a}(H)$ , put $|A|=(A^{2})^{1/2}$ , $A^{+}=(|A|+A)/2$ and $A^{-}=(|A|-A)/2$ . Then they
are positive operators on $H$ . If $A$ belongs to $\mathcal{L}_{s}(H),C_{s}(H)$ , C8(H) and S8(H), then so do $|A|$ ,
$A^{+}$ and $A^{-}$ , and we have $A=A^{+}-A^{-}$ . Consequently, the above spaces are ordered vector
spaces of type (R) and we have $C_{\delta}(H)^{*}=\mathrm{T}8(H)$ , T8(H)* $=\mathrm{C}8(H)$ and $S_{s}(H)^{*}=S8(H)$ . See
R. Schatten [36] for details.
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